SEEM1113 ENGINEERING MECHANICS

CH2 Force Vector

Dr. Mohd Saiful Azimi Mahmud (azimi@utm.my) P19a-04-03-30, School of Electrical Engineering, UTM

www.utm.my innovative • entrepreneurial • global

utm_my

univteknologimalaysia

utmofficial

At the end of this lesson, you should be able to:

- 1. Show how to **add forces** and **resolve** them into components using **parallelogram**, triangle & cartesian methods.
- 2. Express **force** & **position**, determine their **magnitude** & **direction** (Cartesian Vector)
- 3. Determine the **angle between** two vectors & the **projection** of one vector onto another using **dot product** operation.

VECTOR OPERATION

innovative • entrepreneurial • global

GENERAL PRINCIPLES

The bridge tower is stabilized by cables that exert forces at the points of connections. In this chapter we will learn how to express these forces as Cartesian vectors and then determine the resultant force.

GENERAL PRINCIPLES

The tower is held in place by three cables. How to make sure the tower in place?

SCALAR & VECTORS

	SCALARS	VECTORS
Example	Mass, Volume	Force, Velocity
Characteristics	It only has a magnitude (+ve or -ve)	It has a magnitude and direction
Addition rule	Simple arithmetic	Parallelogram law
Special notation	None	Bold font, <u>a line</u> , an arrow ——>

MULTIPLICATION & DIVISION OF A VECTOR BY A SCALAR

VECTOR OPERATION : MAGNITUDE & DIRECTION

VECTOR OPERATION : ADDITION

 To perform vector addition, vector quantities follow the Parallelogram law of addition.

VECTOR OPERATION : ADDITION (SPECIAL CASE)

• In certain cases, **Triangle rule** is used to perform vector addition.

VECTOR OPERATION : SUBTRACTION

 $\mathbf{R}' = \mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$

VECTOR ADDITION OF FORCES: FINDING A RESULTANT FORCE

Law of sines or law of cosines to the triangle can be used to find the magnitude and direction of the resultant force

VECTOR ADDITION OF FORCES: FINDING A COMPONENT OF A FORCE

applied to find the magnitude

VECTOR ADDITION OF FORCES: FINDING A COMPONENT OF A FORCE

Cosine law : $C = \sqrt{A^2 + B^2 - 2AB \cos c}$

Sine law :
$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$

VECTOR ADDITION OF FORCES: ADDITION OF SEVERAL FORCES

 $F_R = (F_1 + F_2) + F_3$

Determine the magnitude and direction of resultant of the forces shown.

Example 1

Find the magnitude and direction of resultant of the forces shown below:

Example 2

If $\theta = 30^{\circ}$ and T = 6 kN, determine the magnitude of the resultant force acting on the eyebolt and its direction measured clockwise from the positive *x*-axis

Example 3

If the tension of the cable is 400 N, determine the magnitude and direction of the resultant force acting on the pulley. This angle is the same angle θ from line *AB* on the tailboard block.

ADDITION OF A SYSTEM OF COPLANAR FORCES : SCALAR NOTATION

- Rectangular components : When force is resolved into two components along the x and y axes.
- Can be represent using scalar or Cartesian vector

using small slope triangle

 $F_x = (b/c)F$

 $F_y = -(a/c)F$

ADDITION OF A SYSTEM OF COPLANAR FORCES : CARTESIAN VECTOR NOTATION

x and y components represented in unit vector *i* and *j*.

ADDITION OF A SYSTEM OF COPLANAR FORCES : COPLANAR FORCE RESULTANTS

$$F_1 = F_{1x}i + F_{1y}j$$

$$F_2 = -F_{2x}i + F_{2y}j$$

$$F_3 = F_{3x}i - F_{3y}j$$

ADDITION OF A SYSTEM OF COPLANAR FORCES : COPLANAR FORCE RESULTANTS

$$F_R = \sqrt{\left(F_{RX}^2 + F_{RY}^2\right)}$$
$$\theta = \tan^{-1} \left|\frac{F_{RY}}{F_{RX}}\right|$$

innovative • entrepreneurial • global 24

Example 4

Determine the magnitude of the resultant force acting on the pin and its direction measured clockwise from the positive x axis

Example 5

Express each of the three forces acting on the bracket in Cartesian Vector form with respect to the x and y axes. Determine the magnitude and direction θ of F_1 so that the resultant force is directed along the positive x' axis and has a magnitude of $F_R = 600 N$

Example 6

PAST YEAR QUESTION (20182019-2)

Q.1

(a) List two differences between scalar and vector.

