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CHAPTER 11 
           TWO-DIMENSIONAL AIRFOIL THEORY 
___________________________________________________________________________________________________________ 

11.1 THE CREATION OF CIRCULATION OVER AN AIRFOIL 

In Chapter 10 we worked out the force that acts on a solid body moving in an inviscid 
fluid. In two dimensions the force is 

                      F
! oneunitofspan( ) =

d
dt

"
Aw
# n̂dl $U% t( ) & ' t( ) k̂                          (11.1) 

where 
 
! t( ) = Uiĉ dC

Cw
!"  is the circulation about the body integrated counter-clockwise 

about a path that encloses the body. It should be stated at the outset that the creation of 
circulation about a body is fundamentally a viscous process. The figure below from Van 
Dyke’s Album of Fluid Motion depicts what happens when a viscous fluid is moved 
impulsively past a wedge. 

                         

Figure 11.1 Starting vortex formation about a corner in an impulsively started 
incompressible fluid. 
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A purely potential flow solution would negotiate the corner giving rise to an infinite 
velocity at the corner. In a viscous fluid the no slip condition prevails at the wall and 
viscous dissipation of kinetic energy prevents the singularity from occurring. Instead two 
layers of fluid with oppositely signed vorticity separate from the two faces of the corner 
to form a starting vortex. The vorticity from the upstream facing side is considerably 
stronger than that from the downstream side and this determines the net sense of rotation 
of the rolled up vortex sheet. During the vortex formation process, there is a large 
difference in flow velocity across the sheet as indicated by the arrows in Figure 11.1. 
Vortex formation is complete when the velocity difference becomes small and the 
starting vortex drifts away carried by the free stream. 

Figure11.2 shows a sequence of events in the development of lift on a wing in a free 
stream impulsively started from rest to velocity U!  to the right. The wedge flow depicted 
above accurately characterizes the events that occur near the wing trailing edge during 
the initiation of lift. 

                                 

                                  

                                 

Figure 11.2 Starting vortex formation from an impulsively started wing in an 
incompressible flow. Contours distinguish the circulation about the wing and the 
opposite signed circulation about the starting vortex. 
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The contour about the system never penetrates the vortex sheet separating from the wing 
trailing edge. Since the contour lies entirely in potential flow without crossing any 
discontinuities the velocity potential is a continuous single valued function along the 
contour. Therefore  

                                      
 
Uiĉ dC

a

b

! + Uiĉ dC
c

d

! = "#iĉ dC
C1 +C2
!! = 0                      (11.2) 

and 

                                                          !Wing = "!Vortex  .                                         (11.3) 

A note on the sign of the circulation about the wing: Based on the orientation of the 
x, y( )  axes in figure 11.3 with the free stream velocity in the positive x  direction and lift 

on the wing in the positive y  direction, the circulation about the counterclockwise 
rotating starting vortex is positive while the circulation about the wing is negative.  

During the starting process the shed vortex induces a down wash on the wing producing 
drag. The downwash caused by the bound vorticity on the wing is negligible. The figure 
below depicts this effect 

             

                Fig 11.3 Effect of starting vortex downwash on lift and drag of an airfoil. 

Assume the geometric angle of attack of the wing with respect to the oncoming flow 
aligned with the x-axis is ! . Assume the angle is relatively small and the lift curve slope 
is 

                                                           
dCL

d!
= a0                                                    (11.4) 

The tangential velocity of a line vortex is 

                                                        U! =
"Vortex

2#r
                                                   (11.5) 
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where r  is the distance from the vortex center. After a period of time t  has passed, the 
starting vortex has been carried a distance U!t  from the wing. During this period, the 
starting vortex induces a downwash velocity on the wing that we can estimate as 

                                                Uyi 0,0,t( ) = !Wing

2"U#t
=
$!Vortex

2"U#t
 .                          (11.6) 

Note again that !Wing < 0 . This downwash rotates the velocity vector of the flow coming 
at the wing by the angle 

                                       ! i = ArcTan
Uyi 0,0,t( )

U"

#
$%

&
'(
)
Uyi 0,0,t( )

U"

< 0  .               (11.7) 

The velocity vector relative to the wing is 

                                                    UR = U! ,Uyi 0,0,t( )( )                                       (11.8) 

with magnitude 

                                                   UR = U!
2 +Uyi 0,0,t( )2( )1/2   .                              (11.9) 

The lift and induced drag at any instant are 

                                  L = FNCos ! i( ) = FN U"

U"
2 +Uyi 0,0,t( )2( )1/2

                        (11.10) 

                                  Di = !FNSin " i( ) = !FN
Uyi 0,0,t( )

U#
2 +Uyi 0,0,t( )2( )1/2

 .                  (11.11) 

The normal force on the wing is related to the relative velocity vector and the circulation 
by 

                                                        FN = !"UR#Wing  .                                          (11.12) 

The lift and induced drag are 

                                                 L = FNCos ! i( ) = "#U$%Wing                                 (11.13) 

and 

                                                 Di = !Uyi 0,0,t( )"Wing  .                                        (11.14) 
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Using (11.6), (11.14) can be expressed as 

                                                            Di = !
"wing
2

2#U$t
  .                                          (11.15) 

The lift coefficient is proportional to the angle of attack with respect to the relative 
velocity vector. 

