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Introduction

Eigenvalues play an important role

in situations where the matrix is a

transformation from one vector

space onto itself.

Systems of linear ordinary

differential equations are the

primary examples.

The eigenvalues can correspond to

critical values of stability

parameters, or energy levels of

atoms, or frequencies of

vibration–see Figure 1.

Figure 1 : Vibration of mass-spring system
with three degress of freedom.

The equations of motion for a system of masses and
spring shown in Figure 1 are

m1q̈1 + (k1 + k2 + k4)q1 − k2q2 − k4q3 = 0

m2 q̈2 − k2q1 + (k2 + k3)q2 − k3q3 = 0

m3 q̈3 − k4q1 − k3q2 + (k3 + k4)q3 = 0
(1)

Abu Hasan Abdullah (FME) SME 3023 Applied Numerical Methods Sept 2012 3 / 26



Engineering Applications
Example 1

Figure 2 : Forging hammer.
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Engineering Applications
Example 1

Problem Statement:

A forging hammer of mass m1 is mounted on a concrete foundation block of mass m2.

The stiffness of the springs underneath the forging hammer and the foundation block

are given by k2 and k1, respectively (see Figure 2). The system undergoes simple

harmonic motion at one of its natural frequencies ω, which are given by

»

k1 + k2 −k2

−k2 k2

– 

x1

x2

ff

= ω
2

»

m1 0

0 m2

– 

x1

x2

ff

(a)

where ω
2 is the eigenvalue and ~XT = {x1 x2} is the eigenvector or mode shape

(displacement pattern) of the system. Determine the natural frequencies and mode

shapes of the system for the following data:

Solution:

Work through the example.
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Engineering Applications
Example 2

Problem Statement:

The pin-ended column shown in

Figure 3(a) is subjected to a compressive

(axial) force, P. If the column is

perturbed slightly as shown in

Figure 3(b), as might occur from a slight

vibration of the supports, it may not

return to horizontal position even after

removal of the distrubances; instead, the

deflection might grow if the load is

sufficiently large. Such load is called the

buckling load.

Solution:

Work through the example. Figure 3 : Pin-ended column.
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Definitions and Basic Facts

A matrix is called symmetric if it is equal to its transpose,

A = A
T

or aij = aji (2)

A matrix is called Hermitian or self-adjoint if it equals the complex conjugate of its

transpose (its Hermitian conjugate, denoted by “†”)

A = A
†

or aij = a
∗
ji (3)

A matrix is termed orthogonal if its transpose equals its inverse,

AT · A = A · AT = 1 (4)

and unitary if its Hermitian conjugate equals its inverse.

A matrix is called normal if it commutes with its Hermitian conjugate,

A · A
† = A

† · A (5)
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Definitions and Basic Facts
Eigenvalue & Eigenvector

An eigenvalue and eigenvector of a square matrix [A] are a scalar λ, and a nonzero

vector ~X so that

[A]~X = λ~X

Standard eigenvalue problem is defined by the homogeneous equations

(a11 − λ)x1 + a12x2 + a13x3 + . . . + a1nxn = 0

a21x1 + (a22 − λ)x2 + a23x3 + . . . + a2nxn = 0

. . .

an1x1 + an2x2 + an3x3 + . . . + (ann − λ)xn = 0 (6)

and in matrix form

[A]~X = λ~X (7)
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Definitions and Basic Facts
Eigenvalue & Eigenvector

In Eq. (7),

1 [A] is a known square, (n× n),
matrix

[A] =

2

6

4

a11 a12 . . . a1n

a21 a22 . . . a2n

. . .

an1 an2 . . . ann

3

7

5

(8)

2 ~X is the unknown n-component
vector,

~X =

8

>

<

>

:

x1

x2

. . .

xn

9

>

=

>

;

(9)

3 λ is an unknown scalar, a.k.a.
eigenvalue.

Eq. (7) can be re-written as

[[A] − λ[I]]~X = ~0 (10)

where [I] is the identity matrix of

order n.

Eq. (10) has nontrivial solution

because it represents a system of n

homogeneous equation in n + 1

unknowns. Thus the determinant of

the coefficient matrix of ~X in

Eq. (10) must be zero:

|[A] − λ[I]| = 0 (11)
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Definitions and Basic Facts
Characteristic Equation

If we expand Eq. (11) we get

˛

˛

˛

˛

˛

˛

˛

˛

(a11 − λ) a12 . . . a1n

a21 (a22 − λ) . . . a2n

. . .

an1 an2 . . . (ann − λ)

