
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH12
Polynomial

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

After studying this chapter you should be able to:
1. Represents polynomial as vector.
2. Find polynomial roots.
3. Use MATLAB function to multiply and divide polynomials
4. Use polynomial to model a data through curve fitting function polyfit and polyval

1

2

POLYNOMIAL

• Polynomial is a mathematical expression consisting the sum of many terms
(‘poly’=many, ‘nomial’=terms).

• Each of the term consist a variable raised to a positive integer power and multiplied by
a coefficient.

𝑎𝑁𝑥
𝑁 + 𝑎𝑁−1𝑥

𝑁−1 +⋯+ 𝑎2𝑥
2 + 𝑎1𝑥

1 + 𝑎0𝑥
0

• Based on above, there are four terms with 𝑥 is the variable. From the right, each term
has the variable is raised to an increasing integer value starts at 0.

• 𝑎𝑁, 𝑎𝑁−1, … , 𝑎2, 𝑎1, 𝑎0 are the coefficients for the terms.

WHAT IS POLYNOMIAL?

3

POLYNOMIAL
APPLICATION

• The followings are common application of polynomial in electrical engineering.
1) System representation.

2) System stability evaluation.

3) Modelling acquired data.

4) Calibration.

4

POLYNOMIAL
VECTOR REPRESENTATION

• Polynomial coefficients are normally constants and can be group into a single
vector.

• In MATLAB, the coefficient vector can be either in the form of row vector or
column vector.

• With the coefficients represented as vector, MATLAB provide many functions to
work with polynomial. Functions that will be covered in this chapter are as
below:

Function Description

conv Polynomial multiplication

deconv Polynomial division

roots Polynomial roots

polyval Polynomial evaluation

polyfit Polynomial curve fitting

POLYNOMIAL

5

EXAMPLE 1

VECTOR REPRESENTATION

Polynomial Vector Representation

1 3𝑥4 + 𝑥3 − 2𝑥2 + 0.5𝑥 + 1 3 1 −2 0.5 1

2 𝑥 − 1 1 −1

3 −6𝑦2 +
3

2
𝑦 −6

3

2
0

4 8 8

5 𝑎3 1 0 0 0

6 1 − 2𝑥 − 3𝑥2 −3 −2 1

7 𝑓 𝑦 = 2𝑦 − 1 + 3𝑦2 + 𝑎 3 2 𝑎 − 1

8 𝑓 𝑦 = 3𝑥𝑦3 + 𝑥𝑦 + 1 3𝑥 0 𝑥 1

9 𝑓 𝑥 = 3𝑥𝑦3 + 𝑥𝑦 + 1 (3𝑦3 + 𝑦) 1

10 𝑓 𝑥 = 𝑎 𝑥 + 𝑥2 + 𝑥 − 3 𝑎 𝑎 + 1 −3

POLYNOMIAL

6

• Syntax

Description:

• w = conv(u,v) returns the polynomial multiplication of vector u and v.

• w = deconv(u,v) returns vector w as the polynomial division of vector u over
vector v and r as the remainder of the polynomial long division such that
u = conv(v,w)+r.

conv AND deconv

w = conv(u,v) %Polynomial multiplication

[w,r] = deconv(u,v) %Polynomial division

POLYNOMIAL

7

conv AND deconv

EXAMPLE 2

Find 𝑓 𝑥 = 𝑥3 + 3𝑥2 + 2 𝑥2 − 5 and 𝑔 𝑥 = 𝑥3 + 3𝑥2 + 2 / 𝑥2 − 5

Thus,

𝑓 𝑥 = 𝑥5 + 3𝑥4 − 5𝑥3 − 13𝑥2 − 10

𝑔 𝑥 = 𝑥 + 3 +
5𝑥 + 17

𝑥2 − 5

>> A = [1 3 0 2];

>> B = [1 0 -5];

>> f = conv(A,B)

f1 =

1 3 -5 -13 0 -10

>> [g,r] = deconv(A,B)

g =

1 3

r =

0 0 5 17

POLYNOMIAL

8

SYSTEM REPRESENTATION

• Many engineering related system can be represented with mathematical model.

