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 Joukowski Transformations and Aerofoils

One of the ways of finding the flow patterns, velocities and pressures about streamlined 
shapes moving through an inviscid fluid is to apply a conformal mapping to the potential  
flow solution for a circular cylinder. 

The cylinder can be mapped to a variety of shapes including aerofoil shapes. By knowing 
the derivative of the transformation used to perform the geometry mapping, along with 
the original velocities around the cylinder, the velocities in the mapped flow field can be 
found. 

A simple mapping which produces a family of elliptical shapes and streamlined aerofoils 
is the Joukowski mapping. The 2-D cylinder ( z1 flow field) is mapped to a streamlined 

shape ( z2 flow field) using the mapping.

The mapping is done in complex arithmetic with z1 and z2 representing the complete 
coordinate space of each flow field, z1= x1i.y1  and z2=x2i. y2 and are mapped 
by,

z2=z1
k 2

z1
.

The transformation constant k is used to control the stretching of the flow field. A small k 
value will produce a near cylindrical shape with large thickness to chord ratio. A large k 
value approaching the radius of the cylinder (a) will produce a very thin streamlined 
shape. A value of k=a will produce a flat plate. Values of k greater than the radius of the 
cylinder produce mappings that are NOT conformal and hence do not represent valid 
flows. 

By adjusting the centre of the cylinder relative to the origin of flow field z1 the mapped 
object can be made streamlined and curved, thus producing a cambered Joukowski 
aerofoil section.  To guarantee a valid aerofoil shape the transformation constant must be 
adjusted to match the circle flow geometry.



ke 2=a2− f 2

As the far-field is undisturbed by the mapping, the stream velocity, V ∞ , will be the 
same for both flow fields. The velocities in flow field z2 can be determined by the 
derivative of the transformation function , dz2/ dz1 such that,

∣V 2∣=
∣V 1∣

∣dz 2/dz1∣
,

substituting for the transform function leads to 

∣V 2∣=
∣V 1∣

∣1− k
2

z1
2∣  .

where |V1| is the magnitude of the velocity at a point in flow field z1 and |V2| (or V) is the 
magnitude of the velocity at the mapped point in flow field z2. 

Pressure coefficients on the surface of the streamlined shape in flow field z2 can then be 
found by applying Bernoulli's equation for inviscid incompressible flow. 

C p2=1−
V 2
2

V ∞
2

For streamline shapes with sharp trailing edges, such as Joukowski aerofoil sections, 
circulation must be added to the flow to obtain the correct lifting solution. The value of 
circulation applied to the cylinder in flow field z1 should be specified so that a stagnation 
point is produced at the point of intersection of the rear of the cylinder and the x-axis. 
This point maps to the trailing edge of the aerofoil and when the correct amount of 
circulation is applied, the Kutta condition will be satisfied at the trailing edge of the 
aerofoil in flow field z2, ( ie. vorticity = 0 at trailing edge.).

  .........maps to......................                                  



This means the required amount of circulation is 

=4a V ∞sin

where a is the radius of the original circle and   is the stream angle of attack.

Having obtained the correct flow pattern, the lift can be calculated as a function of the 
amount of circulation applied. 

Lift=V ∞ .

The flat plate aerofoil.

If the transformation constant is set to be equal to the radius of the circle ( k=a ) and 
no center shift is used the circle maps to a flat plate aerofoil. By applying the velocity 
mapping and Bernoulli relationships, the pressure field on the plate can be predicted and 
hence the lift, drag and moment can be calculated.

Anaylsis of a Joukowski transformation to a flat plate aerofoil leads to the following 
standard results.

 C L=2 , CM 1 /4c=0 , CD=0 .

To see the details of this mapping and the calculation of lift and moment  download the 
document on flat plate lift.  

http://web.aeromech.usyd.edu.au/aero/jouk/flat_plate_lift.pdf


General Joukowski Aerofoil solutions.

While Joukowski aerofoils are relatively simple to create and analyse, they are relatively 
crude in terms of performance. The geometric properties of this family can be described 
by the following approximations.

Maximum thickness , tmax≈
3 3
4  ea 

and maximum camber height hmax≈
f
2 . k

.

The location of maximum thickness is always at the 30% chord location and the location 
of the maximum camber point is always 50% chord. This arrangement promotes early 
boundary layer transition and hence moderate drag. The cusped trailing edge is 
extremely thin and impractical for real construction purposes. 

The performance due to camber is modified such that,

C L=2−0=2C L0 and CM 1 /4c0 .

Exact values for these lift and pitching moment constants can be predicted for a specific 
geometry from the program supplied below.

More appropriate aerofoil sections with much improved L/D ratios (measure of efficiency) 
will be discussed in the following sections.

Software : 

The following software application is available to construct and display flow patterns, 
pressures and list coordinate data for these transformed aerofoil sections.

Joukowski Aerofoil Generator and Flow Analyser.
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