˛

˛

˛

˛

˛

˛

˛

˛

= 0 (12)

which, upon further expansion, gives an nth order polynomial in λ,

Pn(λ) = anλ
n + an−1λ

n−1 + . . . + a2λ
2 + a1λ + a0 = 0 (13)

called the characteristic equation, where a0, a1, a2 . . . an are coefficients of

polynomial. Assuming λ1, λ2, . . . , λn are roots of the characteristic equation, then

there will be n solutions to Eq. (7).
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Definitions and Basic Facts
Characteristic Equation

Corresponding to each distinct eigenvalue λi, a nontrivial solution of linear

equations in Eq. (7) can be determined through

[A]~X(i) = λi
~X

(i)
(14)

where

~X(i) =

8

>

>

>

<

>

>

>

:

x
(i)
1

x
(i)
2

. . .

x
(i)
n

9

>

>

>

=

>

>

>

;

(15)

is called the eigenvector corresponding to eigenvalue λi.
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Definitions and Basic Facts
Standard & General Eigenvalue Problems

Standard Eigenvalue Problem

Eigenvalue problem as expressed by Eq. (7),
repeated below,

(a11 − λ)x1 + a12x2 + . . . + a1nxn = 0

a21x1 + (a22 − λ)x2 + . . . + a2nxn = 0

. . .

an1x1 + an2x2 + . . . + (ann − λ)xn = 0

and in matrix form

[A]~X = λ~X

is known as the standard eigenvalue problem.

General Eigenvalue Problem

Many physical problems, however, are
expressed as the general eigenvalue problem
given by

[A]~X = λ[B]~X (16)

General eigenvalue problem of Eq. (16) can be
reduced to the standard eigenvalue problem of
Eq. (7). We shall deal with this conversion
later!
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Power Method

Since each eigenvector is associated with an eigenvalue, we often refer to an

eigenvector X and eigenvalue λ that correspond to one another as an eigenpair.

Many of the “real world” applications are primarily interested in the dominant

eigenpair.

The dominant eigenvector of a matrix is an eigenvector corresponding to the

eigenvalue of largest magnitude (for real numbers, largest absolute value) of that

matrix. The method that is used to find this eigenvector is called the power

method.
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Power Method
Sequencing the Iteration

Like the Jacobi and Gauss-Seidel methods, the power method for approximating

eigenvalues is iterative.

1 First we assume that the matrix A has a dominant eigenvalue with corresponding

dominant eigenvectors.

2 Then we choose an initial approximation of one of the dominant eigenvectors of A.

This initial approximation must be a nonzero vector in Rn.

3 Finally we form the sequence given by

x1 = A x0

x2 = A x1 = A(A x0) = A
2
x0

x3 = A x2 = A(A2
x0) = A

3
x0

...

xk = A xk−1 = A(Ak−1
x0) = A

k
x0 (17)
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Power Method
Sequencing the Iteration–Example 1

We demonstrate those sequences on the matrix

A =

»

3 6
1 4

–

and, for Step 1, arbitrarily choose

x0 =

»

1
1

–

x1 = A x0 =

»

3 6
1 4

– »

1
1

–

=

»

9
5

–

=⇒ x
′

1 =

»

1.8
1

–

x2 = A x1 =

»

3 6
1 4

– »

1.8
1

–

=

»

11.4
5.8

–

=⇒ x
′

2 =

»

1.965517241
1

–

x3 = A x2 =

»

3 6
1 4

– »

1.965517241
1

–

=

»

11.89655172
5.96551724

–

=⇒ x
′

3 =

»

1.994219653
1

–

x4 = A x2 =

»

3 6
1 4

– »

1.994219653
1

–

=

»

11.98265896
5.99421965

–

=⇒ x
′

4 =

»

1.99903568
1

–

It looks like an eigenvector is

x =

»

2
1

–
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Power Method
Sequencing the Iteration–Example 1 (continued)

The corresponding eigenvalue is

xTAx

xTx
=

ˆ

2 1
˜

»

3 6
1 4

– »

2
1

–

ˆ

2 1
˜

»

2
1

– =
[30]

[5]
=⇒ λ = 6
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Power Method
Algorithm & Matlab Implementation

The power method iteration in effect

takes successively higher powers of

matrix times initial starting vector

Algorithm: Power Method

x0 = arbitrary nonzero vector

for k = 1, 2, . . .

yk = A xk−1

xk = yk/||yk||∞

end

Implementing the algorithm in Matlab:

Matlab Session>> A = hilb(5) % matrix A>> x0 = ones(5,1) % nonzero vetor>> yk = A*x0>> xk = yk/norm(yk)
Compare the new value of x with the original.

Repeat the last two lines (hint: use the scroll
up button).

Compare the newest value of x with the
previous one and the original. Notice that
there is less change between the second two.

