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Reynolds’ experiment

A
[4]

=00 (
o gl

'

Fig. 9.1. Sketch of Reynolds’s dye experiment, taken from his 1883
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Laminar Flows and Turbulence Flows

e Laminar flow, sometimes known as streamline flow,
occurs when a fluid flows in parallel layers, with no
disruption between the layers. Inflow dynamics
laminar flow is a flow regime characterized by high
momentum diffusion, low momentum convention,
pressure and velocity almost independent from time.
It is the opposite of turbulent flow.

— In nonscientific terms laminar flow is
"'smooth,"" while turbulent flow is "'rough."

e In fluid dynamics, turbulence or turbulent flow is a
fluid regime characterized by chaotic, stochastic
property changes. This includes low momentum
diffusion, high momentum conversation, and rapid
variation of pressure and velocity in space and time.

— Flow that is not turbulent is called laminar flow
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Turbulent Flows in a Pipe
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Characterization of Turbulent Flows

u=u+u'; v=v+V. W=wW+W

— to+T _ 1 to+T . 1 to+T
u=— |u(x,y,z,t)dt; v=— |v(x,y,z,t)dt; w=— |w(x,Yy,zt)dt
t{(y) Tt{(y) Tt{(y)

(b) (c)

] '__ 1.7 Velocity components in a turbulent pipe flow: (a) x-component velocity; (b) r-component
tity; (¢) 6-component velocity.

|OWA ATE @I A2 S B Copyright © by Dr. Hui Hu @ lowa State University. All Rights Reserved! Qirospum rgneerny




Turbulence intensities

u=0; v'=0 w=0

L 1to+T
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Turbulent Shear Stress
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Flow Around A Sphere with laminar and Turbulence Boundary Layer

Top:

Instantaneous flow past a sphere at Re_D = 15,000. Dye in water shows a laminar
boundary layer separating ahead of the equator and remaining laminar for almost
one radius. It then becomes unstable and quickly turns turbulent.

Bottom:

Instantaneous flow past a sphere at Re_D = 30,000 with a trip wire. A classical
experiment of Prandtl and Wieselsberger is repeated here, using air bubbles in water.
A wire hoop ahead of the equator trips the boundary layer. It becomes turbulent, so
that it separates farther rearward than if it were laminar (compare with top
photograph). The overall drag is thereby dramatically reduced, in a way that occurs
naturally on a smooth sphere only at a Reynolds numbers ten times as great.
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Aerodynamics of Golf Ball
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Laminar Flows and Turbulence Flows
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Automobile aerodynamics
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Automobile Aerodynamics

Vortex generator above a Mitsubishi rear window

Mercedes Boxfish
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CONVENTIONAL AIRFOILS and LAMINAR FLOW AIRFOILS

TRANSITION POINT — LAMINAR

e Laminar flow airfoils are usually thinner than ONPOINT — LAMINAR
the conventional airfoil. ]

« Theleading edge is more pointed and its —= —

TrT:e Laminar Flow Wing

upper and lower surfaces are nearly TRANSITION sOmT - LAHAN
symmetrical.

e The major and most important difference _
between the two types of airfoil is this, the ~Ovdinary" Wing
thickest part of a laminar wing occurs at 50% »%  —— WRIGHTFLYER
chord while in the conventional design the —
thickest part is at 25% chord. o CLARKY

« Drag is considerably reduced since the @ T

laminar airfoil takes less energy to slide
through the air.

 Extensive laminar flow is usually only

experienced over a very small range of e e
angles-of-attack, on the order of 4to 6

®. NACA 66-415
degrees.

e Onceyou break.out of that optimal angle ~B=S% . p51ROOT
range, the drag increases by as much as 40%

depending on the airfoil @ NASA GAW2
FIGURE 2: Extent of laminar flow on Enat .
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Flow Separation on an Airfoil
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Aerodynamic Performance of An Airfoil
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Flow Separation and Transition on Low-Reynolds-number Airfoils

* Low-Reynolds-number airfoil (with
Re<500,000) aerodynamics is important for
both military and civilian applications, such as
propellers, sailplanes, ultra-light man-
carrying/man-powered aircraft, high-altitude
vehicles, wind turbines, unmanned aerial
vehicles (UAVs) and Micro-Air-Vehicles
(MAVS).

