
Ch3 The Bernoulli Equation  

   

The most used and the most abused equation in fluid mechanics. 

3.1 Newton’s Second Law: maF =
v

 
• In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ , z, t; 

etc) 

• Let consider a 2-D motion of flow along “streamlines”, as 
shown below. 

 

• Velocity (V
v

): Time rate of change of the position of the 
particle. 

• Streamlines: The lines that are tangent to the velocity vectors 
throughout the flow field. 

• Note: For steady flows, each particle slide along its path, and 
its velocity vector is everywhere tangent to the path.  

• Streamline coordinate: )(tSS = ; dtdSV /=
v

(the distance 
along the streamline can be decided by V

v
 and )(sR ) 
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    where R is the local radius of curvature of the streamline, 
and S is the distance measured along the streamline from 
some arbitrary initial point. 

   

 

■ Figure 3.2 Isolation of small fluid particle in a flow field. 

    ∞≠≠
∂
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S
V    ;0   (not straight line) 

    Forces: Gravity & Pressure (important) 

           Viscous, Surface tension (negligible) 

3.2 amF vv
=  along a streamline 



 
■ Figure 3.3 Free-body diagram of a fluid particle for which 

the important forces are those due to pressure and 
gravity. 

   . Consider the small fluid particle ( nS δδ × ), as show above. 

If the flow is steady. 
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      (Eq. (3.2) is valid for both compressible and  

incompressible fluids) 
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≈⇒   (first term of Taylor series expansion, 

because the particle is small; SS PPPP δδ −≈+ ) 

      Thus PSFδ : the net pressure force on the particle in the 

streamline direction 
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*Note: if pressure gradient is not zero ( CP ≠ ), then there is a 

net pressure force. n
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Note: Force balancing consideration flux),(massVρ  not ρ  

or V , is a key parameter for fluid mechanics, if constant.≠ρ  

Example 3.1 Consider the inviscid, incompressible, steady flow 

along the horizontal streamline A-B in front of the sphere of 

radius a as shown in Fig. E3.1a. From a more advanced theory 

of flow past a sphere, the fluid velocity along this streamline is 
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Determinate the pressure variation along the streamline from 

point A far in front the sphere ) and ( 0VVx AA =−∞=  to 

point B on the sphere )0 and ( =−= BB Vax  

 

 



 

■ Figure E3.1 

 

Solution: 

Since the flow is steady and inviscid, Eq. 3.4 is valid. In 

addition, since the streamline is horizontal, 00sinsin ==θ  

and the equation of motion along the streamline reduces to 
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with the given velocity variation along the streamline, the 

acceleration term is )
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where we have replaced s  by x  since the two coordinates are 



identical (within an additive constant) along streamline A-B. It 

follows that 0<∂
∂

s
VV  along the streamline. The fluid slows 

down from 0V  far ahead of the sphere to zero velocity on the 

“nose” of the sphere )( ax −= . Thus according to Eq. 1, to 

produce the given motion the pressure gradient along the 

streamline is  
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This variation is indicated in Fig. E3. 1b. It is seen that the 

pressure increase in the direction of flow )0( >∂
∂

x
p  from 

point A to point B. The maximum pressure gradient 

)V 610.0( 2
0 aρ  occurs just slightly ahead of the sphere 

)205.1( ax −= . It is the pressure gradient that slows the fluid 

down from 0VVA =  to 0=BV . 

The pressure distribution along the streamline can be obtained 

by integrating Eq. 2 from 0=p  (gage) at −∞=x  to pressure 

p  at location x . The result, plotted in Fig. E3.1c, is 
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The pressure at B, a stagnation point since 0=BV , is the 



highest pressure along the streamline )2( 2
0VpB ρ= . As 

shown in Chapter 9, this excess pressure on the front of the 

sphere (i.e. 0>Bp ) contributes to the net drag force on the 

sphere. Note that the pressure gradient and pressure are directly 

proportional to the density of the fluid, a representation of the 

fact that the fluid inertia is proportional to its mass. 
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Eq. (3.4) 
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Note: if constant≠ρ , then )( pf=ρ  must be known. 