Repeat the last two commands over and over
until the values stop changing.
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Faddeev-Leverrier Method

Let A be and n × n matrix. The determination of eigenvalues and eigenvectors

requires the solution of

AX = λX

where λ is the eigenvalue corresponding the eigenvactor X. The values λ must

satisfy the equation

det(A − λI) = 0

Hence λ is a root of an nth degree polynomial P(λ) = det(A − λI), which we write

in the form

P(λ) = λ
n + c1λ

n−1 + c2λ
n−2 + . . . + cn−2λ

2 + cn−1λ + cn (18)

The Faddeev-Leverrier algorithm is an efficient method for finding the coefficients

ck of the polynomial P(λ). As an additional benefit, the inverse matrix A−1 is

obtained at no extra computational expense.
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Faddeev-Leverrier Method
Trace of Matrix A

The trace of the matrix A, written Tr[A], is

Tr[A] = a1,1 + a2,2 + . . . + an,n (19)

The algorithm generates a sequence of matrices Bn
k=1 and uses their traces to

compute the coefficients of P(λ),

B1 = A and p1 = Tr[B1]

B2 = A(B1 − p1I) and p2 =
1

2
Tr[B2]

... . . .
...

Bk = A(Bk−1 − pk−1I) and pk =
1

k
Tr[Bk]

... . . .
...

Bn = A(Bn−1 − pn−1I) and pn =
1

n
Tr[Bn] (20)
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Faddeev-Leverrier Method
Characteristic Polynomial

Then the characteristic polynomial, Eq. 18, can be re-written as

P(λ) = λ
n + p1λ

n−1 + p2λ
n−2 + . . . + pn−2λ

2 + pn−1λ + pn (21)

and the inverse matrix is given by

A
−1 =

1

pn
(Bn−1 − pn−1I) (22)
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Faddeev-Leverrier Method
Example 1

Problem Statement:

Use Faddeev’s method to find the characteristic polynomial and inverse of the matrix

2

4

2 −1 1

−1 2 1

1 −1 2

3

5

Solution:

A =

2

4

2 −1 1

−1 2 1

1 −1 2

3

5

B1 =

2

4

2 −1 1

−1 2 1

1 −1 2

3

5

p1 = Tr[B1] = 6
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Faddeev-Leverrier Method
Example 1

Solution (continued):

B2 = A(B1 − p1I)

B2 =

2

4

2 −1 1

−1 2 1

1 −1 2

3

5

0

@

2

4

2 −1 1

−1 2 1

1 −1 2

3

5 − 6

2

4

1 0 0

0 1 0

0 0 1

3

5

1

A

=

2

4

−6 1 −3

3 −8 −3

−1 1 −8

3

5

p2 =
1

2
Tr[B2] =

1

2
(−22) = −11
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Faddeev-Leverrier Method
Example 1

Solution (continued):

B3 = A(B2 − p2I)

B3 =

2

4

2 −1 1

−1 2 1

1 −1 2

3

5

0

@

2

4

−6 1 −3

3 −8 −3

−1 1 −8

3

5 − (−11)

2

4

1 0 0

0 1 0

0 0 1

3

5

1

A

=

2

4

6 0 0

0 6 0

0 0 6

3

5

p3 =
1

3
Tr[B3] =

1

3
(18) = 6

The characteristic polynomial is thus

P(λ) = λ
3 −

3
X

i=1

piλ
n−i = −6 + 11λ− 6λ

2 + λ
3
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Faddeev-Leverrier Method
Example 1

Solution (continued):

The inverse matrix is

A
−1 =

1

p3
(B3−1 − p3−1I)

=
1

6

0

@

2

4

−6 1 −3

3 −8 −3

−1 1 −8

3

5 − (−11)

2

4

1 0 0

0 1 0

0 0 1

3

5

1

A

=
1

6

0

@

2

4

−6 1 −3

3 −8 −3

−1 1 −8

3

5 −

2

4

−11 0 0

0 −11 0

0 0 −11

3

5

1

A

=
1

6

2

4

5 1 −3

3 3 −3

−1 1 3

3

5 =

2

6

6

4

5
6

1
6

− 1
2

1
2

1
2

− 1
2

− 1
6

1
6

1
2

3

7

7

5
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Matlab eig Function
Example 1

Problem Statement:

2

4

−149 −50 −154

537 180 546

−27 −9 −25

3

5

8

<

:

x1

x2

x3

9

=

;

=

2

4

λ1 0 0

0 λ2 0

0 0 λ3

3

5

8

<

:

x1

x2

x3

9

=

;

Solution:

Matlab Session>> A = [-149 -50 -154; 537 180 546; -27 -9 -25℄>> [X,lambda℄ = eig(A)>> lambda1 = lambda(1,:)>> lambda2 = lambda(2,:)>> lambda3 = lambda(3,:)>> X1 = X(:,1)>> X2 = X(:,2)>> X3 = X(:,3)>> LHS1 = A*X1>> RHS1 = lambda1*X1>> % Chek if LHS=RHS
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