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1 Introduction

The fundamental problem of wing theory is to determine the flow around a
geometrically determined wing or wing system[1]. Assuming that a wing is
moving uniformly with constant velocity through a fluid, one must calculate
the presure distribution along the boundary of the wing.



The use of conformal mappings in fluid mechanics can be traced back to
the work of Gauss, Riemann, Weierstrass, C. Neumann, H.A. Schwarz, and
Hilbert. Lord Rayleigh, a British physicist and mathematician, is attributed
to give the first complete treatment of conformal mapping in aerodynamics.
Near the beginning of the twentieth century Martin Kutta, a German math-
ematician, and Nikolay Zhukovski (Joukowsky in the modern literature), a
Russian scientist, published a series of papers on airfoil theory that began a
new era in fluid and aerodynamics.

The purpose of this exposition is to give the reader an elementary intro-
duction to the use of conformal mapping in two-dimensional airfoil theory
with ideal fluids. Sections 2 and 3 will provide the reader with the prereq-
uisite backround knowledge of basic airfoil theory and two-dimensional fluid
dynamics respectively. Section 4 will show how conformal mappings are used
to reconcile the complicated geometries of airfoils, resulting in a simplifiction
of the problem|2]. For a more complete treatment of wing theory, the reader
is advised to consult Robinson[3]. For fluid dynamics, White[4] is the classical
reference.

2 Basic Airfoil Theory and Terminology

As mentioned in the introduction, the object of wing theory is to investigate
the aerodynamic action on a wing, or system of wings, given the embedding
of the wing in a fluid with given velocity. This aerodynamic action acting on
an airfoil can be generally described by Bernoulli’s principle.

2.1 Airfoils

An airfoil in our context is the shape of a wing as seen in cross-section, see
Figure 1. The chord line is the straight line connecting the leading edge of
the airfoil to the trailing edge. The angle of attack, commonly denoted by «,
is the angle between the chord line and the relative wind. The mean camber
line is the locus of points between the top and bottom surfaces of the airfoil.
The resulting curvature of the mean camber line gives the airfoil its profile.
Ordinary airfoils tend to have to have a slightly cambered (arched) body.



Figure 1: Airfoil schematic

Figure 2: Forces acting on an airfoil
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Figure 3: Kutta condition occurs in Flow # 1

2.2 Bernoulli’s Principle

We seek to understand the forces acting on an airfoil that moves horizontally
through the air, see Figure 2. The airfoil will experience a force R, which can
be decomposed into two components, namely the drag D in the direction of
the airflow and the lift L in the direction perpendicular to the low. Generally,
the lift is important for keeping the airplane flying, but the drag is undesired
and must be compensated for by the thrust of the propeller.

In order to understand the source of the lift force L, we need to understand
Bernoulli’s principle. The lift force experienced by the airfoil is primarily do
to a difference in pressure at the upper and lower surfaces of the airfoil. This
difference in pressure at the upper and lower surface of the airfoil result from
the particular shape of the airfoil, and by assuming that the Kutta condition
holds.

Definition The Kutta condition states that the fluid flowing over the upper
and lower surfaces of the airfoil meets at the trailing edge of the airfoil, see
Figure 3.

In reality, the Kutta condition holds because of friction between the
boundary of the airfoil and the fluid. Also, the angle of attack « of the
airfoil must not be so large that the flow around the airfoil is no longer
smooth or continuous. When the angle of attack is too large, the airplane
will stall.

Thus, by the Kutta condition, since the length of the upper surface of a
typical airfoil is greater than the length of the lower surface of the airfoil,
the fluid velocity at the upper surface of the airfoil must be greater than the
fluid velocity at the lower surface of the airfoil. Bernoulli’s principle states
that an increase in the velocity of the flow of a fluid coincides with a decrease
in the pressure of the fluid. Thus the fluid pressure above the airfoil will be
less than the fluid pressure below the airfoil, generating lift.
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For steady motion of a fluid of density p along a body at rest, the pressure
p at any point of the fluid of velocity U can be calculated from Bernoulli’s
equation, which we write as

1 1
p+ §PU2 =Dpo+ 5/)‘/2,

where pq is the pressure and V' is the velocity at “infinity.”

To simplify our problem, we will take our take our airfoil to extend to
infinity on both sides in a direction normal to the plane. Thus, we will
not have to worry about wing tips, reducing the study of flow to the two-
dimensional case.

3 2-Dimensional Fluid Dynamics

In this section we will provide some basic facts and definitions of fluid dy-
namics, and will derive the result known as the Kutta-Joukowski theorem,
which relates the lift force acting on a cylinder to the velocity of the cylinder
relative to the surrounding fluid. To keep the mathematics simple, we will
need to make a few key assumptions about the nature of the surrounding
fluid.