• Polynomial is one of the mathematical expression commonly used to represent
the system, especially for electrical and electronic system.

• One case is when a system is represented in Laplace domain where 𝑠 is use as
the polynomial variable. This polynomial representation of the system is called
‘System Function’.

• Other than that, polynomial can also be used to represent signal or data.

9

POLYNOMIAL
SYSTEM FUNCTION

EXAMPLE 3

Figure below shows a system with PID controller 𝐺 𝑠 . This controller is used to stabilize
the plant 𝐻(𝑠) (e.g.: motor, car acceleration pedal, compressor). The overall system
function of the system 𝑄(𝑠) is shown by the polynomial equation at the right side of the
figure.

𝑄𝑛 is denoted as numerator polynomial and 𝑄𝑑 is the denumerator polynomial.

𝐷, 𝑃 and 𝐼 are the controller constant.

𝐺 𝑠 =
𝐺𝑛
𝐺𝑑

=
𝐷𝑠2 + 𝑃𝑠 + 𝐼

𝑠

𝐻 𝑠 =
𝐻𝑛
𝐻𝑑

𝑄 𝑠 =
𝑄𝑛
𝑄𝑑

=
𝐺𝑛𝐻𝑛

𝐺𝐷𝐻𝑑 + 𝐺𝑛𝐻𝑛

𝑥[𝑛] 𝑦[𝑛]෍.+

−

𝐺 𝑠 𝐻 𝑠

𝑄 𝑠

10

POLYNOMIAL
SYSTEM FUNCTION

EXAMPLE 3

• Now let say we want to control a motor at a specific speed where the motor can be

represented using polynomial 𝐻 𝑠 =
1

𝑠−2
. Below is the MATLAB code to generate the

two polynomial 𝑄𝑛 and 𝑄𝑑.

• In this example we set 𝑃 = 4, 𝐷 = 2 and 𝐼 = 1.

P=4; D=2; I=1;

Gn = [D P I]; Gd = [1 0];

Hn = 1; Hd = [1 -2];

Qn = conv(Gn,Hn)

Qd = addpoly(conv(Gd,Hd),Qn)

Qn =

2 4 1

Qd =

3 2 1

addpoly is a user
defined function to
add two polynomial.

𝐺 𝑠 =
𝐺𝑛
𝐺𝑑

=
2𝑠2 + 4𝑠 + 1

𝑠

𝐻 𝑠 =
𝐻𝑛
𝐻𝑑

=
1

𝑠 − 2

𝑄 𝑠 =
𝑄𝑛
𝑄𝑑

=
2𝑠2 + 4𝑠 + 1

3𝑠2 + 2𝑠 + 1

11

POLYNOMIAL
polyval

• Syntax

Description
p – Polynomial coefficients, specified as a vector

x – evaluated points

y – evaluated values

Find 𝑓 𝑥 = 𝑥3 + 4𝑥2 − 2𝑥 + 1 for 𝑥 = 3.5

y = polyval(p,x) %Polynomial evaluation

>> p = [1 4 -2 1];

>> f = polyval(p,3.5)

f =

85.8750

EXAMPLE 4

12

POLYNOMIAL
FREQUENCY RESPONSE

EXAMPLE 5

• Back to Example 3 where numerator and denumerator polynomial is use to represent

a system where 𝑄(𝑠) =
𝑄𝑛

𝑄𝑑
. To understand the system, the polynomial is evaluated

over a range of 𝑠 values.

• In this case, 𝑠 = 𝑗2𝜋𝐹 where 𝐹 is frequency in 𝐻𝑧. Thus, the values for 𝐹 must be first
determine to have the 𝑠 values. Here we set 𝐹 from 0𝐻𝑧 to 10𝑘𝐻𝑧.