(2 marks)

- (b) Referring to Figure Q.1(b), sketch the parallelogram diagram for resultant force:
 - i) $F_{R12} = (F_1 + F_2)$

(2 marks)

ii) $F_R = (F_{R12} + F_3)$

- (2 marks)
- (c) Determine the magnitude of the resultant force acting on the plate and its direction, measured counter clockwise from positive x axis using parallelogram law in (b).

(12 marks)

CARTESIAN VECTOR

innovative • entrepreneurial • global

3D SPACE CARTESIAN VECTOR

- Use right-handed coordinate system:
- Thumb points to the direction of positive *z* axis
- Fingers are curled about z axis and directed from the positive x towards y axis

3D SPACE CARTESIAN VECTOR REPRESENTATION

Consider a box with sides $A_{\chi},\,A_{\gamma}$ and A_{Z} meters long.

The vector **A** can be defined as

 $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$

The projection of vector **A** in the *x*-*y* plane is A'. The magnitude of A':

$$A' = \sqrt{A_x^2 + A_y^2}$$

Thus the magnitude of the position vector **A** can be obtained

as

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

DIRECTION OF A CARTESIAN VECTOR

- The orientation of A is defined by the coordinate direction angles, α (alpha), β (beta), and γ (gamma).
- These angles are measured between the vector and the positive X, Y and Z axes, respectively. Their range of values are from 0° to 180°.

DIRECTION OF A CARTESIAN VECTOR

• The orientation of A is defined by the coordinate direction angles, α (alpha), β (beta), and γ (gamma).

Important cosines formula

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

A in Cartesian vector form

$$\mathbf{A} = A\mathbf{u}_A$$

= $A_x\mathbf{i} + A_y\mathbf{j} + A_z\mathbf{k}$
= $A\cos\alpha\,\mathbf{i} + A\cos\beta\,\mathbf{j} + A\cos\gamma\,\mathbf{k}$

CARTESIAN VECTOR – 2 ANGLES

• The direction of A is specified by two angle angles, θ and ϕ (phi). Component of A

 $A_z = A \cos \emptyset$ $A' = A \sin \emptyset$

Component of A'

 $A_{x} = A' \cos \theta = A \sin \phi \cos \theta$ $A_{y} = A' \sin \theta = A \sin \phi \sin \theta$

Vector A in Cartesian vector form

 $\mathbf{A} = A\sin \phi \cos \theta \, \mathbf{i} + A\sin \phi \sin \theta \, \mathbf{j} + A\cos \phi \, \mathbf{k}$

CARTESIAN VECTOR

Example 7

Determine the magnitude and coordinate direction angles of the resultant force acting on the bracket

POSITION & FORCE DIRECTED VECTORS

innovative • entrepreneurial • global

This awning is held up by three chains. What are the forces in the chains and how do we find their directions? Why would we want to know these things?

OUTIN POSITION & FORCE DIRECTED VECTORS

WHAT IS POSITION VECTOR?

A position vector is defined as a fixed vector that locates a point in space relative to another point.

OUTM POSITION & FORCE DIRECTED VECTORS POSITION VECTOR

Consider two points, A and B, with coordinates be (x_A, y_A, z_A) and (x_B, y_B, z_B) , respectively.

Consider three position vectors $r_{A_{,}}r_{B} \& r_{AB}$ Vector addition gives : $r_{A} + r_{AB} = r_{B}$

OUTM POSITION & FORCE DIRECTED VECTORS POSITION VECTOR

Consider two points, A and B, with coordinates be (x_A, y_A, z_A) and (x_B, y_B, z_B) , respectively.

Solving r_{AB} in Cartesian vector form yield: $r = r_B - r_A = (x_B i + y_B j + z_B k) - (x_A i + y_A j + z_A k)$ or $r = (x_B - x_A)i + (y_B - y_A)j + (z_B - z_A)k$ Unit : meter (m)

OUTIN POSITION & FORCE DIRECTED VECTORS POSITION VECTOR

OUTIM POSITION & FORCE DIRECTED VECTORS FORCE VECTOR

Example 8

An elastic rubber band is attached to **points** *A* and *B* as shown. Determine its **length** and **direction** (3 angle coordinate system) measured **from A toward B**.