                                                       CL =
L

1
2
!U"

2C
= a0 # +# i( )                              (11.16) 

where L  is the lift per unit span. Use (11.7)  and (11.13) to express (11.16) in terms of 
the as yet unknown circulation. 

                                            !"U#$Wing = a0
1
2
"U#

2C % +
$Wing

2&U#
2t

'
()

*
+,

  .                     (11.17) 

Solve for the circulation (essentially the time dependent lift coefficient). 

                                          
!2"Wing t( )
U#C

=

4$U#t
a0C

4$U#t
a0C

+1

%

&

'
'
'

(

)

*
*
*
a0+ = CL t( )                        (11.18) 

The induced drag per unit span is Di = ! "wing( )2 / 2#U$t( ) . The time dependent 
coefficient of induced drag is 

                                                 CDi
t( ) =

4!U"t
a0C

4!U"t
a0C

+1
#
$%

&
'(

2

#

$

%
%
%
%

&

'

(
(
(
(
a0)

2   .                          (11.19) 

The characteristic time that comes out of this analysis is 

                                                       
 
! Starting Airfoil =

a0C
4"U#

 .                                        (11.20) 

In terms of the characteristic time, 
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!2"Wing t( )
a0U#C$

=
CL

a0$
=

t / % Starting Airfoil

t / % Starting Airfoil +1
&

'(
)

*+
  ,   

CDi

a0$
2 =

t / % Starting Airfoil

t / % Starting Airfoil +1( )2
&

'
(
(

)

*
+
+

 .     (11.21) 

The evolution of lift and drag over the wing is shown below. 

                               

Figure 11.4 Onset of circulation and lift, growth and decay of induced drag on an 
impulsively started airfoil. 

Classical theory gives a0 = 2!  for the lift curve slope of an airfoil at small angles of 
attack. In this instance the starting time is about the time it takes the flow to travel one-
half of a chord length. 

At t = 0  all three are zero. As t!"  the lift and circulation approach a constant value 
while the induced drag, after reaching a maximum at about one characteristic time, 
decays to zero as the lift approaches a constant value.  

A more sophisticated analysis of this problem that takes into account the dynamics of the 
vortex sheet can be found in Saffman (Vortex Dynamics, page 111). 

11.2 THE JOUKOWSKY AIRFOIL 

Recall the complex stream function introduced in Chapter 10. 

                                                  W z( ) = ! x, y( ) + i" x, y( )                               (11.22) 

where 

                                             z = x + iy = r Cos !( ) + iSin !( )( ) = rei!  .                (11.23) 

The radius and angle are 
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r = x2 + y2( )1/2

Tan !( ) = y
x

  .                                    (11.24) 

Both the velocity potential and stream function satisfy the Cauchy-Riemann equations. 

                                                           
U =

!"
!x

=
!#
!y

V =
!"
!y

= $
!#
!x

                                         (11.25) 

Cross differentiating (11.25) it is easy to show that the velocity potential and stream 
function both satisfy Laplace’s equation. Moreover two-dimensional potential flows can 
be constructed from any analytic function of a complex variable, W z( ) . 

The complex velocity is independent of the path along which the derivative is of the 
complex potential is taken. 

                                       

dW
dz

=
!"
!x

dx
dz

+ i
!#
!x

dx
dz

=U $ iV

dW
dz

=
!"
!y

dy
dz

+ i
!#
!y

dy
dz

=
V
i
+ i
U
i
=U $ iV

                   (11.26) 

In Chapter 10 we constructed flow past a circular cylinder from the superposition of a 
uniform stream and a dipole. 

      W =U!z +
"
2#

1
z

$
%&

'
()    ! =U"x +

#
2$

x
x2 + y2

%
&'

(
)*

   ! =U"y +
#
2$

y
x2 + y2

%
&'

(
)*

    (11.27) 

                                             

The radius of the cylinder is 
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                                                              R =
!

2"U#

$
%&

'
()

1/2

 .                                          (11.28) 

With the velocity on the surface of the cylinder known, the Bernoulli constant is used to 
determine the pressure coefficient on the cylinder. 

                                         

P!
"

+
1
2
U!

2 =
P
"
+
1
2
U 2#

$%
&
'( R= )

2*U!

#
$%

&
'(

1/2

Cp =
P + P!
1
2
"U!

2
= 1+ U

U!

