
SEEE1022
INTRODUCTION TO
SCIENTIFIC
PROGRAMMING

CH9
Matrix Algebra

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my)
P19a-04-03-30, School of Electrical Engineering, UTM

OBJECTIVES

• To introduce several matrix algebra functions to solve engineering problems.
• To understand on how to use matrix algebra function such:

i. Dot product
ii. Cross product
iii. Inverse
iv. Determinant

• To introduce other matrix function that can be useful in solving engineering
problems.

1

MATRIX ALGEBRA

2

MATRIX ALGEBRA

• MATLAB was originally written to provide an easy-to-use interface to professionally
developed numerical linear algebra subroutines.

• It offers a wide range of valuable matrix algebra functions

• Note that while MATLAB supports n-dimensional arrays, matrix algebra is defined only
for 2-D arrays — that is, vectors and matrices.

• Matrix algebra is used extensively in engineering applications

• The difference between an array and a matrix:

i. Most engineers use the two terms interchangeably.

ii. The only time you need to be concerned about the difference is when you perform
matrix algebra calculations.

INTRODUCTION

3

MATRIX ALGEBRA
SOLUTION

1) Dot product (math symbol ‘∙’)

2) Cross product (math symbol ‘×’)

3) Inverse

4) Determinants

5) Linear equation

4

MATRIX ALGEBRA
DOT PRODUCTS

• The dot product is the sum of the results when you multiply two vectors of the same
length together, element by element.

𝒖 = [3 2 6 4], 𝒗 = [4 2 3 1]

𝒖 ∙ 𝒗 = 3 2 6 4 ∙

4
3
2
1

= (3 × 4) + (2 × 3) + (6 × 2) + (4 × 1) = 34

• In Matlab, either matrix multiplication operator * or function dot() can be used to
perform the dot product.

EXAMPLE 1

MATRIX ALGEBRA

5

USING *OPERATOR AS DOT PRODUCT

• When performing matrix multiplication, the number of columns in the first matrix
must equals to the number of rows in second matrix.

• To apply the matrix multiplication operator * as a dot product of two vectors, set the
vectors as below

• Note that the first vector is a row vector and the second vector is a column vector.

(1 × 𝑛) ∗ (𝑛 × 1)

Length of the vectors

The resulting matrix will have 1 × 1
dimensions (the dot product)

MATRIX ALGEBRA

6

Formula to compute angle between two vectors 𝑢 and Ԧ𝑣 is as below where the
numerator of the inverse cosine is a dot product between the two vectors while 𝑢 and
Ԧ𝑣 are the magnitude of the vectors:

𝜃 = cos−1
𝑢. Ԧ𝑣

𝑢 . Ԧ𝑣

𝑢 =
2
𝑢1
2 + 𝑢2

2 +⋯+ 𝑢𝑁
2 = 𝑢. 𝑢′

1
2

Write a MATLAB function to compute angle between the following two vectors:

𝑢 = 3 4 1

𝑣 = [1 1 1]

ANGLE OF TWO VECTORS

EXAMPLE 2

MATRIX ALGEBRA

7

ANGLE OF TWO VECTORS

EXAMPLE 2

MATLAB code for Example 2

function theta = vecAngle(u,v)

uMag = sqrt(u*u'); %1st dot product

vMag = sqrt(v*v’); %2nd dot product

udotv = u*v'; %3rd dot product

theta = acos(udotv/(uMag*vMag));

thetadeg = theta*180/pi;

fprintf('\x3B8 = %.2f\x3C0 or %.2f\xB0\n',theta/pi,thetadeg)

>> u = [3 4 1];

>> v = [1 1 1];

>>

>> theta = vecAngle(u,v);

θ = 0.14π or 25.07°

The 1st and 2nd dot product
applied a transposed to its
second term to fulfil the size
compatibility of 1x𝑛 ∙ 𝑛x1

• Other than the 1 × 𝑛 ∗ (𝑛 × 1) vector size format, the * operator will not return a
dot matrix.

• When the first vector is a column vector as the above example, it can be used as one of
the solution to the vectorizing method covered in Chapter 4. Note that in Chapter 4,
array operator is used for the vectorizing method.

MATRIX ALGEBRA

8

* IS NOT ALWAYS A DOT PRODUCT

EXAMPLE 3

>> u = [3 4 1];

>> v = [1 1 1];

>> y = u’*v

y =

3 3 3

4 4 4

1 1 1

Dot product should
return a scalar, not a
matrix

9

MATRIX ALGEBRA

EXAMPLE 4

* IS NOT ALWAYS A DOT PRODUCT

a=[100 500 800];

n=[2 4 6 8 10];

r=0.09;

% Using array multiplication

[N,A] = meshgrid(n,a)

B = A.*(1+r).^N

% Using matrix multiplication

B = a'*(1+r).^n

• For the matrix multiplication method,
it is done on 3 × 1 ∗ 1 × 5 size
format, thus resulting a 3 × 5 matrix,
similar to the array multiplication
method.