The well-known Bernoulli equation: 



constant  
2
1 2 =++ ZVP γρ   Note: 4 assumptions 

   1) 0=μ  (inviscid) 

   2) 0=
∂
∂
t

 (steady) 

   3) C=ρ  (incompressible) 

   4) along a streamline ( 0=dn ) 

Example 3.2 Consider the flow of air around a bicyclist moving 

through still air with velocity 0V  as is shown in Fig. E3.2. 

Determine the difference in the pressure between points (1) and 

(2). 

 

 ■Figure E 3.2 

Solution: In a coordinate system fixed to the bike, it appears as 

through the air is flowing steadily toward the bicycle with speed 

0V . If the assumptions of Bernoulli’s equation are valid (steady, 



incompressible, inviscid flow), Eq. 3.7 can be applied as follows 

along the streamline that passes through (1) and (2) 
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We consider (1) to be in the free stream so that 01 VV =  and (2) 

to be at the tip of the bicyclist’s nose and assume that 21 zz =  

and 02 =V  (both of which, as is discussed in Section 3.4, are 

reasonable assumptions). It follows that the pressure at (2) is 

greater than at (1) by an amount 
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A similar result was obtained in Example 3.1 by integrating 

pressure gradient, which was known because the velocity 

distribution along the streamline, )(sV , was known. The 

Bernoulli equation is a general integration of maF = . To 

determine 12 pp − , knowledge of the detailed velocity 

distribution is not needed-only the “boundary conditions” at (1) 

and (2) are required. Of course, knowledge of the value of V  

along the streamline is needed to determine the speed 0V . As 

discussed in Section 3.5, this is the principle upon which many 



velocity measuring devices are based. 

    If the bicyclist were accelerating or decelerating, the flow 

would unsteady (i.e. constant0 ≠V ) and the above analysis 

would be in correct since Eq. 3.7 is restricted to steady flow. 

3.3 amF vv
=  normal to a streamline 

   . Example: The devastating low-pressure region at the center 

of a tornado can be explained by applying Newton’s 2nd law 

across the nearly circular streamlines of the tornado. 

 . (3.8)           
22

nam
R

V
R

mVFn vδρδδδ ===  

 . )0 ;90(          coscos n =°=∀−=−= WWWn δθθγδθδδ  

   . ySPnPySPnPFpn δδδδδδδ )()( +−−=  

          
∀

∂
∂

−=

∂
∂

−=−=

δ

δδδδδδ

n
P

ynS
n
PySPn2

 

    . Thus, (3.9)          )cos( ∀
∂
∂

−−=+= δθγδδδ
n
PFpnWnFn  

      Eq. (3.8) & (3.9) & dn
dz

=θcos  

      (3.10)           
2

R
V

n
P

dn
dz ργ =

∂
∂

−−∴  



  

 . if gravity is neglected or if the floor is horizontal 
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  This pressure difference is needed to be balance the 

centrifugal acceleration associated with the curved 

streamlines of the fluid motion. 

. Read example 3.3 

. Integrate across the streamline, using the factor that 

dndPnP =∂∂  if constant=S  
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Example 3.3 Shown in Figs. E3.3a, b are two fields with 

circular streamlines. The velocity distributions are 

  case(b)for       )(

and    (a) casefor       )(
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where 1C  and 2C  are constant. Determine the pressure 

distributions, )(rpp = , for each given that 0pp =  at 0rr = . 

 

 



 
■ Figure E 3.3 

Solution: We assume the flow are steady, inviscid, and 

incompressible with streamline in the horizontal plane ( 0=dndz ) 

Since the streamlines are circles, the coordinate n  points in a 

direction opposite of that of the radial coordinate, rn ∂∂−=∂∂ , 

and the radius of curvature is given by rR = . Hence, Eq. 3.10 

becomes 
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For either the pressure increases as r increase since 0>rp δδ  

Integration of these equations with respect to r , starting with 

a known pressure 0pp =  at 0rr = , gives 
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for case (b). These pressure distributions are sketched in Fig 

E3.3c. The pressure distributions needed to balance the 

centrifugal accelerations in cases (a) and (b) are not the same 

because the velocity distributions are different. In fact for case 

(a) the pressure increase without bound as ∞→r , while for 

case (b) the pressure approaches a finite value as ∞→r . 