#
$%

&
'(

2#

$
%

&

'
( = 1+ 4Sin2 ,( )

                     (11.29) 

                                       

                  Fig 11.5 Pressure coefficient for irrotational flow past a circle. 

In Chapter 10 we added circulation to the problem by adding a vortex to the flow. Take 
the circulation of the vortex to be in the clockwise direction with the positive angle 
measured in the clockwise direction from the left stagnation point. 

                                              

W =U!z +
"
2#

1
z

$
%&

'
()
+
i*
2#

Ln z( )

+ =U!x +
"
2#

x
x2 + y2

$
%&

'
()
,

*
2#

-

. =U!y +
"
2#

y
x2 + y2

$
%&

'
()
+

*
2#

Ln r( )

                          (11.30) 
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Note that the radius of the circle is unchanged by the vortex but the forward and rearward 
stagnation points are moved symmetrically below the centerline producing lift on the 
cylinder in the amount L = !"U#$ . 

Now let the oncoming flow be at an angle of attack !  below the horizontal. Take !  to 
be positive when the flow is below the horizontal and negative when it is above. 
Superpose this uniform flow with a dipole and a vortex. Take the circulation of the vortex 
to be in the clockwise direction. 

W z1( ) =U!z1e
" i# +

$
2%

1
z1

&
'(

)
*+
+
i,
2%

Ln z1( )

- x 1 , y1( ) =U! x1Cos #( ) + y1Sin #( )( ) + $
2%

x1
x1
2 + y1

2

&
'(

)
*+
"

,
2%

ArcTan y1 / x1( )

. =U! y1Cos #( ) " x1Sin #( )( ) + $
2%

y1
x1
2 + y1

2

&
'(

)
*+
+

,
2%

Ln x1
2 + y1

2( )1/2( )
   (11.31) 

where z1 = x1 + iy1  is the complex variable with dimensions z[ ] = Length . The radius of 
the circle is still 

                                                             R =
!

2"RU#

 .                                     (11.32) 

Using (11.32) the potentials (11.31) can be non-dimensionalized as follows. 
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w z1( ) = z1
R

!
"#

$
%&
e' i( +

R
z1

!
"#

$
%&
+ i) Ln z1

R
!
"#

$
%&

* x 1 , y1( ) = x1
R

!
"#

$
%&
Cos (( ) + y1

R
!
"#

$
%&
Sin (( ) + RCos +1( )

r1
' )+1

, x 1 , y1( ) = y1Cos (( ) ' x1Sin (( ) ' RSin +1( )
r1

+ ) Ln r1
R

!
"#

$
%&

        (11.33) 

where 

                                         w =
W
U!R

    ! =
"
U#R

    ! =
"
U#R

 .                           (11.34) 

The dimensionless circulation of the vortex is 

                                                            ! =
"

2#RU$

   .                                         (11.35) 

The flow is shown below for ! = 1 , R = 1 and ! = " / 18 . 

                          

                Figure 11.6 Flow at angle of attack !  past a circular cylinder with lift. 

The dimensionless potentials expressed in r1,!1( )  coordinates are 

              
! =

r1
R
Cos "( )Cos #1( ) + r1

R
Sin "( )Sin #1( ) + R

r1
Cos #1( ) $ %#1

& =
r1
R
Cos "( )Sin #1( ) $ r1

R
Sin "( )Cos #1( ) $ R

r1
Sin #1( ) + % Ln r1

R
'
()

*
+,

 .        (11.36) 
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The complex velocity is 

                                                
dw z1( )
dz1

=
e! i"

R
!

R
z1
2

#
$%

&
'(
+ i )

z1
   .                                (11.37) 

The velocities in polar coordinates are 

                   
Ur1

=
1
R
Cos !( )Cos "1( ) + 1

R
Sin !( )Sin "1( ) # R

r1
2 Cos "1( )

U"1
= #

1
R
Cos !( )Sin "1( ) + 1

R
Sin !( )Cos "1( ) # R

r1
2 Sin "1( ) # $

r1

  .        (11.38) 

The flow is determined by !  which is specified and  !  and R  which remain to be 
determined. On the cylinder Ur1

= 0  and r1 = R . The tangential velocity in the cylinder is 

                   U!1 r1 =R
=
1
R

"Cos #( )Sin !1( ) + Sin #( )Cos !1( ) " Sin !1( ) " $( )   .        (11.39) 

Stagnation points occur where U!1 r1 =R
= 0 . The two roots of (11.39) , denoted !10 , satisfy 

                              Sin !( )Cos "10( ) = Cos !( )Sin "10( ) + Sin "10( ) + #  .                 (11.40) 

Solve (11.40) for the stagnation points r,!( ) = R,!10( )  given !  and ! . The roots of 
(11.40) are 

                             Sin !10( ) = "
#
2
±

Sin $( )
2 1+ Cos $( )( ) 2 1+ Cos $( )( ) " # 2  .            (11.41) 

Our goal is to map the flow in figure 11.6 to flow around an airfoil with several free 
parameters that can be used to choose the shape of the airfoil. First we will itemize the 
steps in the mapping then demonstrate the process with an example. 