• Since it only works for multiplication,
the power operation is maintained
with the array operation.

• In this case meshgrid is not needed.

Lets recap Example 16 from Chapter 4 where a formula of compound interest B is
evaluated for 3 values of a ($100,$500,$800) on 5 different total year of n

(2,4,6,8,10) and r=0.09. Instead of the array operation, the array multiplication
can be replaced with matrix multiplication as below.

10

MATRIX ALGEBRA
USING dot() FUNCTION
• Since * operator is not always a dot product, dot() function is a less confusing method

to perform the dot product.

EXAMPLE 5

>> u = [3 4 1];

>> v = [1 1 1];

>> y = dot(u,v)

y =

8

11

MATRIX ALGEBRA
CENTER OF MASS

EXAMPLE 6

Table below shows the position of several components in x-y-z coordinate together with
the component’s mass.

Below is the formula on how to compute the center of mass position on the above
components.

ҧ𝑥 =
σ𝑥𝑖𝑚𝑖

σ𝑚𝑖
=
𝒙 ∙ 𝒎

σ𝑚𝑖
, ത𝑦 =

𝒚 ∙ 𝒎

σ𝑚𝑖
, ҧ𝑧 =

𝒛 ∙ 𝒎

σ𝑚𝑖

𝒊 Item 𝑥 (meter) 𝑦 (meter) 𝑧 (meter) Mass, 𝑚 (gram)

1 Bolt 0.1 2 3 3.50

2 screw 1 1 1 1.50

3 nut 1.5 0.2 0.5 0.79

4 bracket 2 2 4 1.75

12

MATRIX ALGEBRA
CENTER OF MASS

EXAMPLE 6

• From the equation, the 𝒙 ∙ 𝒎, 𝒚 ∙ 𝒎 and 𝒛 ∙ 𝒎 is a dot product operation.

• Lets rewrite the three dot product equations in matrix form by setting vector 𝒙, 𝒚 and 𝒛 into a
single matrix 𝑃:

𝐷 = 𝑃.𝒎 =
𝒙
𝒚
𝒛

∙

𝑚1

𝑚2
𝑚3

𝑚4

=
𝑥1 𝑥2 𝑥3 𝑥4
𝑦1 𝑦2 𝑦3 𝑦4
𝑧1 𝑧2 𝑧3 𝑧4

∙

𝑚1

𝑚2
𝑚3

𝑚4

=
0.1 1 1.5 2
2 1 0.2 2
3 1 0.5 4

∙

3.5
1.5
0.79
1.75

=
6.53
12.16
19.40

• To get the center of mass, 𝐷 is divided by the sum of the mass.

ത𝑃 =
𝐷

σ𝑚𝑖
=

6.53 12.16 19.40

3.50 + 1.50 + 0.79 + 1.75
=

6.53 12.16 19.40

7.54
= 0.87 1.61 2.57

13

MATRIX ALGEBRA
CENTER OF MASS

To implement the center of mass computation, we can either compute the ҧ𝑥, ത𝑦 and ҧ𝑧
separately or as a single matrix.

Below is the MATLAB code when ҧ𝑥, ത𝑦 and ҧ𝑧 are computed separately:

EXAMPLE 6

m = [3.5, 1.5, 0.79, 1.75];

x = [0.1, 1, 1.5, 2];

y = [2, 1, 0.2, 2];

z = [3, 1, 0.5, 4];

xbar = dot(x,m)/sum(m);

ybar = dot(y,m)/sum(m);

zbar = dot(z,m)/sum(m);

fprintf(['Center of mass:\nx = %.2f\n'...

'y = %.2f\nz = %.2f\n'],xbar,ybar,zbar)

Center of mass:

x = 0.87

y = 1.61

z = 2.57

14

MATRIX ALGEBRA
CENTER OF MASS

Below is the MATLAB code when ҧ𝑥, ത𝑦 and ҧ𝑧 are combined into single matrix.

EXAMPLE 6

m = [3.5, 1.5, 0.79, 1.75];

P = [0.1, 1, 1.5, 2

2, 1, 0.2, 2

3, 1, 0.5, 4];

Pbar = P*m'/sum(m);

fprintf(['Center of mass:\nx = %.2f\n'...

'y = %.2f\nz = %.2f\n'],Pbar)

Center of mass:

x = 0.87

y = 1.61

z = 2.57 • Combining vector ҧ𝑥, ത𝑦 and ҧ𝑧 into single matrix
means the three dot product are performed at
one single code.

• * operator is a better option since dot() function
require both inputs to have similar size.