The streamline patterns are the same for each case, however. 

Physically, case (a) represents rigid body rotation (as obtained 

in a can of water on a turntable after it has been “spun up”) 

and case(b) represents a free vortex (an approximation to a 

tornado or the swirl of water in a drain, the “bathtub vortex”). 

 



 

  

3.4 Physical Interpretation 
 . Along a streamline: CzVP =++ γρ 2

2
1  

  Across the streamline: czdn
R

VP =++ ∫ γρ
2

 

If: steady, inviscid, and incompressible (None is exactly 

true for real flows) 

  . Physics: Force balance; Bernoulli’s Principle 

   The work done on a particle by all forces acting on the 

particle is equal to the change of the kinetic energy of the 

particle. 

 (Newton’s second law; first & second laws of 

thermodynamics).  

Example 3.4 

Consider the flow of water from the syringe shown in Fig. 3.4. A 

force applied to the plunger will produce a pressure greater than 

atmospheric at point (1) within the syringe. The water flows 

from the needle, point (2), with relatively high velocity and 

coasts up to point (3) at the top of its trajectory. Discuss the 



energy of the fluid at points (1), (2), and (3) by using the 

Bernoulli equation. 

■ Figure E 3.4 

Solution:  If the assumptions (steady, inviscid, incompressible 

flow) of the Bernoulli equation are approximately valid, it then 

follows that the flow can be explained in terms of the partition 

of the total energy of the water. According to Eq. 3.13 the sum 

of the three types of energy (kinetic, potential, and pressure) or 

heads (velocity, elevation, and pressure) must remain constant. 

The following table indicates the relative magnitude of each of 

these energies at the three points shown in the figure. 

 

 



 

Energy Type  

Point 

Kinetic 

22Vρ  

Potential   

zγ     

Pressure  

p       

1     Small Zero Large       

2     Large Small Zero        

3     Zero Large Zero        

The motion results in (or is due to) a change in the magnitude of 

each type of energy as the fluid flows from one location to 

another. An alternate way to consider this flow is as follows. The 

pressure gradient between (1) and (2) produces an acceleration 

to eject the water from the needle. Gravity acting on the particle 

between (2) and (3) produces a deceleration to cause the water 

to come to a momentary stop at the top of its flight. 

If friction (viscous) effects were important, there would be an 

energy loss between (1) and (3) and for the given 1p  the water 

would not be able to reach the height indicated in the figure. 

Such friction may arise in the needle (see chapter 8, pipe flow) 

or between the water stream and the surrounding air (see chapter 



9, external flow). 

 

Example 3.5 Consider the inviscid, incompressible, steady flow 

shown in Fig. E3.5. From section A to B the streamlines are 

straight, while from C to D they follow circular paths. Describe 

the pressure variation between points (1) and (2) and points (3) 

and (4). 

 
■ Figure E 3.5 

Solution: With the above assumption and the fact that ∞=R  

for the portion from A to B, Eq. 3.14 becomes 

constant=+ zp γ  

The constant can be determined by evaluating the known 

variables at the two locations using P2 = 0 (gage), Z1 = h2-1 to 

give 
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Note that since the radius of curvature of the streamline is 

infinite, the pressure variation in the vertical direction is the 

same as if the fluid were stationary. However, if we apply Eq. 

3.14 between points (3) band point (4) we obtain (using dn = 

-dz) 
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To evaluate the integral we must know the variation of V and R 

with z. Even without this detailed information we note that the 

integral has a positive value. Thus, the pressure at (3) is less 

than the hydrostatic value, 34 −hγ , by an amount equal to 

dz
R

VZ
Z∫

4

3

2
ρ . This lower pressure, caused by the curved 

streamline, is necessary to accelerate the fluid around the curved 

path. 

Note that we did not apply the Bernoulli equation (Eq. 3.13) 



across the streamlines from (1) to (2) or (3) to (4). Rather we 

used Eq. 3.14. As is discussed in section 3.6 application of the 

Bernoulli equation across streamlines (rather than along) them 

may lead to serious errors. 

 

  

3.5 Static, Stagnation (Total), and Dynamic Pressure 

• zγ - hydrostatic pressure not a real pressure, but possible due 

to potential energy variations of the fluid as a result of 

elevation changes. 