Step 1 – Translate the circle in the z1  plane to a circle in the z2  plane with its origin 
shifted from 0,0( ) . The mapping is 

                                         z2 = z1 + z2c    where   z2c = x2c + iy2c   .                          (11.42) 

Specify the coordinates of the center of the circle in the z2  plane x2c , y2c( ) . In addition 
specify the coordinates of the trailing edge x2t , y2t( )  in the z2  plane. Now the radius of 
the circle in the z1  plane is determined. 
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                                            R = x2c ! x2t( )2 + y2c ! y2t( )2( )1/2                                (11.43) 

Step 2 – Map the circle in z2  to an oval in the z3  plane passing through the point 
x3, y3( ) = 1,0( ) . The mapping is 

                                                        z3 = z2 !
"

z2 ! #
                                               (11.44) 

where !  is complex and !  is real. We require that the coordinates of the trailing edge 
z2t = x2t + iy2t  satisfy 

                                                  z3t = z2t !
"r + i"i
z2t ! #

= 1+ i 0( )   .                                (11.45) 

Solve (11.45) for !r ,!i( )  using x3t = 1  and y3t = 0 . 

                                             

 

!r = x2TE "1( ) x2TE " #( ) " y2TE2  
!i = y2TE 2x2TE "1" #( )                                    (11.46) 

Step 3 – Map the oval to an airfoil using the Joukowsky transformation. 

                                                               z = z3 +
1
z3

                                                (11.47) 

The overall transformation from the circle to airfoil coordinates is 

                        z = z1 + z2c( ) ! "r + i"i
z1 + z2c( ) ! #

$

%&
'

()
+

1

z1 + z2c( ) ! "r + i"i
z1 + z2c ! #

$
%&

'
()

 .         (11.48) 

Example – Joukowsky airfoil. 

Choose the following values. 

     ! = " / 9    x2c = !0.07    y2c = 0.02    x2TE = 1.03     y2TE = !0.02    ! = 0.2     (11.49) 

The coordinates of the center of the circle x2c , y2c( ) and the trailing edge x2t , y2t( )  in the 
z2  plane determine the radius of the circle in the z1  plane.  

R = x2c ! x2t( )2 + y2c ! y2t( )2( )1/2 = 0.07 !1.03( )2 + 0.02 + 0.02( )2( )1/2 = 1.10073   (11.50) 
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The location of the trailing edge in the z1  plane is determined using (11.42). 

                                         
z1TE = z2TE ! z2c = 1.10 ! 0.04i

"10TE = ArcTan !0.04
1.10

#
$%

&
'(
= !0.03635

  .                              (11.51) 

Now apply the Kutta condition. The dimensionless circulation (11.35) is chosen to insure 
that the rear stagnation point on the circle in the z1  plane depicted in Figure 11.6 is 
located at the point (11.51) designated as the trailing edge. In other words, when we 
choose the parameters (11.49) the radius of the circle in the z1  plane, the angle of the 
trailing edge and the value of !  in (11.41) that gives the angle calculated in (11.51) as 
the root are all determined. The circulation is determined to be 

               ! = Sin "( )Cos #10TE( ) $ Cos "( )Sin #10TE( ) $ Sin #10TE( ) = 0.412282  .       (11.52) 

The angle of the forward stagnation point in the z1  plane is determined from (11.41). The 
roots are 

 !10 = ArcSin "
#
2
±

Sin $( )
2 1+ Cos $( )( ) 2 1+ Cos $( )( ) " # 2%

&'
(

)*
= "2.7562,"0.03635( )   (11.53) 

The position of the nose stagnation point in the z1  plane is 

                                                  z1nose = !1.01998 ! 0.41381i                                     (11.54) 

and the position in the z2  plane is 

                                                   z2nose = !1.08998 ! 0.39381i  .                                 (11.55) 

Using the translation (11.42) map the circle in the z1  to a shifted circle of the same radius 
in the z2  plane. 

                 

                                           Figure 11.7 Mapping from z1  to z2 . 
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Now map the circle in the z2  plane to a slightly vertically elongated oval in the z3  plane. 

                  

                                         Figure 11.8 Mapping from z2  to z3 . 

The parameter delta is specified independently and the real and imaginary parts of !  are 
determined by the condition that x2TE , y2TE( )  maps to 1,0( )  in the z3  plane. Referring to 
(11.46) 

         

 

!r = x2TE "1( ) x2TE " #( ) " y2TE2  = 1.03"1( ) 1.03" 0.2( ) " 0.02( )2 = 0.0245
!i = y2TE 2x2TE "1" #( ) = "0.02 2 1.03( ) "1" 0.2 " 0.02( ) = "0.0172

.       (11.56) 

Now map the oval in the z3  plane to an airfoil in the physical plane z  using (11.48). 

