
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH4
Control Flow

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

1. To be able to write a decision algorithm into a program using if-elseif and switch-case
statements.

2. To know the difference between the if-elseif and switch-case statements and which situation is
best for each of the statement.

3. To be able to convert the if-elseif statement into logical vector decision method wherever
possible.

4. To be able to write a loop algorithm into a program using for and while statements.
5. To know the difference between the for and while statements and which situation is best for

each of the statement.
6. To be able to convert the for statement into array operations wherever possible.

1

OPERATION (RECAP)

2

STATEMENT

Assign array to a variable using
EQUAL OPERATOR

1. ASSIGNMENT

Execute statements specified
number of times using
BOOLEAN OPERATOR
or EQUAL OPERATOR

2. REPETITION

Execute statements if
condition is TRUE using
BOOLEAN OPERATOR

3. DECISION

while

for

if
if-else
if-elseif
Switch-case

syntax

COMMAND

Function that mostly
used to change the

environment

FUNCTION

Group of statement
that perform a task

functionName input1 … inputN

[output1,…,outputM]
= functionName(input1 … inputN)

Input, if exist, must
only be string

syntax

syntax

variable = expression

Arithmetic

BooleanTY
P

E

CONTROL FLOW

3

INTRODUCTION

Control Flow

Loop ControlConditional

• Repetition statement.
• Tells the computer to repeat

certain set of statement for N
number of repetition or while
some condition is fulfil.

• Other than the above,
repetition control such as skip
and early exit from the
repetition are also possible.

• Decision statement.
• Tells the computer to pick

and run one of several
sets of statement based
on certain condition.

MATLAB SCRIPT

4

INTRODUCTION

• Scripts are the simplest type of program file.
• Scripts have no input or output arguments.
• They are useful for automating a series of MATLAB commands, such as computations that you

have to perform repeatedly from the command line or series of commands you have to
reference.

• In this chapter, all examples are written as MATLAB script since we now need a series of
commands to work with the control flow.

MATLAB SCRIPT

5

CREATE AND RUN A SCRIPT

• Clicking the New Script icon will open a new script editor.
• Write the code inside the editor and save it as .m file.
• Then run the code by either typing the file name on the command window or click the Run

icon on the editor window.

CONDITIONAL

CONDITIONAL

6

INTRODUCTION

if-elseif-else

EXECUTE STATEMENTS IF CONDITION
IS TRUE

if condition_1

statements

elseif condition_2

statements

...

else

statements

End

o Condition is normally express
as Boolean expression

o If condition is express as
arithmetic expression,

condition is true when the
value is nonzero

switch-case-otherwise

EXECUTES STATEMENTS BASED ON
THE VALUE OF A VARIABLE

switch n

case value_1

statements

case value_2

statements

...

otherwise

statements

end

o Variable n is normally express

as arithmetic expression

o Case value must be a scalar or
string.

o To compare against multiple
value, use cell array

CONDITIONAL

7

SINGLE IF-ELSE

EXAMPLE 1

EXAMPLE 2

x = 2;

if x<0

disp('neg’)

else

disp('non-neg’)

end

This code will display ‘non-neg’
at the command window. Try
change the value as x=-2

if 79

disp(‘true’)

else

disp(‘false’)

end

This code will display ‘true’ at
the command window. Try other
values, including zero & negative
values.

CONDITIONAL

8

MULTIPLE CONDITIONS WITH SINGLE IF

EXAMPLE 3

For quadratic equation of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, it has equal roots, given by −𝑏/(2𝑎) provided that
𝑏2 − 4𝑎𝑐 = 0 and 𝑎 ≠ 0.

a = input('Input a value: ');

b = input('Input b value: ');

c = input('Input c value: ');

d = b^2-4*a*c;

if (d==0) && (a~=0)

x = -b/(2*a)

else

disp(‘different root’)

end

This code use logical operator
&& to set a multiple conditions
for when to compute the equal
roots x.

Below is the MATLAB code to compute the equal roots

CONDITIONAL

9

MULTIPLE CONDITIONS USING ELSEIF

EXAMPLE 4

Other than the equal roots, there are two other types of roots for the quadratic equation
provided that 𝑎 ≠ 0 : the nonequal roots and complex roots.

Below is the MATLAB code to compute only for the real roots.

d = b^2-4*a*c;

if (d==0) && (a~=0)

x1 = -b/(2*a);

x2 = x1;

elseif (d>0) && (a~=0)

x1 = (-b+sqrt(d))/(2*a);

x2 = (-b-sqrt(d))/(2* a);

else

disp(‘complex root’)

end

This code use elseif
since there are more
than 2 conditions.

