LABORATORY 1 INRODUCTION TO CRYPTOGRAPHY SEMESTER 2, 2013/14

GROUP MEMBERS:

NAME	METRIC NO
SECTION:	
DATE:	
INSTRUCTOR SIGNATURE:	

At the end of the laboratory work, student will be able:

- i. To evaluate mathematical expression based on modulo arithmetic.
- ii. To apply Euclid Algorithm in calculating the Greatest Common Divisor of two given numbers,
- iii. To apply Extended Euclid Algorithm in calculating the multiplicative inverse of a given number.
- iv. To evaluate the Euler Totient Function, $\phi(n)$.

A. Modulo Arithmetic

Change each of group member metric numbers to modulo 313.

Example: Metric Number = 098765 = 98765 mod 313

X = Metric Number 1 =

Y = Metric Number 2 =

Z = Metric Number 3 =

1. X + Y

2. *X - C*

3. $(X + Y) \times Z$

4. Find *Y*²³

B. Euclid's Algorithm

Change each of the group member metric numbers to two different numbers of a and n.. Example: Metric Number = 098765, therefore (a, n) = (987, 65)

- X = Metric Number 1 =
- Y = Metric Number 2 =
- Z = Metric Number 3 =
- i. Find gcd of X

q	<i>r</i> 1	r2	r

Ii Find gcd of Z

q	<i>r</i> 1	r2	r

C. Extended Euclid's (or Binary GCD) Algorithm

Use the same numbers in (B) for the following questions.

Identify the multiplicative inverse of *X*, *Y* and *Z*. Prove all the answers.

D. Fermat's Theorem and Euler's Generalization

Find the multiplicative inverse by applying Fermat's Theorem and/or Euler's Generalization.

1. 8⁻¹ mod 77

2. 7⁻¹ mod 15

3. 60⁻¹ mod 187

4. 71¹ mod 100