                

                                               Figure 11.9 Mapping from z3  to z . 

The mapping used to generate the airfoil in Figure 11.9 is 
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x + iy = RCos !( ) + iRSin !( ) + x2c + iy2c "
#r + i#i

RCos !( ) + iRSin !( ) + x2c + iy2c " $
%
&'

(
)*
+

1

RCos !( ) + iRSin !( ) + x2c + iy2c "
#r + i#i

RCos !( ) + iRSin !( ) + x2c + iy2c " $
%
&'

(
)*

. 

                                                                                                                            (11.57) 

 

where x, y( )  are the coordinates of the airfoil surface. All the constants in (11.57) are 
known from the values specified in (11.49) and calculated in (11.50) and (11.56). The 
angle !  in (11.57) runs from 0  to 2!  in the z1  plane. 

Ultimately we want the pressure distribution on the airfoil and for this we need to 
determine the mapping of the complex velocity (11.37) from the z1  plane to the z  plane. 
Use the chain rule 

                                                          dW
dz

=
dW
dz1

dz1
dz2

dz2
dz3

dz3
dz

 .                           (11.58) 

The required derivatives in (11.58) are 

                                

dz1
dz2

= 1

dz2
dz3

=
1
dz3
dz2

!
"#

$
%&

=
1

1+ '
z2 ( )( )2

!

"
#

$

%
&

=
z2 ( )( )2

z2 ( )( )2 + '

dz3
dz

=
1
dz
dz3

!
"#

$
%&

=
z3
2

z3
2 (1

  .              (11.59) 

Combine (11.58) and (11.59). 

                                          Uz =Uz1

z2 ! "( )2
z2 ! "( )2 + #

$

%
&

'

(
)

z3
2

z3
2 !1

                                (11.60) 

The velocity field in the complex z1  plane (11.37), repeated here for convenience, is 



 16 

                                              
dw z1( )
dz1

=
e! i"

R
!

R
z1
2

#
$%

&
'(
+ i )

z1
 .                                 (11.61) 

Zero velocities occur at:  

i) The stagnation points in z1  

ii) z2 = ! , z3 = ! , z = !   

iii) z3 = 0 , z = ! .  

Infinite velocities occur at z1 = 0  and: 

i) z3 = 1 , z = z3 +1 / z3 = 2 . The infinity multiplies the zero at the stagnation point to 
produce a finite velocity at the trailing edge. 

ii) z3 = 1 , z = !2 . This point lies inside the airfoil. 

iii) The point 

                                       
 

z2 ! "( )2 + # = 0  $  z2 = " ± !#( )1/2

z3 = " ± 2 !#( )1/2
   .                    (11.62) 

The singularity (11.62) transforms to 

    
 
zSingularity = ! + 2 "#( )1/2 + 1

! + 2 "#( )1/2
  ,  ! " 2 "#( )1/2 + 1

! " 2 "#( )1/2
  .      (11.63) 

We need to be concerned about the position of the singularity (11.63) since it may lie 
outside of and close to the airfoil where it can affect the pressure distribution. For the 
example above  

                       zSingularity = 1.81465 !1.30801i  ,  0.906875 + 2.46541i                 (11.64) 

These locations are relatively far from the airfoil and so we should expect a reasonably 
smooth pressure distribution. The pressure coefficient is 

                                    Cp =
P ! P"
1
2
#U"

2
= 1! Uz

2( ) = 1! U 2
x +U

2
y( )                        (11.65) 

plotted below. 



 17 

                     

  Figure 11.10 pressure distributions on the example Joukowsky airfoil at ! = " / 9 . 

11.3 THIN AIRFOIL THEORY 

The figure below depicts a generic two-dimensional airfoil. The chord line of the airfoil 
is aligned with the x -axis. The upper surface is defined by y = f x( )  and the lower 
surface by y = g x( ) . The flow is steady, inviscid and incompressible. 

                      

                         Figure 11.11 Two-dimensional airfoil at angle of attack ! . 

The real flow about such an airfoil is viscous and there is no possibility of flow around 
the sharp trailing edge. The no slip condition and viscous dissipation prevents this from 
happening just as is it does in the wedge flow shown in Figure 11.1. In potential flow, the 
Kutta condition is used to mimic this behavior by requiring that the flow leave the 
trailing edge smoothly with no singularity. As we learned in the discussion of Joukowsky 
airfoils this requirement sets the lift on the airfoil.  

The stagnation pressure is constant throughout a steady potential flow.  

                                        
P!
"

+
1
2
U!