CONDITIONAL

10

NESTED IF

EXAMPLE 5

To complete the problem, nested ifs is use where the first if is dedicated to variable a while the
second if is for the variable d. Thus, now the root when 𝑎 = 0 is also being computed.

d = b^2-4*a*c;

if a~=0

if (d==0)

x1 = -b/(2*a);

x2 = x1;

elseif (d>0)

x1 = (-b+sqrt(d))/(2*a);

x2 = (-b-sqrt(d))/(2* a);

else

disp('complex root')

end

else

x1 = -c/b;

end

When a=0, the quadratic
equation becomes linear
equation. Thus, only one
root available and
computed as x1 in the
outer else.

CONDITIONAL

11

SWITCH - CASE

EXAMPLE 6

elseif : great for variable conditions that result into a Boolean.

switch : great for fixed data values.

n = input('Enter a number: ');

switch n

case -1

disp('negative one')

case 0

disp('zero')

case 1

disp('positive one')

otherwise

disp('other value')

end

Every case is referring to
a given fixed value. In this
example, -1, 0 and 1

Enter a number: 1

positive one

CONDITIONAL

12

DESIGN USING LOGICAL

• Instead of if and switch statements, logical approach is another method to execute decision
statement.

• It is useful in avoiding the if and switch statements when involving mathematical equations,
which is common in scientific programming.

• In logical approach, condition in if and switch statement is replaced with logical multiplier
array.

ADVANTAGE

• They are almost always faster than if and switch methods.

• Can be easier to read since the expression can be written very close to the mathematical
equation form.

CONDITIONAL

13

DECISION USING LOGICAL

EXAMPLE 7

A simple version of how income tax is calculated could be based on the following table:

Taxable Income Tax Payable

$10000 or less 10% of taxable income

Between $10000 and
$20000

$1000 + 20% of amount by which
taxable income exceeds $10,000

More than $20000 $3000 + 50% of amount by which
taxable income exceeds $20,000

The tax payable on a taxable income of $30000, for example, is:

Tax = 3000 + 0.5*(30000-20000) = 8000

CONDITIONAL

14

DECISION USING LOGICAL VECTOR

Below is how the tax payable calculation is solve using elseif.

inc = input(‘Input an income: ');

if inc <= 10000

tax = 0.1*inc;

elseif inc <= 20000

tax = 1000 + 0.2*(inc-10000);

else

tax = 3000 + 0.5*(inc-20000);

end

disp([‘Tax Payable = ‘, num2str(tax)])

Input an income: 30000

Tax Payable = 8000

CONDITIONAL

15

DECISION USING LOGICAL VECTOR

• To convert the elseif method to logical method, the conditions are multiply with their
respective formulas. Then, the results of all condition multiplication are added to get the final
answer.

• Below is the coding structure:

var_1 = (formula_1)*(condition_1)

var_2 = (formula_2)*(condition_2)

var_n = (formula_n)*(condition_n)

var = var_1 + var_2 + … + var_n

HOW IT WORK

• Only one condition will be true at one time. Thus, the addition at the last line will result
the output of the formula with the true condition.

CONDITIONAL

16

DECISION USING LOGICAL VECTOR

EXAMPLE 8

Below is the mathematical equation of the tax payable calculation, followed by the MATLAB code
using the logical vector method.

inc = input(‘Input an income: ');

tax1 = (0.1*inc) *(inc<=10000);

tax2 = (1000 + 0.2*(inc-10000)) *(inc>10000 & inc<=20000);

tax3 = (3000 + 0.5*(inc-20000)) *(inc>20000);

tax = tax1 + tax2 + tax3;

disp([‘Tax Payable = ', num2str(tax)])

Input an income: 30000

Tax Payable = 8000

𝑡𝑎𝑥 = ቐ

0.1 × 𝑖𝑛𝑐
1000 + 0.2(𝑖𝑛𝑐 − 10000)
3000 + 0.5(𝑖𝑛𝑐 − 20000)

𝑓𝑜𝑟 𝑖𝑛𝑐 ≤ 10000
𝑓𝑜𝑟 10000 < 𝑖𝑛𝑐 ≤ 20000

𝑓𝑜𝑟 𝑖𝑛𝑐 > 20000

LOOP CONTROL

LOOP CONTROL

17

CONTINUE

BREAK

PASS CONTROL

TO NEXT

ITERATION

TERMINATE

LOOPS

EXECUTION

j:m:k

j:k

[2 4 6 1]

[0.1 0.3; 2 10]

*or any other method of

creating an array

j – starting value
m – increment value
k – limit value

a>0

a<=100

a<100&a>10

a>0|b==10
B

o
o

le
an

 e
xp

re
ss

io
n

DETERMINATE

LOOPS

SY
N

TA
X for index=[array]

Statements;

end

FOR

Repeat for every

index value

while condition

Statements;

endSY
N

TA
X

WHILE

INDETERMINATE

LOOPS
Repeat while

condition is true

*Or value is not 0

when arithmetic

expression is used

(not recommended).