» Since laminar boundary layers are unable to
withstand any significant adverse pressure
gradient, laminar flow separation is usually
found on low-Reynolds-number airfoils. Post-
separation behavior of the laminar boundary
layers would affect the aerodynamic
performances of the low-Reynolds-number
airfoils significantly

» Separation bubbles are usually found to form
on the upper surfaces of low-Reynolds-number
airfoils . Separation bubble would burst
suddenly to cause airfoil stall at high AOA
when the adverse pressure gradient becoming
too big.
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Surface Pressure Coefficient distributions (Re=68,000)

Actual pressure distribution with

Typical surface pressure distribution when a laminar
separation bubble is formed (Russell, 1979)
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Laminar Separation Bubble on a Low-Reynolds-number Airfoil
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Stall Hysteresis Phenomena

« Stall hysteresis, a phenomenon where stall inception and stall recovery do not occur at the same angle of
attack, has been found to be relatively common in low-Reynolds-number airfoils.

» When stall hysteresis occurs, the coefficients of lift, drag, and moment of the airfoil are found to be multiple-
valued rather than single-valued functions of the angle of attack.

» Stall hysteresis is of practical importance because it produces widely different values of lift coefficient and
lift-to-drag ratio for a given airfoil at a given angle of attack. It could also affect the recovery from stall
and/or spin flight conditions.

Lift coefficient
Lift coefficient

A Increasing AOA A Increasing AOA

@ decreasing AOA

@ decreasing AOCA

>
AOA - Angle of Attack AOA — Angle of Attack
Lift coefficient curve of a “typical” airfoil Lift coefficient curve with stall hysteresis
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Measured airfoil lift and drag coefficient profiles
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» The hysteresis loop was found to be clockwise in the lift coefficient profiles, and counter-clockwise in the
drag coefficient profiles.

» The aerodynamic hysteresis resulted in significant variations of lift coefficient, C,, and lift-to-drag ratio, I/d,
for the airfoil at a given angle of attack.

» The lift coefficient and lift-to-drag ratio at AOA = 14.0 degrees were found to be C, = 1.33 and I/d = 23.5
when the angle is at the increasing angle branch of the hysteresis loop.

* The values were found to become C,= 0.8 and I/d = 3.66 for the same AOA=14.0 degrees when the angle is
at the deceasing angle branch of the hysteresis loop

[0\ B V- N0 2R BN A2 3 X W Copyright © by Dr. Hui Hu @ lowa State University. All Rights Reserved! @‘P"“’ Engleering

Angle of Attack (degree)




Y /C *100

Y /C *100

PIV Measurement results
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Refined PIV Measurement Results
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Lab 6: Airfoil Wake Measurements and Hotwire Anemometer Calibration

> F, =-D+ [(piidA),
CS
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o Compared with the drag coefficients obtained based on airfoil surface
pressure measurements at the same angles of attack!
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Lab 3: Airfoil Wake Measurements and Hotwire Anemometer Calibration

»
»

Pressure rake with 41 total pressure probes
y (the distance between the probes d=2mm)

%
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Lab 3: Airfoil Wake Measurements and Hotwire Anemometer Calibration

Flow Field

0

Current flow ©
through wire

dT, ., .
mc—" =i’R —q(V,T,

° Constant-temperatu re anemometry

CTA hotwire probe
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Hotwire Anemometer Calibration

» To quantify the relationship between the flow velocity and voltage output from

the CTA probe
20
18 py= a+bx+cx +d*x +e*x max dev O 166 r=1. OO ”””” ;
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g w8
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Required Measurement Results

Required Plots:
» Cpdistribution in the wake (for each angle of attack) for the airfoil wake measurements

« C,vsangle of attack (do your values look reasonable?) based on the airfoil wake

measurements

* Your hot wire anemometer calibration curve: Velocity versus voltage output of hotwire

anemometer (including a 4™ order polynomial fit)

Please briefly describe the following details:
 How you calculated your drag—you should show your drag calculations

 How these drag calculations compared with the drag calculations you made in the previous

experiment.

* Reynolds number of tests and the incoming flow velocity
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