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Laminar Flows and Turbulence Flows 

• Laminar flow, sometimes known as streamline  flow, 
occurs when a fluid flows in parallel layers, with no 
disruption between the layers. Inflow dynamics 
laminar flow is a flow regime characterized by high 
momentum diffusion, low momentum convention, 
pressure and velocity almost independent from time. 
It is the opposite of turbulent flow. 

– In nonscientific terms laminar flow is 
"smooth," while turbulent flow is "rough."

• In fluid dynamics, turbulence or turbulent flow is a 
fluid regime characterized by chaotic, stochastic 
property changes. This includes low momentum 
diffusion, high momentum conversation, and rapid 
variation of pressure and velocity in space and time. 

– Flow that is not turbulent is called laminar flow
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Turbulent Flows in a Pipe
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Characterization of Turbulent Flows
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Turbulence intensities
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Turbulent Shear Stress
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Laminar Flows and Turbulence Flows
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Flow Around A Sphere with laminar and Turbulence Boundary Layer
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Aerodynamics of Golf Ball
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Laminar Flows and Turbulence Flows

Re=100,000
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Automobile aerodynamics
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Automobile Aerodynamics 

Mercedes Boxfish Vortex generator above a Mitsubishi rear window
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CONVENTIONAL AIRFOILS and LAMINAR FLOW AIRFOILS

• Laminar flow airfoils are usually thinner than 
the conventional airfoil.

• The leading edge is more pointed and its 
upper and lower surfaces are nearly 
symmetrical. 

• The major and most important difference 
between the two types of airfoil is this, the 
thickest part of a laminar wing occurs at 50% 
chord while in the conventional design the 
thickest part is at 25% chord.

• Drag is considerably reduced since the 
laminar airfoil takes less energy to slide 
through the air.

• Extensive laminar flow is usually only 
experienced over a very small range of 
angles-of-attack, on the order of 4 to 6 
degrees.

• Once you break out of that optimal angle 
range, the drag increases by as much as 40% 
depending on the airfoil
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Flow Separation on an Airfoil
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Aerodynamic Performance of An Airfoil
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Flow Separation and Transition on  Low-Reynolds-number Airfoils

• Low-Reynolds-number airfoil (with 
Re<500,000) aerodynamics is important for 
both military and civilian applications, such as 
propellers, sailplanes, ultra-light man-
carrying/man-powered aircraft, high-altitude 
vehicles, wind turbines, unmanned aerial 
vehicles (UAVs) and Micro-Air-Vehicles 
(MAVs).

• Since laminar boundary layers are unable to
withstand any significant adverse pressure 
gradient, laminar flow separation is usually 
found on low-Reynolds-number airfoils.  Post-
separation behavior of the laminar boundary 
layers would affect the aerodynamic 
performances of the low-Reynolds-number 
airfoils significantly

• Separation bubbles are usually found to form
on the upper surfaces of low-Reynolds-number 
airfoils . Separation bubble would burst
suddenly to cause airfoil stall at high AOA 
when the adverse pressure gradient becoming 
too big. 
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Laminar Separation Bubble on a Low-Reynolds-number Airfoil

PIV measurement results at AOA = 10 deg, Re=68,000 
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(Hu et al., ASME Journal of Fluid Engineering, 2008)
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Stall Hysteresis Phenomena

• Stall hysteresis, a phenomenon where stall inception and stall recovery do not occur at the same angle of 
attack, has been found to be relatively common in low-Reynolds-number airfoils. 

• When stall hysteresis occurs, the coefficients of lift, drag, and moment of the airfoil are found to be multiple-
valued rather than single-valued functions of the angle of attack.

• Stall hysteresis is of practical importance because it produces widely different values of lift coefficient and 
lift-to-drag ratio for a given airfoil at a given angle of attack. It could also affect the recovery from stall 
and/or spin flight conditions.
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Measured airfoil lift and drag coefficient profiles
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• The hysteresis loop was found to be clockwise in the lift coefficient profiles, and counter-clockwise in the 
drag coefficient profiles. 

• The aerodynamic hysteresis resulted in significant variations of lift coefficient, Cl, and lift-to-drag ratio, l/d,
for the airfoil at a given angle of attack. 

• The lift coefficient and lift-to-drag ratio at AOA = 14.0 degrees were found to be Cl = 1.33 and l/d = 23.5
when the angle is at the increasing angle branch of the hysteresis loop. 

• The values were found to become Cl = 0.8 and l/d = 3.66 for the same AOA=14.0 degrees when the angle is 
at the deceasing angle branch of the hysteresis loop 

GA(W)-1 airfoil, ReC = 160,000



Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

8 9 10 11 12 13 14 15 16 17 18 19 20

AOA decreasing

AOA increasing

Angle of Attack (degree)

Li
ft 

C
oe

ffi
ci

en
t, 

C
l

PIV Measurement results
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(Hu, Yang, Igarashi, Journal of Aircraft, Vol. 44. No. 6 , 2007)
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Refined PIV Measurement Results
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Lab 6: Airfoil Wake Measurements and Hotwire Anemometer Calibration
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• Compared with the drag coefficients obtained  based on airfoil surface 
pressure measurements at the same angles of attack!
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Pressure rake with 41 total pressure probes
(the distance between the probes d=2mm)

Lab 3: Airfoil Wake Measurements and Hotwire Anemometer Calibration 
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Lab 3: Airfoil Wake Measurements and Hotwire Anemometer Calibration

CTA hotwire probe
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• Constant-temperature anemometry
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Hotwire Anemometer Calibration
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• To quantify the relationship between the flow velocity and voltage output from 
the CTA probe
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Required Measurement Results

Required Plots:

• Cp distribution in the wake (for each angle of attack) for the airfoil wake measurements

• Cd vs angle of attack (do your values look reasonable?) based on the airfoil wake 

measurements

• Your hot wire anemometer calibration curve:  Velocity versus voltage output of hotwire 

anemometer (including a 4th order polynomial fit)

Please briefly describe the following details:

• How you calculated your drag—you should show your drag calculations

• How these drag calculations compared with the drag calculations you made in the previous 

experiment.

• Reynolds number of tests and the incoming flow velocity