• Lastly, a graph is plotted to visualize the behaviour of the system.
Qn = [2 4 1]; Qd = [3 2 1];

F = 0:10e3;

s = 1i*2*pi*F;

Qns = polyval(Qn,s);

Qds = polyval(Qd,s);

Qs = Qns./Qds;

figure, semilogx(F,abs(Qs))

xlabel('Frequency (Hz)')

ylabel('Magnitude |H(s)|')

title('Frequency Response')

• 𝐻𝑛 and 𝐻𝑑 were created
from Example 3.

• semilogx plot is used to plot
the data because the range
of the 𝐹 is very wide.

𝐺 𝑠 =
𝐺𝑛
𝐺𝑑

=
2𝑠2 + 4𝑠 + 1

𝑠

𝐻 𝑠 =
𝐻𝑛
𝐻𝑑

=
1

𝑠 + 1

𝑄 𝑠 =
𝑄𝑛
𝑄𝑑

=
2𝑠2 + 4𝑠 + 1

3𝑠2 + 2𝑠 + 1

13

POLYNOMIAL
FREQUENCY RESPONSE

EXAMPLE 5

14

POLYNOMIAL
roots

• Roots of polynomial 𝑃(𝑥) is all 𝑥 values that return 𝑃(𝑥)=0.

• Polynomial with its highest power equals to 𝑁 will have 𝑁 roots.

• Syntax

y = roots(p) %p is polynomial specified in vector

EXAMPLE 6

Find roots for polynomial 𝑓 𝑥 = 𝑥3 + 𝑥2 − 4𝑥 − 4

>> p = [1 1 -4 -4];

>> r = roots(p)

r =

2.0000

-2.0000

-1.0000

15

POLYNOMIAL
VERTICAL DISPLACEMENT

• Launch an object from ground vertically and find out how long will it take to hit back
the ground. The formula for vertical displacement is as below where 𝑣 is the initial
velocity and 𝑔 is the acceleration due to gravity. Lets set the 𝑣 = 30𝑚𝑠−1 and 𝑔 =
− 9.8𝑚𝑠−2.

𝑑 = 𝑣𝑡 +
𝑔

2
𝑡2

• This problem can be solve by finding roots of polynomial since ground is where 𝑑 = 0.

EXAMPLE 7

p = [-9.8/2 30 0];

r = roots(p)

tground = r(r~=0);

t = 0:0.01:tground;

d = polyval(p,t);

plot(t,d)

xlabel('time (s)'), ylabel('Displacement (m)')

title('Vertical Displacement')

r =

0

6.1224

16

POLYNOMIAL
VERTICAL DISPLACEMENT

17

POLYNOMIAL
SYSTEM STABILITY

• Back to Example 3, stability of the system represented by polynomial can be checked by
the roots value of the denumerator polynomial 𝑄𝑑. A system is stable if all of the
denumerator roots are less than 0.

• Now, create a MATLAB function that check the stability of the PID control system
described in Example 3. The input variables to the function are as below while the output
variable is none.

1) Constant 𝑃, 𝐼 and 𝐷 specified as vector 𝐶 = 𝑃 𝐼 𝐷 .

2) Numerator polynomial of the plant, specified in vector 𝑃𝑛.

3) Denumerator polynomial of the plant, specified in vector 𝑃𝑑.

Apart from the above, the function should display at command window the roots and
string message on whether the system is stable or not stable.

EXAMPLE 8

18

POLYNOMIAL
SYSTEM STABILITY

Below is the MATLAB function for Example 8.

EXAMPLE 8

function chkStability(C,Pn,Pd)

Gn = [C(3) C(1) C(2)];

Gd = [1 0];

Hn = conv(Gn,Pn);

Hd = addpoly(conv(Gd,Pd),Hn);

Root = roots(Hd);

length(Root);

fprintf('root%d = %.2f%+.2fi\n',...