LOOP CONTROL

18

FOR LOOP

EXAMPLE 9

Lets consider a formula of compound interest as below where 𝑎 is the invested money, 𝑟=interest
rate, 𝑛= total year, and 𝐵= final balance:

𝐵 = 𝑎(1 + 𝑟) 𝑛

If 𝐵 is to be evaluated for 𝑎=$100 on 5 different total year 𝑛 (2,4,6,8,10) and interest rate of 𝑟=8%,
below is how the for loop is use to compute all of the 𝐵 values.

a=100;

r=0.08;

for n=2:2:10

B=a*(1+r)^n;

disp([n B])

end

LOOP CONTROL

19

WHILE LOOP

EXAMPLE 10

Below is how the same equation is coded with while loop:

a=100;

r=0.08;

n=2;

while n<=10

B=a*(1+r)^n;

disp([n B])

n=n+2;

end

2.0000 116.6400

4.0000 136.0489

6.0000 158.6874

8.0000 185.0930

10.0000 215.8925

LOOP CONTROL

20

RETURNING VECTORS AS OUTPUT

EXAMPLE 11

When a resistor (𝑅), capacitor (𝐶) and battery (𝑉) are connected in series, a charge 𝑄 builds up
on the capacitor according to the formula:

𝑄 𝑡 = 𝐶𝑉 1 − 𝑒−
𝑡
𝑅𝐶

where 𝑡 is the charging time starts at 0. The problem is to monitor the charge on the capacitor
every 0.5 second in order to detect when it reaches a level of 2 units of charge, given that 𝑉=9,
𝑅=4 and 𝐶=1.

a) Write a program which display the time and charge every 0.5 seconds until the charge first
exceeds 2 units (i.e. the last charge displayed must exceed 2).

Next slide shows how the problem is coded with while loop:

LOOP CONTROL

21

RETURNING VECTORS AS OUTPUT

EXAMPLE 11

The code for Example 11:
V=9; R=4; C=1; %set V,R and C value

t=0; %initialise charge time

q=0; %initialise charge q at time 0

n=1; %initialise index for the output vectors

while q<=2

q = C*V*(1-exp(-t/(R*C)));

Q(n) = q;

T(n) = t;

t = t+0.5;

n = n+1;

end

disp(['Q : ', num2str(Q)])

disp(['T : ', num2str(T)])

• n is used for index instead of t
since t is not integer.

Q : 0 1.0575 1.9908 2.8144

T : 0 0.5 1 1.5T(2):
Q(2):

T(3):
Q(3):

T(4):
Q(4):

T(1):
Q(1):

LOOP CONTROL

22

NESTED LOOP

EXAMPLE 12

• Lets again consider a formula of compound interest. Now, 𝐵 is to be evaluated for 3 values of
𝑎 ($100,$500,$800) on 5 different total year of 𝑛 (2,4,6,8,10). This time, let 𝑟=0.09.

• Since now we also need to compute for several values of 𝑎, we need two loop statements.

r=0.08;

for a=[100 500 800]

disp(['a= ',num2str(a)]);

for n=2:2:10

B=a*(1+r)^n;

disp([n B])

end

end

LOOP CONTROL

23

CONTINUE STATEMENT

Continue passes control to the next iteration and skips remaining statements. In nested
loops, continue skips remaining statements only in the body of the loop in which it occurs.

EXAMPLE 13

Divisible by 7: 7

Divisible by 7: 14

Divisible by 7: 21

Divisible by 7: 28

Divisible by 7: 35

Divisible by 7: 42

Divisible by 7: 49

for n = 1:50

if mod(n,7)

continue

end

disp(['Divisible by 7: ' num2str(n)])

end

• The program skip displaying n when
it is not divisible by seven.

• Check MATLAB documentation for
function mod() and try to figure out
how the if statement is performed.

LOOP CONTROL

24

BREAK STATEMENT

EXAMPLE 14

• Break terminates the execution of a for or while loop. Statements in the loop after
the break statement do not execute.

• In nested loops, break exits only from the loop in which it occurs. Control passes to the
statement that follows the end of that loop.

• Lets write a simple random number guessing game where you need to continuously guess
one random number until your guessed number is correct.