• p - static pressure 

• 2

2
1 Vρ -dynamic pressure 

• stagnation point→V = 0 

  2
1112 2

1 VPP ρ+=  

• stagnation pressure→static pressure+dynamic pressure (if 

elevation effect are neglected) 

                                Total pressure  

It represents the conversion of all of the kinetic energy into a 

pressure rise. 
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Total P       Hydrostatic P     Static P       Dynamic P 

 

■ Figure 3.4 Measurement of static and stagnation 

pressures 

• Pitot-static tube: simple, relatively in expensive. 

 



■ Figure 3.6 The Pitot-static tube 

 
■ Figure 3.7 Typical Piotot-static tube designs. 

constant
2
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center tube: 2
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outer tube: ppp == 14  
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■ Figure 3.9 Typical pressure distribution along a 

Pitot-static tube. 

• The cylinder is rotated until the pressures in the two sideholes 

are equal, thus indicating that the center hole points directly 

upstream-measure stagnation pressure. Side holes ( °= 5.29β ) →  

measure static pressure. 

 

■ Figure 3.10 Cross section of a directional-finding 

Pitot-static tube. 

 



3.6 Example of Use of the Bernoulli Equation 

   steady ( 0=
∂
∂
t

), inviscid ( 0=μ ), incompressible ( constant=ρ ) 

and along a streamline ( 0=
∂
∂
n

). 

 Between two points: 
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   Unknowns: P1, P2, V1, V2, Z1, Z2       (6) 

 If 5 unknowns are given, then determining the remaining 

one. 

• Free Jets (Vertical flows from a tank) 

 

■ Figure 3.11 Vertical flow from a tank 

(1) - (2): 



 P1 = 0 (gage pressure); P2 = 0 (Free jet) 

 Z1 = h; Z2 = 0; V1 ≈  0;  
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(2) and (4): atmospheric pressure 

(5): )(25 HhgV +=  

(3) and (4): ,0 ;  Z; 0 ; )( 4343 ===−= ZlPlhP γ  

V3=0       ghVPlP 2V          
2
1

4
2

443 =+=+ Qργ  

• Recall from Physics or dynamics 

自由落體在一真空中 ghV 2= ; the same as the liquid 

leaving from the nozzle. All potential energy → kinetic 

energy (neglecting the viscous effects). 



 
■ Fig 3.12 Horizontal flow from a tank. 

• Vena contracta effect: 

Fluid can not turn 90。; Contraction coefficient: Cc= Aj/Ah; 

Aj→cross area of jet fluid column; Ah→cross area of the 

nozzle exit. 



 
Figure 3.14 Typical flow patterns and contraction 
coefficients for various round exit configurations. 
 

3.6.2 Confined flows 

 

 

■ Figure 3.15 Steady flow into and out of a tank. 



 mass flow rate        Qm ⋅=
•

ρ  (kg/s or slugs/s) 

 where Q: volume flow rate  (m3/s or ft3/s) 

 Q = VA ;         VAQm ρρ =⋅=
•

 

 From Fig. 3.15: 222111 VAVA ρρ =  

Example 3.7 A stream of diameter d = 0.1m flows steadily from 

a tank of diameter D = 1.0m as shown in Fig E3.7a. Determine 

the flow rate, Q, needed from the inflow pipe if the water depth 

remains constant. h = 2.0m. 

 



 

■ Figure E 3.7 

Solution: For steady, inviscid, incompressible the Bernoulli 

equation applied between points (1) and (2) is 

(1)   
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With the assumptions that p1 = p2 = 0, z1 = h, and z2 = 0, Eq. 1 

becomes 

2
2

2
1 2

1
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1 VghV =+  (2) 

Although the water level remains constant (h = constant), there 

is an average velocity, V1, across section (1) because of the flow 



from the tank. From Eq 3.19 for steady incompressible flow, 

conservation of mass requires Q1 = Q2 = AV. Thus, A1V1 = A2V2, 

or 

2
2

1
2

44
VdVD ππ

=  

Hence, (3)                )( 2
2

1 V
D
dV =  

Equation 1 and 3 can be combined to give  
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In this example we have not neglected the kinetic energy in the 

water in the tank (V1≠ 0). If the tank diameter is large compared 

to the jet diameter (D>>>d), Eq. 3 indicates that V1<<V2 and the 

assumption that V1≈0 would be reasonable. The error associated 

with this assumption can be seen by calculating the ratio of the 

flowrate assuming V1≠ 0, denoted Q, to that assuming V1 = 0, 

denoted Q0. This ratio, written as 
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is plotted in Fig. E3.7b. With 0< d/D < 0.4 it follows that 1< 

Q/Q0≤1.01, and the error in assuming V1 = 0 is less than 1%. 