15

MATRIX ALGEBRA
CENTER OF MASS

0

1

2

0

1

2
0

1

2

3

4

x-axis

Center of Gravity

y-axis

z
-a

x
is

Center of Gravity
This plot was

enhanced using the
interactive plotting

tools

16

MATRIX ALGEBRA
CROSS PRODUCT

• Given any two vector of Ԧ𝐴 and 𝐵, and 𝜃 as the
angle between them, the cross product of the two
vectors is:

Ԧ𝐶 = Ԧ𝐴 × 𝐵
|𝐶| = |𝐴| ∙ 𝐵 sin 𝜃

• Ԧ𝐶 is perpendicular to Ԧ𝐴 and 𝐵.

• The direction of Ԧ𝐶 is given by the right hand rule.

• In MATLAB, the cross product can be computed
using function cross().

17

MATRIX ALGEBRA
MAGNETIC FORCE

When a wire of length 𝐿 carries a current 𝑖 through a magnetic field 𝐵, the magnetic
force |𝐹| by the field on the wire is:

Ԧ𝐹 = 𝑖 𝐿 × 𝐵 (Eq. 1)

𝐹 = 𝑖 𝐿 × 𝐵 (Eq. 2)

𝐹 = 𝑖 𝐿 ∙ 𝐵 sin 𝜃 (Eq. 3)

EXAMPLE 7

𝐹

0.25, 0.25, 0.2

1, 0, 0

0,−0.25, 0.2 𝐵

𝑥

𝑦

𝑧

𝐿

18

MATRIX ALGEBRA
MAGNETIC FORCE

To compute the magnetic force 𝐹 , we can either use cross product (Eq. 2) or dot product
(Eq. 3). Below is the MATLAB code for both method where using cross product gives a
simpler code:

EXAMPLE 7

L = [1 0 0];

B = [0.25 0.25 0.20];

i = 20e-3;

% Cross product method

LB = cross(L,B)

F = i*norm(LB)

% Dot product method

theta = acos(dot(L,B)/(norm(L)*norm(B)));

F = i*norm(L)*norm(B)*sin(theta);

norm() is a function
to compute magnitude
of a vector.

LB =

0 -0.2000 0.2500

F =

0.0064

19

MATRIX ALGEBRA
MATRIX INVERSE

• Matrix inverse properties:

1) Inverse of a matrix 𝐴, though written mathematically as 𝐴−1 is not equals to 1/𝐴.

2) If an inverse of a scalar multiply with the scalar is equals to one (𝑎−1𝑎 = 1),
multiplication of an inverse matrix to the original matrix is an identity matrix.

3) Only square matrix (of size 𝑚 ×𝑚) has an inverse matrix.

4) Singular matrix does not has an inverse.

• MATLAB offers three approaches:

1) The matrix inverse function, inv().

2) Raising a matrix to the -1 power, A^-1.

3) Using left division operator ‘\’ when multiply with a column vector. For example,
𝐴−1𝐵 where 𝐵 is a column vector can be written in MATLAB code as A\B.

20

MATRIX ALGEBRA
MATRIX INVERSE

EXAMPLE 8

>> A = [2 4; 6 3]

A =

2 4

6 3

>> inv(A)

ans =

-0.1667 0.2222

0.3333 -0.1111

>> A^-1

ans =

-0.1667 0.2222

0.3333 -0.1111

>> A\[1 1]'

ans =

0.0556

0.2222

Both inv(A) and A^-1 return
the inverse of matrix A

Using left division operator is an
optimized method in performing
inv(A)*[1 1]’.

21

MATRIX ALGEBRA
DETERMINANT

• Determinant is a useful value that can be computed from the elements of a square
matrix.

• The determinant of a matrix 𝐴 is denoted det(𝐴), 𝑑𝑒𝑡 𝐴, or |𝐴|.

• For a 2 × 2 matrix, the formula for the determinant is:

𝐴 =
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐

4 2
2 8

= 4 8 − 2 2 = 28

EXAMPLE 9

22

MATRIX ALGEBRA
CHECKING SINGULAR MATRIX

• Singular matrix is a matrix that does not has an inverse. A matrix is said to be a singular
matrix if its determinant is equals to 0.

EXAMPLE 10

>> A = [1 2 3; 4 5 6; 1 2 3]

A =

1 2 3

4 5 6

1 2 3

>> det(A)

ans =

0

>> inv(A)

Warning: Matrix is singular to working precision.

ans =

Inf Inf Inf

Inf Inf Inf

Inf Inf Inf

23

MATRIX ALGEBRA
AREA OF A TRIANGLE

Area of a triangle can be formulated using matrix determinant as below:

𝐴 =
1

2
det 𝑇

Where 𝑇 is the matrix of cartesian coordinate of the three corners of the triangle.