2 =
PTE

+

"
+
1
2
U +

TE( )2 = PTE
#

"
+
1
2
U #

TE( )2             (11.66) 
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where the superscript "+ "  refers to the flow leaving the upper surface of the airfoil and 
the superscript "! "  refers to the flow leaving the lower surface of the airfoil. Since the 
flow is incompressible, the Kutta condition boils down to 

                                                                
PTE

+

!
=
PTE

"

!
  .                                          (11.67) 

The static pressure is the same above and below the airfoil at the trailing edge. The 
immediate implication of (11.67) and (11.66) is that 

                                                               U +
TE =U !

TE   .                                         (11.68) 

The flow velocity must also be the same above and below the trailing edge. 

11.3.1 THE THIN AIRFOIL APPROXIMATION 

The Joukowsky transformation is a very useful way to generate interesting airfoil shapes. 
However the range of shapes that can be generated is limited by range available for the 
parameters that define the transformation. In practice the thickness of most airfoils is 
small compared to the chord. This enables a simplification of the surface boundary 
condition for Laplace’s equation that allows very general, airfoil shapes to be produced 
relatively easily. Decompose the velocity potential into the free stream and perturbation 
potential. 

                                       ! =U"xCos #( ) +U"ySin #( ) + $ x, y( )                        (11.69) 

The velocities are 

                                                    
U =U!Cos "( ) + u x, y( )
V =U!Sin "( ) + v x, y( )                                   (11.70) 

where 

                                                       u =
!"
!x

      v =
!"
!y

  .                                      (11.71) 

The disturbance potential satisfies Laplace’s equation. 

                                                                !2" = 0                                                 (11.72) 

with far field conditions 

                                                 
!"
!x

# 0       
!"
!y

# 0   at   !                                (11.73) 

and surface conditions 
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                    v x, f x( )( ) = !"
!y y= f x( )

=U#
df
dx

$ Tan %( )&
'(

)
*+

  on   0 ! x ! C             (11.74) 

                    v x,g x( )( ) = !"
!y y=g x( )

= #U$
dg
dx

# Tan %( )&
'(

)
*+

  on   0 ! x ! C   .            (11.75) 

Within the thin airfoil approximation the surface conditions can be evaluated on y = 0  
instead of on the actual airfoil surface. The linearized surface conditions are 

                               v x,0+( ) = !"
!y y=0+

=U#
df
dx

$%&
'(

)
*+

  on   0 ! x ! C                      (11.76) 

                               v x,0!( ) = "#
"y y=0!

= !U$
dg
dx

!%&
'(

)
*+

  on  0 ! x ! C   .                 (11.77) 

Define the thickness function of the airfoil. 

                                               !Thickness x( ) = 1
2
f x( ) " g x( )( )                                    (11.78) 

and the camber function 

                                               !Camber x( ) = 1
2
f x( ) + g x( )( ) .                                     (11.79) 

The linearized problem is now defined. 

                            

!2" = 0

lim
r#$

%"
%x

= lim
r#$

%"
%y

= 0

%"
%y x,y=0+

=U$
d&Thickness

dx
+U$

d&Camber

dx
'U$(

%"
%y x,y=0'

= 'U$
d&Thickness

dx
+U$

d&Camber

dx
'U$(

                          (11.80) 

The surface condition breaks into three terms for the effect of thickness, camber and the 
angle of attack. Treat the problem as the superposition of three independent potentials. 

                                                  ! = !Thickness + !Camber + !"                                          (11.81) 
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                       Figure 11.12 The three basic problems of thin airfoil theory. 

The thickness problem 

Let the thickness disturbance field be represented by a distribution of mass sources along 
the x -axis in the range 0 ! x ! C .  

                            

                           Figure 11.13 Distribution of sources generating thickness. 

The velocity field due to such a distribution satisfies Laplace’s equation and !" = 0  at 
infinity. For a source of strength q !( )d!  (units L2 /T ) at x, y( ) = !,0( )  the complex 
potential is 

                                                dWThickness =
q !( )d!
2"

Ln rei#( )                             (11.82) 

where 
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                                                         r2 = x ! "( )2 + y2   .                                    (11.83) 

The differential velocity potential is 

                                    d!Thickness =
q "( )
2#

Ln x $ "( )2 + y2( )1/2 d"    .                      (11.84) 

The potential at x, y( )  is given by the sum of the potentials due to all the source 
increments. 

