
Fluids – Lecture 4 Notes

1. Thin Airfoil Theory Application: Analysis Example

Reading: Anderson 4.8, 4.9

Analysis Example

Airfoil camberline definition
Consider a thin airfoil with a simple parabolic-arc camberline, with a maximum camber
height εc.

Z(x) = 4ε x
(

1 − x

c

)

The camberline slope is then a linear function in x, or a cosine function in θ.

dZ

dx
= 4ε

(

1 − 2
x

c

)

= 4ε cos θo

x
x
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dx

Z dZ
dx

θ
0 c

c π
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Fourier coefficient calculation
Substituting the above dZ/dx into the general expressions for the Fourier coefficients gives

A0 = α − 1

π

∫ π

0

dZ

dx
dθ = α − 1

π

∫ π

0

4ε cos θ dθ

An =
2

π

∫ π

0

dZ

dx
cos nθ dθ =

2

π

∫ π

0

4ε cos θ cos nθ dθ

The integral in the A0 expression easily evaluates to zero. The integral in the An expression
can be evaluated by using the orthogonality property of the cosine functions.

∫ π

0

cos nθ cos mθ dθ =











π (if n = m = 0)
π/2 (if n = m 6= 0)
0 (if n 6= m)

For our case we have m = 1, and then set n = 1, 2, 3 . . . to evaluate A1, A2, A3, . . .. The final
results are

A0 = α

A1 = 4ε

A2 = 0

A3 = 0
...

so only A0 and A1 are nonzero for this case.
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Lift and moment coefficients
The coefficients can now be computed directly using their general expressions derived pre-
viously.

cℓ = π (2A0 + A1) = 2π (α + 2ε)

cm,c/4 =
π

4
(A2 − A1) = −πε

From the cℓ(α) expression above, the zero-lift angle is seen to be

αL=0 = −2ε

which is also the angle of the zero lift line. In the present case of a parabolic camber line,
the zero lift line passes through the maximum-camber point and the trailing edge point.

zero lift line
αL=0

freestream direction
at zero−lift condition

cε

c/2

As a possible shortcut, the zero-lift angle could also have been computed directly from its
explicit equation derived earlier.

αL=0 =
1

π

∫ π

0

dZ

dx
(1 − cos θo) dθo =

1

π

∫ π

0

4ε cos θo (1 − cos θo) dθo = −2ε

But this integral is just the combination of the integrals for A0 and A1, so there is no real
simplification here.

Surface loading (further details)
In many applications, obtaining just the cℓ and cm of the entire airfoil is sufficient. But in
some cases, we may also want to know the force and moment on only a portion of the airfoil.
For example, the force and moment on a flap are of considerable interest, since the flap hinge
and flap control linkage must be designed to withstand these loads. We therefore need to
know how the loading ∆p(x) is distributed over the chord, and over the flap in particular.

0

∆

x
c

p

∆p

lift/span on flap only

L’h
hM’

total lift/span L’

L’h

The loading ∆p is directly related to the vortex sheet strength γ(x), and can also be given
in terms of the dimensionless pressure coefficient.

∆p(x) = ρ V
∞
γ(x) =

1

2
ρ V 2

∞
∆Cp(x) (1)
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The general expression for the sheet strength, obtained previously, is

γ(θ) = 2V
∞

(

A0

1 + cos θ

sin θ
+

N
∑

n=1

An sin nθ

)

Substituting the Fourier coefficients obtained for the present case gives

γ(θ) = 2V
∞

(

α
1 + cos θ

sin θ
+ 4ε sin θ

)

or ∆Cp(θ) = 2
γ(θ)

V
∞

= 4α
1 + cos θ

sin θ
+ 16ε sin θ

The integration of ∆Cp over the flap can be conveniently performed in the θ coordinate as
usual, using the above expression. But it is also of some interest to examine this distribution
in the physical x coordinate. The relevant relations between θ and x are

cos θ = 1 − 2x/c

sin θ =
√

1 − cos2 θ =
√

1 − (1 − 2x/c)2 = 2
√

x/c − (x/c)2

which can be substituted into the above ∆Cp(θ) expression to put it in terms of x.

∆Cp(x) = 4α

√

c

x
− 1 + 32ε

√

x

c
−
(

x

c

)2

∆ p

x x x

4αC
c c
x x 2c

x 1increasing α 32 ε

x ch

Define xh as the location of the flap hinge, so the flap extends from x = xh, to the trailing
edge at x = c. The corresponding θ locations are θ = arccos(1−2xh/c) ≡ θh, and θ = π,
respectively. The load/span and moment/span coefficients on the flap hinge can now be
computed by integrating the pressure loading.

cℓh
≡ L′

h
1

2
ρ V 2

∞
c

=
1

c

∫ c

xh

∆Cp(x) dx =
1

2

∫ π

θh

∆Cp(θ) sin θ dθ

cmh
≡ M ′

h
1

2
ρ V 2

∞
c2

=
1

c2

∫ c

xh

∆Cp(x) (xh − x) dx =
1

4

∫ π

θh

∆Cp(θ) (cos θ − cos θh) sin θ dθ

Here, integrations in θ are simpler, but still somewhat tedious, and are best left for computer-
based symbolic or numerical integration methods.
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