3.1 Assumption of an Ideal Fluid

There are two ways to proceed when studying the fluid interactions around
an airfoil. To make the distinction, we will need the following definitions.

Definition Sheer stress is a measure of the force of friction from a fluid
acting on a body in the path of that fluid.

Definition The wviscosity of a fluid is the measure of its resistance to gradual
deformation by sheer stress. For example, honey is more viscous than water.

The first way to proceed when studying fluids is to assume that the fluid
is a real, viscous fluid. This way of proceeding is clearly the most accurate,
but it involves mathematics and physics that are beyond the scope of this
paper. Thus, we will assume that we are working with an ideal fluid, that
is a fluid with zero viscosity and that is incompressible, meaning its density
remains constant. In the real world, zero viscosity is observed only at very low



temperatures, in superfluids such as liquid helium. However, the assumption
of an ideal fluid can still yield an accurate model provided certain conditions
are met.

This first of these conditions is that the fluid must satisfy the Kutta
condition described above. The second is that we require the airfoil’s velocity
relative to its surrounding fluid to be subsonic. At the speed of sound, shock
waves occur in the fluid that make the fluid flow discontinuous, which ruins
our assumption of ideal fluid flow.

3.2 Potential Flow

Consider an ideal fluid flowing over the (-plane with vector velocity U which
is everywhere horizontal and independent of depth. Let C' be a curve in the
(-plane passing through the points o = ay + iay and S = 1 + s, and let
S be the surface through C' with elements perpendicular to the (-plane. Let
Vs denote the component of U along C' at the point ( = £ 4 in, and let the &
and n components of U at ¢ be u and v, respectively. Then, the flux accross
C through S is

B
H= / —vd€ + udn.
Now H is independent of the path from « to § if and only if

J(—v) Ou
2= 1
o~ % (1)
If (1) holds, the integral

¢
V(E,n) = / —v d€ + udn

defines a function ¢ known as the stream function. If (1) holds, the fluid is
incompressible. Notice that, in mathematical terms, equality of (1) implies
that the divergence of of the fluid is zero. Thus, when we assume we have an
ideal fluid that is incompressible, we are really assuming that the divergence
of the fluid at every point is zero. Intuitively, this means that the fluid is not
reduced in volume by an increase in pressure, and so the density of the fluid
must remain constant.
We define the circulation along C' from « to 3 to be
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Now, G is independent of the path from « to g if and only if
ou_ v
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If (2) holds, the integral

¢
) ::/ wdé +vdn

defines a funtion ¢ known as the wvelocity potential. Notice here that equality
of (2) implies that the curl of the fluid is zero. Thus, a fluid is said to be
irrotational if (2) holds at every point.

The complex function

F=¢+ip=f(()

is called the generalized potential function. Since

op oY

_ = = u’

o0& On
and

op _ _ o _,

o9&

F is an analytic function of ¢ = & +in. A flow that can be represented by
such a function F is called a potential flow. Since F' is analytic, the functions
¢ and 1 are harmonic functions.
We may obtain the velocity components of F' from %. Thus,

dF  0¢ .O0Y

— = — i =u—w. 3

TR )
Definition The family of curves satisfying v» = ¢y, for some constant cy,
are called stream lines, and the family of curves satisfying ¢ = co, for some
consant ¢y, are called potential lines.
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Figure 4: Vector field for a source flow (m > 0 and (y = 0)

Theorem 3.1 The stream lines and the potential lines are mutually orthog-
onal.

Proof We prove that the gradients of ¢ and i are orthogonal. By the
Cauchy-Riemann equations, we have

_0pp 0o O

VO-VY=5¢ae Tanon
W oy
oo ooy
=0,

as desired. |

3.3 Sources, Sinks, Vortexes, and Doublets

We now state some important and well known generalized potential functions.
First, for a fluid flowing with uniform velocity Ue® at the point (y, where U
and « are real, the potential function is

Frp=¢r+itbg =Ue " (( — o).

