

INSPIRING CREATIVE AND INNOVATIVE MINDS

www.utm.my

Numerical Integration

Trapezoidal Rule Simpson's Rule

Numerical Integration

www.utm.my

- Many definite integrals of interest can't be evaluated analytically.
- Probably the best-known example is the integral that gives the area under the standard bell-shaped curve, given by

$$F(x) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^{2}/2} dz$$

This integral appears very frequently in probability and statistics and is extensively tabulated.

Numerical Integration

www.utm.my

- The integral is tabulated because it is a fact that there is no way to express the antiderivative of exp(-z²) in terms of elementary functions.
- Because of cases like this we need methods to perform approximate integration; for other cases it may be more convenient to use a numerical method than a symbolic one.
- Often we're given values of f(x) at various points but not a formula for f and so have no choice but to use a numerical method (for example, data from an experiment)

Numerical Integration

www.utm.my

- The Newton-Cotes formula
 - Trapezoidal Rule
 - Simpson's Rule
- Romberg Integration
- Gaussian Quadrature

www.utm.my

The trapezoidal rule is equivalent to approximating the area of the trapezoid under the straight line connecting f(a) and f(b).

prepared by Razana Alwee

www.utm.my

- One way to improve the accuracy of the trapezoid rule is to divide the integration interval from a to b into a number of segments (N).
- The areas of individual segment can then be added to yield the integral for the entire interval.
- There are N+1 equally spaced nodes

X₀, **X**₁,, **X**_N

www.utm.my

Let, $\mathbf{x}_0 = a$ and $\mathbf{x}_N = b$

Assume

$$x_k = x_0 + kh, \ k = 0, 1, 2, \dots, N$$

are equally spaced nodes

$$h = \frac{b-a}{N}$$

prepared by Razana Alwee

www.utm.my

Therefore

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) dx + \dots + \int_{x_{N-1}}^{x_{N}} f(x) dx$$

with
$$\int_{x_k}^{x_{k+1}} f(x) \, dx \approx \int_{x_k}^{x_{k+1}} p_n(x) \, dx$$

prepared by Razana Alwee

www.utm.my

$$p_n(x) = f_k + r\Delta f_k$$

s with

$$x = x_k + rh \qquad (dx = hdr)$$

prepared by Razana Alwee

www.utm.my

$$\int_{x_k}^{x_{k+1}} f(x) \, dx \approx \int_{x_k}^{x_{k+1}} p_n(x) \, dx$$
$$= \int_{x_k}^{x_k+h} \P_k + r\Delta f_k \int dx$$

$$=h\int_0^1 \Phi_k + r\Delta f_k dr$$

prepared by Razana Alwee

www.utm.my

$$= h \left(r f_k + \frac{r^2}{2} \Delta f_k \right) \Big|_0^1 \qquad = h \left(f_k + \frac{1}{2} \Delta f_k \right)$$

$$=h\left[f_{k}+\frac{1}{2}\Psi_{k+1}-f_{k}\right]$$

$$=\frac{h}{2} \mathbf{f}_{k} + f_{k+1}$$

prepared by Razana Alwee

www.utm.my

 $\int_{a}^{b} f(x) dx \approx \frac{h}{2} (f_{0} + f_{1}) + \frac{h}{2} (f_{1} + f_{2}) + \dots + \frac{h}{2} (f_{N-1} + f_{N})$ $=\frac{h}{2} \oint_{0} + 2f_{1} + 2f_{2} + \ldots + 2f_{N-1} + f_{N}$

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left(f_{0} + f_{N} + 2 \sum_{i=1}^{N-1} f_{i} \right)$$

prepared by Razana Alwee

www.utm.my

Approximate the following integral using the Trapezoidal rule with h=0.5 and h=0.25.

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx$$

■ For *h*=0.5, *a*=1 and *b*=4

$$N = \frac{b-a}{h} = \frac{4-1}{0.5} = 6$$

prepared by Razana Alwee

www.utm.my

i	X _i	$f(x_i) = \frac{x_i}{\sqrt{x_i + 4}}$	- •
0	1.0	0.4472	
1	1.5		0.6396
2	2.0		0.8165
3	2.5		0.9806
4	3.0		1.1339
5	3.5		1.2780
6	4.0	1.4142	
	Total	1.8614	4.8486

www.utm.my

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx = \int_{1}^{4} f(x) dx$$

= $\frac{h}{2} \int_{0}^{4} f_{0} + f_{6} + 2 \oint_{1}^{4} + f_{2} + f_{3} + f_{4} + f_{5}^{2}$
= $\frac{0.5}{2} \int_{0}^{1} .8614 + 2 \oint_{0}^{1} .8486^{2}$
= 2.8896