[1:length(Root);real(Root)';imag(Root)'])

R = Root(Root>=0);

if isempty(R)

disp('The system is stable')

else

disp('The system is not stable')

end

19

POLYNOMIAL
SYSTEM STABILITY

Below is the MATLAB code on using the checkStability function for several values of
𝑃, 𝐼 and 𝐷 and different plant 𝑃(𝑠).

EXAMPLE 8

>> checkStability([4,1,0],1,[1 -2])

root1 = -1.00+0.00i

root2 = -1.00+0.00i

The system is stable

>> checkStability([1,1,2],1,[1 -2])

root1 = 0.17+0.55i

root2 = 0.17-0.55i

The system is not stable

>> checkStability([3,3,3],[1 0],[1 1])

root1 = 0.00+0.00i

root2 = -0.67+0.94i

root3 = -0.67-0.94i

The system is stable

20

POLYNOMIAL
polyfit

• Syntax

Description:

x – x-axis data, specified as a vector

y – y-axis data, specified as a vector

n – Degree of the polynomial fit

p – Least-squares fit polynomial coefficients, returned as a vector

p = polyfit(x,y,n) %Polynomial curve fitting

21

POLYNOMIAL
CURVE FITTING

• Curve fitting is the process of constructing a curve to a series of collected data
points.

• The curve is represented by mathematical function such as polynomial.

• The idea of having the curve represented by mathematical function is a way to
model a process or activity that varies over some variables.

• Example:

• Modelling yearly climate data

• Modelling internet usage

• Why modelling?

• Automation

• Analysing relationship between variables

• Data Trend

22

POLYNOMIAL
SENSOR CALIBRATION

EXAMPLE 9

Spreadsheet ‘chp12ex12_3.xlsx’ contain a temperature sensor reading in volt (𝑉) taken over
temperature between 20℃ to 50℃. Find a mathematical function that will convert the
sensor reading from volt (𝑉) to temperature (℃).

Solution

• Finding mathematical function to a sensor reading is normally done to calibrate the
sensor. Sensor calibration is important to ensure accurate reading.

• In this example, the calibration can be done by applying polynomial curve fitting to the
collected data.

• In Matlab, function polyfit() can be used to obtain the mathematical function. Then
use function polyval() to test the output.

23

POLYNOMIAL
SENSOR CALIBRATION

EXAMPLE 9

Below is the MATLAB code to obtain the mathematical function using polynomial curve
fitting function. Based on the collected data, the polynomial order is chosen equals to 1.

x = xlsread('calibration.xlsx','B3:C33');

V = x(:,1);

T = x(:,2);

p = polyfit(V,T,1);

fprintf('T(V) = %.2fV%+.2f\n',p)

sT = polyval(p,V);

figure, plot(V,T,' x',V,sT)

title('Sensor Calibration')

xlabel('Sensor Reading (V)')

ylabel('Temperature (\circC)')

legend('Collected Data','Curve Fitted data')

T(V) = 16.38V-12.42

24

POLYNOMIAL
SENSOR CALIBRATION

25

POLYNOMIAL
DATA TREND

EXAMPLE 10

Below is a table of six months internet usage for five persons of age above 30 that previously
never use an internet. Find the usage trend and estimate the internet usage at month 7, 8
and 9.

This data is available in file internetusage.xlsx.

Person

Internet Usage (hour)