For a source/sink of strength m € R at (y, see Figure 4 and Figure 5, the
potential function is
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Figure 5: Vector field for a sink flow (m < 0 and {y = 0)

Fo— mlog(¢ — (o)
S 2w '

For a vortex of circulation I' € R centered at (y, see Figure 6, the potential
outside of a circle of radius a centered at zj is

—iFlog(C*aCO)
2m '

Finally, for a doublet whose axis is the line of angle o with the £-axis and of
moment (strength) M at (y, the potential is

V:

Meia
Fp=— .
TG
3.4 Flow Around a Cylinder and the Kutta-Joukowski

Theorem

Due to the fact that Laplace’s equation is a linear partial differential equation,
linear combinations of harmonic functions are harmonic. Thus, if Fi, ..., F,
are n generalized potentials, then any linear combination of these functions
is also a generalized potential. Thus, by superposition of potential lows, that
is, by taking linear combinations of potential flows, we may construct flow
fields of various complexity.
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Figure 6: Vector field for a vortex

Figure 7: Doublet flow pattern
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Figure 8: Flow around a cylinder

In this section we study the superposition of a rectilinear flow with uni-
form velocity with a doublet flow and a vortex flow, each having common
center (p. This will model the flow around a cylinder, see Figure 8. The
potential F. = ¢, + i1, for such a flow around a cylinder of radius a is

. M@ia i C — g()
F.=Fr—Fp—Fy,=Ue " — —I1 ) 4
R— I'p —1Iy e (¢ <0)+C—Co+27fog( a ) (4)
Now, in order to properly model the flow around the cylinder we must require
that the flow across the boundary of the circle ¢ — ¢y = ae® be zero. This
means that for ¢ on the circle, the imaginary part 1. of F, must be zero, and

from (4) it follows that M = Ua?. The velocity function for this flow is given
by

dF . Ua?e' i1
— =" —— m— 4t ——— =U; — iV 5)
s C—Gr Tamc—g BT ©)
By Bernoulli’s equation, we have
P N2 g L
0] . (Ue —iV,))* dC = pe + ip, = R,
Cl=r

where R is the total resultant force of the drag pe and lift p,, resulting from
the pressure on the circular boundary ¢ = re®. If o = 0, it follows that

pl'U a?
pﬂzov Pn = _2 (1+ﬁ>
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Thus, if a = r, p, = pI'U. We have shown that if our circle of radius a
represents the boundary of a cross-section of an infinily long, solid, cylindrical
body placed in an inviscous airstream, then the body will experience a per unit
length lift force of of measure pU'U at right angles to the stream. This result
is known as the Kutta-Joukowski theorem.

It has been shown in the literature that the Kutta-Joukowski theorem
holds for any body with simply connected and uniform cross-section, and
thus we may use this result for airfoils. For a more in-depth discussion of the
Kutta-Joukowski theorem, see White[4], pages 85-91.

4 Application of Conformal Mappings

Do to the fact that airfoils have complicated geometries, it is difficult to solve
for the fluid flow around airfloils using Laplace’s equation and potential flow
theory. Kutta (1902) calculated the stream lines around an airfoil using
conformal mappings, independent of the earlier work by Lord Rayleigh. The
conformal mapping technique will help us to understand and calculate the
flow around airfoils used in aeronautic practice.

4.1 Methodology

Suppose that, in the (-plane, there is a region G, which is the cross-section
of a uniform, infinitely long body for which the potential function for a plane
flow is known and is given by

F(¢) = (& m) +¥(&n), (6)

where ©¥» = 0 on G since the flow across 0G must be zero. For example,
G could be the cylindrical body used above, along with the superimposed
potential function F,.

Write z = x + 7y. We need a transformation 7' that will suitably map
points from the z-plane to the (-plane. Denote the region in the z-plane that
is the pre-image of G under 7" by P (Later on, we will think of P as an airfoil,
see Figure 9). We want T' to satisfy the following four conditions.

(i) T maps unique points of JP to unique points of IG.

(ii) j—i is finite and non-zero on the entire (-plane outside of G, for then,
because of (i) 7' maps points outside of P to points ouside of G.
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Figure 9: Mapping cylinder cross-section to and from an airfoil cross-section

(iii) T is analytic at infinity and as z — oo, ( — oo and j—i — K, where K
is a real, finite, non-zero constant.

(iv) T has an inverse ouside of G.

We can obtain a new potential function % (z) for the flow around P from
(6) and T, given by

F(2) = F(T(2)) = ®(z,y) + 1¥(z,y). (7)

Note that for each ¢ on 0G, ¢(&, 1) = 0, and so F'({) is purely real on 0G.
Thus, by (7) and condition (i) of T, it follows that ®(x,y) = 0 for points on
0P, and thus we have that the flow accross OP is zero.

We derived earlier that the velocity function for flow in the (-plane is
% = u — v, see (3). Write u — iv = wy, for clarity. Then we can derive the

velocity function for flow in the z-plane, w,. By the chain rule, we have

AF _dF - di
dz d¢ dz 7 dz

Uy — 1V, = W,. (8)
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Observe that condition (iii) on 7" ensures that the fluid velocity w, at
infinity in the z-plane is proportional to the fluid velocity w, at infinity in
the ¢-plane.