                                   !Thickness =
1
2"

q #( )Ln x $ #( )2 + y2( )1/2 d#0

C

%                    (11.85) 

with velocity components  

                          

uThickness x, y( ) = !"Thickness
!x

=
1
2#

q $( ) x % $
x % $( )2 + y2

d$
0

C

&

vThickness x, y( ) = !"Thickness
!y

=
1
2#

q $( ) y
x % $( )2 + y2

d$
0

C

&
  .            (11.86) 

We wish to use the surface condition (11.80) on the thickness  

                                                  
v x,0+( ) =U!

d"Thickness

dx

v x,0#( ) = #U!
d"Thickness

dx

  .                                   (11.87) 

to determine the source distribution q x( ) . Let y  in (11.86) be a very small but fixed 
number y = ! . The vertical velocity component in (11.86) becomes 

                                    vThickness x,!( ) = 1
2"

q #( ) !
x $ #( )2 + ! 2

d#
0

C

%   .                     (11.88) 

For very small values of !  the only contribution to the integral (11.88) comes from the 
range of !  very close to x  where the function ! / x " #( )2 + ! 2( )$ 1 / ! . This allows 

q x( )  to be pulled out of the integral (11.88). Now 

                                          vThickness x,!( ) = q x( )
2"

!
x # $( )2 + ! 2

d$
0

C

%   .                     (11.89) 

Now evaluate the remaining integral in (11.89). 
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!
x " #( )2 + ! 2

d#
0

C

$ =
1

x " #
!

%
&'

(
)*
2

+1
d

#
!

%
&'

(
)*0

C /!

$ =
1

+2 +1
%
&'

(
)*
d+ =x"C

!

x /!

$

ArcTan
x
!

%
&'

(
)*
" ArcTan

x " C
!

%
&'

(
)*

lim
!,0

ArcTan
x
!

%
&'

(
)*
" ArcTan

x " C
!

%
&'

(
)*

%
&'

(
)*
= -

 .       (11.90) 

Now 

                                         vThickness x,0
±( ) = ±

q x( )
2

= ±U!
d"Thickness

dx
  .                     (11.91) 

Finally the thickness problem reduces to choosing the distribution of source strength to 
be 

                                                    q x( ) =U!
d"Thickness

dx
  .                                           (11.92) 

The thickness potential is 

                            !Thickness =
U"

2#
d$Thickness %( )

d%
Ln x & %( )2 + y2( )1/2 d%0

C

'   .                (11.93) 

Note that the total source strength due to thickness is zero. 

                q x( )
0

C

! dx = U"
d#Thickness

dx0

C

! dx =U" #Thickness C( ) $#Thickness 0( )( ) = 0         (11.94) 

The camber problem 
Let the camber disturbance field be represented by a distribution of vortices along the x -
axis in the range 0 ! x ! C .  

                            

                          Figure 11.14 Distribution of vortices generating camber. 
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Again, the velocity field due to such a distribution satisfies Laplace’s equation and 
!" = 0  at infinity. The source function ! x( )  is the circulation per unit length. Physically 
it is the velocity difference between the upper and lower surface at the position x . 

For a source of strength ! "( )d"  (units L /T ) at x, y( ) = !,0( )  the complex potential is 

                                                dWCamber =
! "( )d"
2#

iLn rei$( )                               (11.95) 

where 

                                                         r2 = x ! "( )2 + y2   .                                    (11.96) 

Take the real part of (11.95). The differential velocity potential is 

                                         d!Camber = "
# $( )
2%

ArcTan
y

x " $
&
'(

)
*+
d$  .                         (11.97) 

The potential at x, y( )  is given by the sum of the potentials due to all the vortex 
increments. 

                                    !Camber = "
1
2#

$ %( )ArcTan y
x " %

&
'(

)
*+
d%

0

C

,                         (11.98) 

with velocity components  

                            

uCamber x, y( ) = !"Camber
!x

=
1
2#

$ %( ) y
x & %( )2 + y2

d%
0

C

'

vCamber x, y( ) = !"Camber
!y

= &
1
2#

$ %( ) x & %
x & %( )2 + y2

d%
0

C

'
 .          (11.99) 

Check lim
y!0±

uCamber x, y( ) . 

                         uCamber x,0
±( ) = lim

y!0±

1
2"

# $( ) y
x % $( )2 + y2

d$
0

C

& = ±
# x( )
2

.          (11.100) 

From (11.100). 

                                              ! x( ) = uCamber x,0+( ) " uCamber x,0"( )  .                     (11.101) 
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The vortex strength source function ! x( )  is precisely the velocity difference between the 
upper and lower surface of the camber line (and the airfoil) and goes to zero at the 
trailing edge as required by the Kutta condition. 

The surface condition for camber is 

              vCamber x,0
±( ) = lim

y!0±
"
1
2#

$ %( ) x " %
x " %( )2 + y2

d%
0

C

&
'

(
)

*

+
, =U-

d.Camber

dx
 .       (11.102) 

Taking the limit in (11.102) 

                                vCamber x,0
±( ) = !

1
2"

# $( ) 1
x ! $( ) d$0

C

% =U&
d'Camber

dx
.          (11.103) 

The pressure on the camber line is 

                     
P! +

1
2
"U!