Thus, it is often reasonable to assume V1 = 0. 

Example 3.9 
Water flows through a pipe reducer as is shown in Fig. E3.9. The static pressure at (1) 
and (2) are measured by the inverted U-tube manometer containing oil of specific 
gravity. SG. Less than one. Determine the manometer reading, h. 

 FIGURE E 3.9 

Solution: With the assumption of steady, inviscid, 

incompressible flow, the Bernoulli equation can be written as 
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The continuity equation (Eq. 3.19) provides a second 

relationship between V1 and V2, if we assume the velocity 

profiles are uniform as those two locations and the fluid 

incompressible: 
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By combining these two equations we obtain  
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This pressure difference is measured by the manometer and can 

be determined by using the pressure-depth ideas developed in 

Chapter 2. Thus. 

2121 plγhγSGhγlγ)zz(γp =++−−−−  

or  hγ)SG()zz(γpp −+−=− 11221        (2) 

As discussed in Chapter 2, the pressure difference is neither 

merely γh not γ(h+z1-z2). 

Equations 1 and 2 can be combined to give the desired result as 
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or V2=Q/A2, thus, 
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The difference in elevation, z1-z2, was not needed because the 

change in elevation term in the Bernoulli equation exactly 

cancels the elevation term in the manometer equation. However, 

the pressure difference, p1-p2, depends on the angle θ, because 

of the elevation, z1-z2, in Eq. 1. Thus, for a given flowrate, the 

pressure difference, p1-p2, as measured by a pressure gage would 

vary with θ , but the manometer reading, h, would be 

independent of θ. 

In general, an increase in velocity is accompanied by a decrease 

in pressure. 

Air (gases): Compressibility (Ch 11) 

Liquids: Cavitation (Propeller etc.) 

 

3.6.3 Flow Rate Measurement 

 Ideal flow meter — neglecting viscous and compressible 

effects. (loss some accuracy) 



 Orifice meter; Nozzle meter: V↑, P↓; Venturi meter 
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 Sharp crested weir: 
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3.7 The Energy Line and the Hydraulic Grade Line 

 Bernoulli equation is an energy equation with four 
assumptions: inviscid, incompressible, steady flow, and 
along a streamline from pts (1) - (2), respectively, and the 
sum of partition of energy remains constant from pts (1)-(2). 

(Head) z
g

V
γ
pH ++=

2

2

 = constant along a streamline. 



 
FIGURE 3.21 Representation of the energy line and the hydraulic 
grade line 
 

 
FIGURE 3.22 The energy line and hydraulic grade line for 

flow from a tank. 

 

3.8 Restrictions on the use of Bernoulli Equation 

3.8.1 Compressibility Effect 



Gases: ∫ ρ
dp  not a constant 

A special case: for compressible flow 

Given - steady, inviscid, isothermal (T = C along the streamline) 
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Compare to the incompressible Bernoulli Equation. 
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3.8.2 Unsteady Effect 

V = V(s) steady; ∵V = V(s, t) unsteady. 
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 Repeating the steps leading to the Bernoulli Equation. 
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Use velocity potential to simplify the problem (Ch 6). 

 

FIGURE 3.25 Oscillation of a liquid column in a U-tube 
 



3.8.3 Rotational Effect 

In general, the Bernoulli constant varies from streamline to 

streamline. However, under certain restrictions, this constant 

may be the same throughout the entire flow field, as ex.3.19 

illustrates this effect. 

 

3.8.4 Other restrictions 

μ = 0 (inviscid); Bernoulli Equation: A first integral of 

Newton’s 2nd laws along a streamline. 