prepared by Razana Alwee

■ For *h*=0.25, *a*=1 and *b*=4

$$N = \frac{b-a}{h} = \frac{4-1}{0.25} = 12$$

prepared by Razana Alwee

UNIVERSITI TEKNOLOGI MALAYSIA	i	X_i	$f(x_i) = \frac{x_i}{\sqrt{x_i + 4}}$	_ 1
www.utm.my	0	1.00	0.4472	
	1	1.25		0.5455
	2	1.50		0.6396
	3	1.75		0.7298
	4	2.00		0.8165
	5	2.25		0.9000
	6	2.50		0.9806
	7	2.75		1.0585
	8	3.00		1.1339
	9	3.25		1.2070
	10	3.50		1.2780
	11	3.75		1.3470
	12	4.00	1.4142	
INSPIRIN		Total	1.8614	10.6364

www.utm.my

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx = \int_{1}^{4} f(x) dx$$
$$= \frac{h}{2} \left[f_{0} + f_{12} + 2 \sum_{i=1}^{11} f_{i} \right]$$
$$= \frac{0.25}{2} \left[.8614 + 2 (0.6364) \right]$$
$$= 2.8918$$

(Note: The exact value of the integral is 2.8925)

prepared by Razana Alwee

Example

For h=0.5, N=6, the error is 0.0029

For h=0.25, N=12, the error is 0.0007

- The error decreases as the number of segments (N) increases.
- When h is reduced by a factor of ½ the successive errors are diminished by approximately ¼.

Approximate the following integrals using the Trapezoidal rule with N=10.

Exercise

(a)
$$\int_0^2 e^x dx$$
 (b) $\int_1^2 \sqrt{x^3 - 1} dx$

prepared by Razana Alwee

www.utm.my

- The trapezoidal rule usually requires a large number of function evaluations to achieve an accurate answer.
- Another way to obtain a more accurate estimate of an integral is to use higher-order polynomials to connect the points.

www.utm.my

Let

$$p_2(x) = f_k + r\Delta f_k + \frac{1}{2}r(r-1)\Delta^2 f_k$$

prepared by Razana Alwee

www.utm.my

$$\int_{x_{k}}^{x_{k+2}} f(x) dx = \int_{x_{k}}^{x_{k}+2h} \left(f_{k} + r\Delta f_{k} + \frac{1}{2}r(r-1)\Delta^{2}f_{k} \right) dx$$
$$= h \int_{0}^{2} \left(f_{k} + r\Delta f_{k} + \frac{1}{2}r(r-1)\Delta^{2}f_{k} \right) dr$$
$$= h \left(rf_{k} + \frac{r^{2}}{2}\Delta f_{k} + \frac{1}{2} \left(\frac{r^{3}}{3} - \frac{r^{2}}{2} \right)\Delta^{2}f_{k} \right) \Big|_{0}^{2}$$

prepared by Razana Alwee

www.utm.my

$$= h \left(2f_k + 2\Delta f_k + \frac{1}{3}\Delta^2 f_k \right)$$
$$= h \left(2f_k + 2(f_{k+1} - f_k) + \frac{1}{3}(f_{k+2} - 2f_{k+1} + f_k) \right)$$

$$=\frac{h}{3} \Phi_{k} + 4f_{k+1} + f_{k+2}$$

prepared by Razana Alwee

www.utm.my

Subdivide the interval [a,b] into N subintervals (N is even).

$$\int_{a}^{b} f(x) dx = \int_{x_{0}}^{x_{2}} f(x) dx + \int_{x_{2}}^{x_{4}} f(x) dx$$
$$+ \dots + \int_{x_{N-2}}^{x_{N}} f(x) dx$$

$$=\frac{h}{3} \Phi_{0} + 4f_{1} + 2f_{2} + 4f_{3} + 2f_{4} + \dots + 4f_{N-1} + f_{N}$$

prepared by Razana Alwee

www.utm.my

This equation is known as Simpson's 1/3 rule.

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left[\Phi_{0} + f_{N} + 4 \sum_{i=1}^{N/2} f_{2i-1} + 2 \sum_{i=1}^{N/2-1} f_{2i} \right]$$

Where N is even.