UTM POSITION & FORCE DIRECTED VECTORS

HOW FORCE VECTOR DIRECTED ALONG THE LINE?

r = Position vector r = Length of the position vector

F = Magnitude of the Force

• If a force is directed along a line, then we can represent the force vector in Cartesian coordinates by using a unit vector and the magnitude of force. So we need to:

a)Find the **position vector**, **r**_{AB}, along two points on that line.

b)Find the unit vector describing the line's direction, $u_{AB} = \frac{r}{r} = \frac{(x_B - x_A)i + (y_B - y_A)j + (z_B - z_A)k}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}}$

c)Find force vector by multiplying the unit vector by the magnitude of the force

$$F = F u_{AB}$$

OUTIM POSITION & FORCE DIRECTED VECTORS FORCE VECTOR

Example 9

The roof is supported by cables as shown. If the cables exert forces $F_{AB} = 100$ N and $F_{AC} = 120$ N on the wall hook at A, determine the resulting force acting at A. Express the result as a Cartesian vector.

DOT PRODUCT

innovative • entrepreneurial • global

Why points B, C, D are important?

Are angles between the forces important?

How would you check this installation to make sure the angles were correct?

DEFINITION

- The dot product is used to determine:
 - The angle between two vectors
 - The projection of a vector in a specified direction
- The dot product of vectors A and B is defined as $A \bullet B = ABcos\theta$
- The angle θ is the smallest angle between the two vectors and is always in a range of 0° to 180°.

Commutative law
$$A \cdot B = B \cdot A$$

Multiplication by a scalar $a(A \cdot B) = (aA) \cdot B = A \cdot (aB)$

 $A \bullet (B + D) = (A \bullet B) + (A \bullet D)$

Distribution law

DEFINITION

- Dot Product Characteristics:
 - The result of the dot product is a scalar (a positive or negative number).
 - The units of the dot product will be the product of the units of the A and B vectors.
- Dot Product of Cartesian unit vectors, A and B

$$\boldsymbol{A} \bullet \boldsymbol{B} = (A_x \boldsymbol{i} + A_y \boldsymbol{j} + A_z \boldsymbol{k}) \bullet (B_x \boldsymbol{i} + B_y \boldsymbol{j} + B_z \boldsymbol{k})$$

• By applying dot product, this will be produced:

$$=A_x B_x + A_y B_y + A_z B_z$$

APPLICATION-ANGLE

The angle formed between two vectors of intersecting lines

The angle θ between the rope and the beam can be determined by formulating unit vectors along the beam and rope and then using the dot product.

APPLICATION-ANGLE

The angle formed between two vectors of intersecting lines

$$A \cdot B = AB \cos \theta$$

then $\theta = \cos^{-1} \left(\frac{A \cdot B}{AB}\right)$

Similarly

$$\boldsymbol{u}_A \cdot \boldsymbol{u}_r = (1)(1) \cos \theta$$

then $\theta = \cos^{-1}(\boldsymbol{u}_A \cdot \boldsymbol{u}_r)$

APPLICATION-PROJECTION

Recap

The scalars are A, A⊥, and A_a
Cosine formula

$$\cos\theta = \frac{A_a}{A}$$

•Thus,

$$A_a = A\cos\theta$$

• Dot product to unit vector $A \cdot u_a = A u_a \cos \theta$ $= A(1) \cos \theta$ $= A \cos \theta$ $A \cdot u_a = A_a$ Magnitude of A_a $A_a u_a = Vector of A_a (A_a)$

APPLICATION-PROJECTION

The components (scalar) of a vector A

parallel to a line

$$A_a = A - A_\perp$$

• Perpendicular to a line

$$A_{\perp} = \mathbf{A} - A_a$$

Example 10

The frame shown is subjected to a horizontal force $F = \{300\}j$. Determine the magnitude of the components of this force parallel and perpendicular to member AB

Example 11

The pipe is subjected to the force of F = 80 N. Determine the angle θ between F and the pipe segment BA and the projection of F along this segment.

www.utm.my innovative • entrepreneurial • global