Thus matrix 𝑇 is set as below. The 1st column is the x-coordinate, 2nd column is

the y-coordinate and the 3rd column is set equals to 1 to form a square matrix.

𝑇 =

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

𝑥1, 𝑦1

𝑥2, 𝑦2 𝑥3, 𝑦3

24

MATRIX ALGEBRA
AREA OF TRIANGLE

EXAMPLE 11

3,7

2,1
8,2

>> T = [2 1 1; 3 7 1; 8 2 1]

T =

2 1 1

3 7 1

8 2 1

>> A = abs(0.5*det(T))

A =

17.5000

25

MATRIX ALGEBRA
SETS OF LINEAR EQUATIONS

• One of the most common linear algebra problems is finding the solution of a linear set
of equations. For example, consider the set of equations.

4𝑥1 + 5𝑥2 + 6𝑥3 = 232 1
23𝑥1 + 2𝑥2 + 84𝑥3 = 401 (2)
−3𝑥1 − 5𝑥2 + 1𝑥3 = 198 (3)

• These linear equations can be written in matrix form as below

𝐴 𝑥 𝑦
4 5 6
23 2 84
−3 −5 1

∙

𝑥1
𝑥2
𝑥3

=
232
401
198

• Then 𝑥 can be solved by multiplying inverse of matrix 𝐴 with 𝑦 as follow:
𝑥 = 𝐴−1𝑦

In MATLAB, the preferable solution is found by using the matrix left-division operator,
x = A\y.

26

MATRIX ALGEBRA
LINEAR EQUATION

MATLAB code for previous slide

EXAMPLE 12

>> A = [4 5 6; 23 2 84; -3 -5 1]

A =

4 5 6

23 2 84

-3 -5 1

>> y = [232;401;198]

y =

232

401

198

>> x = A\y

x =

-482.8534

276.1935

130.4076

27

MATRIX ALGEBRA
CIRCUIT ANALYSIS

In analysing the above circuit, current on loop 1 and loop 2 can be computed based on
two equation:

10 + 40 𝐼1 − 40𝐼2 = 10 (𝐸𝑞. 1)
−40𝐼1 + 20 + 40 𝐼2 = −20 𝐸𝑞. 2

Using matrix algebra, 𝐼1 and 𝐼2 can be simply solved as below:

𝐼1
𝐼2

=
50 −40
−40 60

−1 10
−20

EXAMPLE 13

28

MATRIX ALGEBRA
CIRCUIT ANALYSIS

MATLAB code for Example 13

EXAMPLE 13

>> R = [50 -40; -40 60]

R =

50 -40

-40 60

>> V = [10;-20]

V =

10

-20

>> I = R\V

I =

-0.1429

-0.4286

>> I = inv(R)*V

I =

-0.1429

-0.4286

Example of using function inv() to solve 𝐼.
However this is not preferable in MATLAB.
Left division is the most optimized method.

USEFUL MATRIX FUNCTION

29

USEFUL MATRIX FUNCTION

Function Description

Create and Combine Array

cat Concatenate arrays along specified dimension

horzcat Concatenate arrays horizontally

vertcat Concatenate arrays vertically

repmat Repeat copies of array

Reshape and Rearrange

sort Sort array element

sortrow Sort rows of matrix

flip Flip order of element

trace Compute the sum of the elements on the main diagonal.

Special Matrices

ones Create array of all ones.

zeros Create array of all zeros.

eye Identity matrix

magic Magic matrix

30

USEFUL MATRIX FUNCTION
TRACE

EXAMPLE 14

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> B = trace(A)

B =

15

31

USEFUL MATRIX FUNCTION
EYE

• Lets consider

𝐹 𝒙 = 𝒙 + 𝐴𝒙 + 𝐵𝒙

where A and B are 2x2 matrices, and 𝒙 is a 2x1 vector.

• Instead of having two multiplication, the equation can be rearranged to have single
multiplication as below where 𝐼 is a 2x2 identity matrix. Having less multiplication will
make the operation faster.

𝐹 𝒙 = 𝐼 + 𝐴 + 𝐵 𝒙

• Above equation will return wrong result if scalar value 1 is used instead of the identity
matrix.

• eye() is a MATLAB function to create the identity matrix.

32

USEFUL MATRIX FUNCTION
EYE

EXAMPLE 15

>> A = [1 2;3 4];

>> B = [2 3;5 6];

>> X = [2 3];

>> F = X + X*A + X*B

F =

32 43

>> I = eye(2)

I =

1 0

0 1

>> F = X*(I + A + B)

F =

32 43

>> F = X*(1 + A + B)

F =

35 45

The answer is wrong when
scalar value 1 is used instead
of the identity matrix.