We have .Z (z) = F(() when ¢ = t(z), and thus it follows that for cor-
responding z and (, ¢(§,n) = ®(z,y) and (&, n) = V(z,y). Let ¢1,¢0 € R.
Then to each potential line ¢ = ¢; in the (-plane there is a corresponding
potential line & = ¢; in the z-plane, and to each stream line ¢ = ¢y in the
(-plane there is a corresponding stream line W = ¢, in the z-plane.

Now, condition (ii) on T that %L is finite and non-zero on the entire (-
plane outside of G is made such that the family of curves ¢ = ¢; and ¥ = ¢,
in the (-plane outside of G are mapped conformally, preserving angles, into
the z-plane outside of P, forming the families ® = ¢; and ¥ = ¢,. Since the
curves ¢ = ¢y and 1) = ¢y are orthogonal, the curves ® = ¢; and W = ¢y must
also be orthogonal.

Thus, given a potential F'(¢) and and a region G representing the cross-
section of a uniform, infinitely long body, we have shown how to find the
potential % (z) for the flow of an ideal fluid around a body with any pro-
file and cross-section given by P, which is formed from G by a conformal

mapping.

4.2 Application

In this section we will think of G as being the cross-section of a cylinder
of radius a and we will think of P as an airfoil. We derived the potential
function for flow around a cylinder in section 3.4. It is given by

Ua?e’> I’ C—(
C_CO—F%log( - ) 9)

Now, we want our airfoil P to satisfy the Kutta condition described in
section 2.2. Thus, we will assume that P has a “sharp trailing edge” and we
will assume that the angle of attack « is small. In this case we can calculate
the circulation I' around the airfoil and we can use that to calculate the lift.
Denote the trailing edge of the airfoil P by z; and the corresponding point
on the cylinder G by (;.

We will orient ourselves such that the airfoil P is facing left (like in the
figures above). Then the trailing edge z; of P occurs on the lower right hand
side of P. It will turn out that the corresponding point (; of G will be on the

F(¢) =Ue (¢ = o) +
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lower right hand side of the cylinder G' and thus there is an angle 0 < 8 < §
such that ¢, = (o + ae™.

The Kutta condition is modeled mathematically by requiring %‘ o= 0.
From (5) and the Kutta condition, it follows that
IF| oo g . s
d¢ G 2ma
Thus,
2mal / .
r=-" (ez(“w) - 6_1(0‘4“3)) = 4naUsin(a + 3). (10)
i

By the Kutta-Joukowski Theorem, the lift force acting on the airfloil can
be computed with the formula pI'U. Thus, from (10) the lift force is given
by L = 4mpalU?sin(a + 3).

Now that we have developed all of the theoretical backround necessary
to understand conformal transformations between cylinders and airfoils, we
present a couple of examples. We just need a transformation 7', satisfying
the conditions in section 4.1, mapping points from the z-plane to the (-plane.

The first set of airfoils are represented by the Joukowski transformation,
which is given by

b2
2=(+ —. (11)
¢
Given a properly defined inverse, this transformation satisfies the conditions
in section 4.1. The non-conformal points of this transformation are the points
2z = 42b corresponding to the cusp at the end of a Joukowski airfoil. Chang-
ing the value of b changes the shape of the resulting airfoil. A small b value
produces a thicker, cylindrical airfoil. A larger value of b will create a thinner
airfoil. If b = a (the radius of the cylinder in the (-plane), then the corre-
sponding airfoil will be a flat line, in particular, it is just the chord of the
airfoil, see figure 1.

The Joukowski family of airfoils resulting from (11) have two important
restrictions. One is that these airfoils have zero tail angle at the trailing
edge, and the other is that they are relatively thin.

The second transformation is a generalization of the Joukowski transfor-
mation. The Kdrman-Trefftz transformation is given by
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A A
b2 b2
(%) +(-%)
) X
b2 . b2
(2= (-%)
where A = 2 — % and 6 is the tail angle at the trailing edge of the airfoil.
Notice that if # = 0, a straight-forward, but messy calculation shows that
the Karman-Trefftz transformation reduces to the Joukowski transformation.
The Karméan-Trefftz transformation yeilds airfoils having improved fluid ve-

locity and pressure distributions as compared to those of the Joukowski trans-
formation.

5 Conclusion

Solving the problem of fluid flow around a wing is a highly complex task.
However, reducing the problem to the two-dimensional study of airfoils allows
one to employ techniques of complex variables, in particular utilizing the
geometric properties of conformal mappings. To obtain intuition for the
Joukowski and Karman transformations, there are a multitude of Matlab
scripts and Java applets available online.
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