Complex Potential & Stream function; Complex velocity

Vorticity: w=N"u

If aflow isirrottational, then:
w=N"u=0

Thus, can introduce a scalar potential:
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If aflow isincompressible:
N>xu=0 ® N>Nf =N% =0
That is, for a2D, incompressible flow; whereu = (u,v):

ﬂ_u+ﬂ:

Ty Cartesian
El(ur)éﬂ:o Plane polars
rqr r 1q

19/, 1 9 . .

. e =0 herical pol
A (r u)+sinq 1 (rsing) Spherical polars

Now, if we just look at the Cartesian caseg, if we let:
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Thus, the condition for incompressibility is satisfied, with this choice ofy ... the

stream function. The same is true for the following, when the divergence is expressed
in the following coordinate systems

In plane polars:
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In spherical polars:
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To summarise these stream functions... anyy will yield a2D incompressible flow:
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Now, if a2D flow isirrottational, using the Cartesian form of u:
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Thus, asw = Qin irrottational flow:
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Thus, Laplace’s equation is satisfied for both the stream function & the scalar
potential, in an incompressible, irrottational 2D flow:
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Which are the Cauchy-Riemann equations. Thus, an analytic complex function can be
described such that:

w(z) =f +iy the complex potential.
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Also, notice:

2w=N2(f +iy )=R% +iN¥ =0+i0=0
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Now, we can derive a complex velocity, supposing that the complex potential isonly a
function of z, and not its conjugate
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Thus, the complex velocity:
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Linesonwhichy = const are streamlines.