1st month 2nd

month
3rd

month
4th

month
5th

month
6th

month

1 7 11 23 59 120 180

2 3 8 20 48 88 140

3 4 11 21 58 128 195

4 5 9 16 45 111 156

5 2 5 12 38 78 145

26

POLYNOMIAL
DATA TREND

EXAMPLE 10

The data trend can be obtained by fitting the data using polynomial. The data can be plotted
with month as the x-axis variable and usage as the y-axis variable.
x = xlsread('internetusage.xlsx','C5:H9');

data = [x(1,:) x(2,:) x(3,:) x(4,:) x(5,:)];

month = [1:6 1:6 1:6 1:6 1:6];

p1 = polyfit(month,data,1);

p2 = polyfit(month,data,2);

p3 = polyfit(month,data,3);

monthFit =[1:6 6*ones(1,24)];

dataFit1 = polyval(p1,monthFit);

dataFit2 = polyval(p2,monthFit);

dataFit3 = polyval(p3,monthFit);

plot(month,data,' o',monthFit,[dataFit1;dataFit2;dataFit3])

title('Internet Usage')

xlabel('Month')

ylabel('Usage (hours)')

legend('data','1st order','2nd order','3rd order')

27

POLYNOMIAL
DATA TREND

EXAMPLE 10

• From the above figure, 2nd order and 3rd order polynomial fitting are more accurate to
represent the data compared to the 1st order polynomial. Thus, the 2nd order polynomial is
chosen as the mathematical model of the data trend.

28

POLYNOMIAL
DATA TREND
• To find the internet usage for month 7, 8 and 9, polyval() function is used with the

evaluated point set equals to a vector of [7 8 9].

>> usage = polyval(p2,[7 8 9]);

>> fprintf('Month %d = %.2fhours\n',[7:9;usage])

Month 7 = 244.88hours

Month 8 = 341.19hours

Month 9 = 453.61hours

29

POLYNOMIAL
DATA MODELLING

EXAMPLE 11

A farmer want to automate the irrigation system for his crops so that he will never have to
change the amount of water setting to the irrigation system everyday. Based on the data he
collected on the water usage of the previous crops cycle, find a mathematical formulation
for the water usage. This formula will be used as the basis to the automatic irrigation
system.

The water usage data can be found in the file waterusage.xlsx.

Solution

In this example we will do the curve fitting using several degree of polynomials and pick the
best for the water usage data based on a measure called R-squared shown by below
equation. 𝑑𝑖 is the measured data and 𝑓𝑖 is the fitted data.

𝑅2 = 1 −
σ𝑖 𝑑𝑖 − 𝑓𝑖

2

σ𝑖 𝑑𝑖
2

30

POLYNOMIAL
DATA MODELLING

EXAMPLE 11

Matlab code for Example 11
x = xlsread('waterusage.xlsx','B3:C47');

day = x(:,1); water = x(:,2);

N=5;

p = zeros(N,N+1);

waterFit = zeros(N,45);

label = {'Measured Data'};

for n = 1:N

p(n,N+1-n:N+1) = polyfit(day,water,n);

waterFit(n,:) = polyval(p(n,N+1-n:N+1),day);

label{n+1} = sprintf('Polinomial Order = %d',n);

end

R2 = 1 - sum((waterFit'-water).^2)/sum(water.^2);

disp('R-SQUARED VALUES:')

fprintf('Polynomial Order %d = %.4f\n',[1:N;R2])

plot(day,water,' x',day,waterFit)

xlabel('day')

ylabel('Water Usage (Litre)')

title('Water Usage for 1 Harvesting Cycle')

legend(label)

31

POLYNOMIAL
DATA MODELLING

EXAMPLE 11

• Below are the displayed information at command window

• Since the r-squared value for the 3rd order polynomial, which is equals to 0.9991 can be
considered as good enough, thus the best polynomial order is 3 in order to keep the
complexity of the polynomial low. Thus, the chosen polynomial is as below:

𝑤 = −0.00016249𝑑3 + 0.010909𝑑2 − 0.04582𝑑 + 1.4151

R-SQUARED VALUES:

Polynomial Order 1 = 0.9953

Polynomial Order 2 = 0.9954

Polynomial Order 3 = 0.9991

Polynomial Order 4 = 0.9991

Polynomial Order 5 = 0.9994

p(3,3:end)

ans =

-0.00016249 0.010909 -0.04582 1.4151

32

POLYNOMIAL
DATA MODELLING