Simpson's 3/8 Rule

www.utm.my

Let,

$$p_3(x) = f_k + r\Delta f_k + \frac{1}{2}r(r-1)\Delta^2 f_k + \frac{1}{6}r(r-1)(r-2)\Delta^3 f_k$$

$$\int_{x_k}^{x_{k+3}} f(x) \ dx = \int_{x_k}^{x_{k+3}} p_3(x) \ dx$$

prepared by Razana Alwee

Simpson's 3/8 Rule

www.utm.my

$$\int_{a}^{b} f(x) dx = \frac{3h}{8} \left[\P_{0} + f_{N} + 3\sum_{i=1}^{N/3} \P_{3i-2} + f_{3i-1} + 2\sum_{i=1}^{N/3-1} f_{3i} \right]$$

- where N= 3, 6, 9, 12,
- This equation is called Simpson's 3/8 rule because h is multiplied by 3/8.

www.utm.my

Approximate the following integrals using the Simpson's 1/3 rule with h=0.5 and h=0.25.

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx$$

■ For h=0.5, *a*=1 and *b*=4

$$N = \frac{b-a}{h} = \frac{4-1}{0.5} = 6$$
 (*N* is even)

prepared by Razana Alwee

ພພພ.ເ

i	X_{i}	$f_i = f(x_i) = \frac{x_i}{\sqrt{x_i + 4}}$				
0	1.0	0.4472				
1	1.5		0.6396			
2	2.0			0.8165		
3	2.5		0.9806			
4	3.0			1.1339		
5	3.5		1.2780			
6	4.0	1.4142				
	Total	1.8614	2.8982	1.9504		

www.utm.my

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx = \frac{h}{3} \left[\Phi_{0} + f_{6} + 4\sum_{i=1}^{3} f_{2i-1} + 2\sum_{i=1}^{2} f_{2i} \right]$$

$$=\frac{0.5}{3} \left[.8614 + 4(2.8982) + 2(1.9504) \right]$$

prepared by Razana Alwee

■ For h=0.25, *a*=1 and *b*=4

$$N = \frac{b-a}{h} = \frac{4-1}{0.25} = 12$$
 (*N* is even)

prepared by Razana Alwee

	i	r	f	$-f(x) - \frac{x_i}{x_i}$		
	l	\mathcal{A}_{i}	J_i	$-J(x_i) - \frac{1}{\sqrt{x_i + i}}$	4	
TEKNOLOGY UNIVERSITI TEKNO	0	1.00	0.4472			
www.utm.	1	1.25		0.5455		
	2	1.50			0.6396	
	3	1.75		0.7298		
	4	2.00			0.8165	
	5	2.25		0.9000		
	6	2.50			0.9806	
	7	2.75		1.0585		
	8	3.00			1.1339	
	9	3.25		1.2070		
	10	3.50			1.2780	
	11	3.75		1.3470		
	12	4.00	1.4142			
		Total	1.8614	5.7878	4.8486	25

www.utm.my

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx = \frac{h}{3} \left[\Phi_{0} + f_{12} + 4 \sum_{i=1}^{6} f_{2i-1} + 2 \sum_{i=1}^{5} f_{2i} \right]$$

$$= \frac{0.25}{3} \left[.8614 + 4(5.7878) + 2(4.8486) \right]$$
$$= 2.8925$$

prepared by Razana Alwee

www.utm.my

Approximate the following integrals using the Simpson's 3/8 rule with h=0.25.

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx$$

■ For h=0.25, *a*=1 and *b*=4

$$N = \frac{b-a}{h} = \frac{4-1}{0.25} = 12$$

prepared by Razana Alwee

AT THE T	i	X_{i}	$f_i = f(x_i) = \frac{x_i}{\sqrt{x_i + 4}}$			
UNIVERS	0	1.00	0.4472	$\sqrt{x_i}$ +	- 4	
ատու	1	1.25		0.5455		
	2	1.50		0.6396		
	3	1.75			0.7298	
	4	2.00		0.8165		
	5	2.25		0.9000		
	6	2.50			0.9806	
	7	2.75		1.0586		
	8	3.00		1.1339		
	9	3.25			1.2070	
	10	3.50		1.2780		
	11	3.75		1.3470		
	12	4.00	1.4142			
		Total	1.8614	7.7191	2.9174	

www.utm.my

$$\int_{1}^{4} \frac{x}{\sqrt{x+4}} dx = \frac{3h}{8} \left[\Psi_{0} + f_{12} + 3\sum_{i=1}^{4} \Psi_{3i-2} + f_{3i-1} + 2\sum_{i=1}^{3} f_{3i} \right]$$

$$=\frac{3(0.25)}{8} \left[.8614 + 3(7.7191) + 2(2.9174)\right]$$

= 2.8925

prepared by Razana Alwee

Simpson's Rule

Simpson's 1/3 rule is usually the method of preference because it attains third-order accuracy with three points rather than the four points required for the 3/8 version.

Exercise

www.utm.my

Approximate the following integral

$$\int_0^3 \frac{1}{\sqrt{x^3 + 1}} dx$$

using

a) The Simpson's 1/3 rule b) The Simpson's 3/8 rule with N=12.