• The random number can be generated using function randi(). In this example, to have a
random number between 1 to 6, we write the function as randi(6).

• From the program on the next slide, observe that the endless loop is terminated with break
statement.

LOOP CONTROL

25

BREAK STATEMENT

Below is the code for the guessing number game:

Guess the number: 3

Guess the number: 2

Guess the number: 6

"You got it right after 3 try"

x = randi(6);

n = 0;

while 1

guess = input('Guess the number: ');

n = n+1;

if guess==x

disp(['"You got it right after ',num2str(n),' try"']);

break

end

end

• while 1 will
execute endless
loop.

LOOP CONTROL

26

VECTORIZING FOR LOOP

Given the way MATLAB has been designed, for loops tend to be inefficient in terms of computing
time.

EXAMPLE 15

• Lets recap Example 12 where a formula of compound interest 𝐵 is evaluated for 3 values of 𝑎
($100,$500,$800) on 5 different total year of n (2,4,6,8,10) and 𝑟=0.09.

• By vectorizing 𝑎, next slide shows how one of the for loop can be removed to compute all of
the 𝐵 values.

• At the output matrix, row is dedicated to 𝑎 and column is dedicated to 𝑛, representing the
output such in a table of 𝑎 versus 𝑛.

LOOP CONTROL

27

VECTORIZING FOR LOOP

The code for Example 15

1.0e+03 *

0.1188 0.1412 0.1677 0.1993 0.2367

0.5941 0.7058 0.8386 0.9963 1.1837

0.9505 1.1293 1.3417 1.5941 1.8939

a=[100 500 800];

r=0.09;

for n=2:2:10

B(1:3,n/2)=a*(1+r)^n;

end

disp(B)

n=2 n=4 n=6 n=8 n=10

LOOP CONTROL

28

AVOID FOR LOOP BY ARRAY OPERATION

Although for loop is essential for many cases, there are cases especially in scientific programming
where it is possible to convert all the indices into array and use array operation to replace the for
loop.

EXAMPLE 16

• As from the previous Example 13, the remaining for loop can be removed by extending the
vectorization method as shown in the next slide.

• The code use meshgrid function to duplicate vector 𝑎 and 𝑛 into two-dimensional arrays of 𝐴
and 𝑁. Then, the arrays are entered to the equation to obtain the two-dimensional array of 𝐵.

• Recap:

Array operation must be performed using array operator, i.e. with symbol period (.)

LOOP CONTROL

29

AVOID FOR LOOP BY ARRAY OPERATION

Below is the code for Example 16

N =

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

A =

100 100 100 100 100

500 500 500 500 500

800 800 800 800 800

B =

1.0e+03 *

0.1188 0.1412 0.1677 0.1993 0.2367

0.5941 0.7058 0.8386 0.9963 1.1837

0.9505 1.1293 1.3417 1.5941 1.8939

a=[100 500 800];

n=[2 4 6 8 10];

r=0.09;

[N,A] = meshgrid(n,a)

B = A.*(1+r).^N

LOOP CONTROL

30

LOOP STATEMENT VS ARRAY OPERATION

EXAMPLE 17

Array Operation Elapse Time : 7.703

Loop Elapse Time : 15.3738

a = randi(1000,1,10000);

n = 2:2:20000;

r=0.09;

tic

[N,A] = meshgrid(n,a);

B = A.*(1+r).^N;

time1 = toc;

tic

for i=1:length(a)

for j=1:length(n)

B(i,j) = a(i)*(1+r)^n(j);

end

end

time2 = toc;

disp(['Array Operation Elapse Time : ', num2str(time1)])

disp([' Loop Elapse Time : ', num2str(time2)])

• Based on the resulting elapse
time, it shows that the loop
statement for this program
consume almost double the time
compared to the array operation
method.

LOOP CONTROL

31

AVOIDING LOOP & DECISION STATEMENTS

EXAMPLE 18

Back to Example 6, lets write a program to calculate the tax for several values of income, e.g.
[4000 12000 18000 23000 30000] by avoiding both the loop and decision statements.

Income : 4000 12000 18000 23000 30000

Tax : 400 1400 2600 4500 8000

inc = [4000 12000 18000 23000 30000];

tax1 = (0.1*inc) .*(inc<=10000);

tax2 = (1000 + 0.2*(inc-10000)) .*(inc>10000 & inc<=20000);

tax3 = (3000 + 0.5*(inc-20000)) .*(inc>20000);

tax = tax1 + tax2 + tax3;

disp([‘Income : ', num2str(inc)])

disp([‘ Tax : ', num2str(tax)])