2 = PCamber x,0
±( ) + 12 " U! + uCamber( )2 + vCamber( )2( ) #

PCamber x,0
±( ) + 12 "U! + "U!uCamber x,0

±( )
 .      (11.104) 

The lift on the airfoil due to camber is 

                                         L = PCamber x,0
!( ) ! PCamber x,0+( )( )dx

0

C

" .                       (11.105) 

Use (11.100) and (11.104) in (11.105). The lift on the airfoil is 

                              
L = !U"

# x( )
2

+ !U"
# x( )
2

$
%&

'
()
dx

0

C

* = !U" # x( )dx
0

C

*
L = !U"+

  .             (11.106) 

The moment acting on the camber line about the leading edge is 

                                     M = PCamber x,0
!( ) ! PCamber x,0+( )( )xdx

0

C

"                        (11.107) 

which becomes 

                                                   M = !U" # x( )xdx
0

C

$  .                                        (11.108) 

We still need to determine the source distribution ! x( ) . That is we need to solve 
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! "( )
x # "0

C

$ d" = #2%U&
d'Camber

dx
       0 ! x ! C         ! C( ) = 0  .                     (11.109) 

1) Introduce 

                                                     
x =

C
2
1+ Cos !( )( )

" =
C
2
1+ Cos #( )( )

 .                                           (11.110) 

This change of variables is illustrated below. 

                                           

                                 Figure 11.15 The change of variables (11.110). 

2) Express !Camber x( )  as a Fourier series in ! . 

                                                 
d!Camber

dx
= Bn

n=0

"

# Cos n$( )                                     (11.111) 

The coefficients are determined from the orthogonality of the expansion functions. 

                                         
 
Bn =

2
!

d"Camber

dx
#
$%

&
'(0

!

)  Cos n*( )d*  .                              (11.112) 

3) Solve the integral (11.109) in the form 

                                    1
2!U"

# $( )
Cos $( ) % Cos &( )!

0

' d$ = Bn
n=0

"

( Cos n&( )  .               (11.113) 

The result is 
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                     ! "( ) = #2U$ Bn
n=1

$

% Sin n"( ) + 2 U$B0
Sin "( )

K
2U$B0

+ Cos "( )&
'(

)
*+

 .            (11.114) 

The constant K  is determined by the Kutta condition ! " = 0( ) = 0 . The result is 
K = !2U"B0  which cancels the singularity at ! = 0  in (11.114). Thus 

                               ! "( ) = #2U$ B0
1# Cos "( )
Sin "( )

%
&'

(
)*
+ BnSin n"( )

n=1

$

+
%

&'
(

)*
  .              (11.115) 

Note that in general there is a singularity in the circulation at the leading edge where 
! = " .  

Now all the zero angle of attack aerodynamic properties of the cambered airfoil are 
known; namely the lift coefficient 

                             CL =
L

1
2
!U"

2C
=
1
U"

# $( )Sin $( )d$
0

%

& = '% 2B0 + B1( )           (11.116) 

and the moment coefficient. 

                             

CM =
M

1
2
!U"

2C 2
=

1
2U"

# $( ) 1+ Cos $( )( )Sin $( )d$
0

%

& =

'
%
4
2B0 + B1( ) ' %

4
B1 + B2( )

  .       (11.117) 

The moment coefficient can be expressed as 

                                                      CM =
CL

4
!
"
4
B1 + B2( ) .                                   (11.118) 

The force system on the airfoil is equivalent to a pure moment about the leading edge 
tending to pitch the nose up plus the moment that would be generated by the lift force 
acting at the one-quarter chord point tending to pitch the nose down. 
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 Figure 11.16 Forces and moments on a thin cambered airfoil at zero angle of attack. 

The angle-of-attack problem 

Finally we look at the incompressible potential flow past a flat plate at a small angle of 
attack illustrated below. The source is modeled as a distribution of vortices as in the 
camber problem. 

                     

Figure 11.17 Distribution of vortices generating lift on a flat plate at angle-of-attack ! . 

In this case the surface condition is especially simple since d!Camber / dx = "# . 

                                                  vCamber x,0
±( ) = !U"#                                          (11.119) 

Equation (11.109) becomes 

                    
! "( )
x # "0

C

$ d" = 2%U&'        0 ! x ! C         ! C( ) = 0 .                         (11.120) 

In (11.111) all coefficients higher than n = 0  are zero so the series truncates at the first 
term. 
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B0 = !

2
"

#
0

"

$  d% = !2# ,    B1,B2 ,B3,…,Bn = 0                   (11.121) 

The circulation distribution (11.115) on the flat plate is 

                                                ! "( ) = 2U#$
1% Cos "( )
Sin "( )

&
'(

)
*+

.                                    (11.122) 

From (11.116) and (11.117) the lift and moment coefficients for the flat plate at angle of 
attack are 

                                                               
CL = 2!"

CM =
!
2
"

.                                               (11.123) 

 

 

 


