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Vorticity:  u×∇=ω  
 
If a flow is irrottational, then: 
 
  0=×∇= uω  
 
Thus, can introduce a scalar potential: 
 
  φ∇=u  ⇒  0=∇×∇ φ  
   
 
If a flow is incompressible: 
 
  0=⋅∇ u  02 =∇=∇⋅∇→ φφ  
 
That is, for a 2D, incompressible flow; where ( )vuu ,= : 
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Now, if we just look at the Cartesian case, if we let: 
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Thus, the condition for incompressibility is satisfied, with this choice ofψ … the 
stream function. The same is true for the following, when the divergence is expressed 
in the following coordinate systems 
In plane polars: 
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In spherical polars: 
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To summarise these stream functions… anyψ will yield a 2D incompressible flow: 
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Now, if a 2D flow is irrottational, using the Cartesian form of u: 
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Thus, as 0=ω in irrottational flow: 
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Thus, Laplace’s equation is satisfied for both the stream function & the scalar 
potential, in an incompressible, irrottational 2D flow: 
 
  02 =∇ φ  02 =∇ ψ  
 
Now, in Cartesian coordinates: 
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Or: 
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Which are the Cauchy-Riemann equations. Thus, an analytic complex function can be 
described such that: 
 
  ( ) ψφ izw +=    the complex potential. 
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Also, notice: 
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Now, we can derive a complex velocity, supposing that the complex potential is only a 
function of z, and not its conjugate 
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Hence: 
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Thus, the complex velocity: 
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Lines on which const=ψ are streamlines. 
 


