
Array

Array

• Array: variable that can store a collection of
data of the same type

– Examples: A list of names, A list of temperatures

• Why do we need arrays?

– Imagine keeping track of 5 test scores, or 100, or
1000 in memory

• How would you name all the variables?

• How would you process each of the variables?

Declaring an Array

• An array, named test, containing five variables
of type int can be declared as
 int tests[5];

• The value in brackets is called

– A subscript

– An index

Array - Memory Layout

• The definition:

 int tests[5];

 allocates the following memory:

first
element

second
element

third
element

fourth
element

fifth
element

Array Terminology

• The size of an array is:
– the total number of bytes allocated for it

– (number of elements) * (number of bytes for each
element)

• Examples:
 int tests[5] is an array of 20 bytes, assuming 4

bytes for an int

 long double measures[10]is an array of 80
bytes, assuming 8 bytes for a long double

Size Declarators

• Named constants are commonly used as size
declarators.

const int SIZE = 5;
int tests[SIZE];

• This eases program maintenance when the
size of the array needs to be changed.

ACCESSING ARRAY

Accessing Array Elements

• Each element in an array is assigned a unique
subscript.

• Subscripts start at 0

0 1 2 3 4

subscripts:

Accessing Array Elements

• The last element’s subscript is n-1 where n is
the number of elements in the array.

0 1 2 3 4

subscripts:

Accessing Array Elements

• Array elements can be used as regular variables:
 tests[0] = 79;

 cout << tests[0];

 cin >> tests[1];

 tests[4] = tests[0] + tests[1];

• However, arrays must be accessed via individual
elements:
 cout << tests; // not legal

(Program Continues)

Accessing Array Elements - example

Here are the contents of the hours array, with the values

entered by the user in the example output:

Accessing Array Elements - example

Accessing Array Contents

• Can access element with a constant or literal
subscript:

 cout << tests[3] << endl;

• Can use integer expression as subscript:

 int i = 5;

 cout << tests[i] << endl;

ARRAY AND LOOP
Must use array with loop

Using a Loop to Step Through an
Array

• Example – The following code defines an
array, numbers, and assigns 99 to each
element:

const int ARRAY_SIZE = 5;

int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)

 numbers[count] = 99;

A Closer Look At the Loop

Default Initialization

• Global array all elements initialized to 0 by
default

• Local array all elements uninitialized by
default

In-class Exercise

• Do Lab 12, Exercise 1, no. 1 (pg. 172)

• Do Lab 12, Exercise 1, No. 2 (pg. 172)

ARRAY AND BOUND CHECKING

Be careful of array bound: invalid subscripts => corrupt memory; cause
bugs

No Bounds Checking in C++

• When you use a value as an array subscript,
C++ does not check it to make sure it is a valid
subscript.

• In other words, you can use subscripts that
are beyond the bounds of the array.

Example

• The following code defines a three-element
array, and then writes five values to it!

What the Code Does

No Bounds Checking in C++

• Be careful not to use invalid subscripts.

• Doing so can corrupt other memory locations,
crash program, or lock up computer, and
cause elusive bugs.

ARRAY INITIALIZATION

Array Initialization

• Arrays can be initialized with an initialization
list:

const int SIZE = 5;

int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the
order in which they appear in the list.

• The initialization list cannot exceed the array
size.

Example

Array Initialization

• Valid
int tests[3] = { 3, 5, 11 };

• Invalid

 int tests[3];

 tests= { 3, 5, 11 };

Partial Array Initialization

• If array is initialized with fewer initial values
than the size declarator, the remaining
elements will be set to 0:

Implicit Array Sizing

• Can determine array size by the size of the
initialization list:

 int quizzes[]={12,17,15,11};

• Must use either array size declarator or
initialization list at array definition

12 17 15 11

Initializing With a String

• Character array can be initialized by enclosing
string in " ":
 const int SIZE = 6;

char fName[SIZE] = "Henry";

• Must leave room for \0 at end of array

• If initializing character-by-character, must add
in \0 explicitly:

 char fName[SIZE] =

{ 'H', 'e', 'n', 'r', 'y', '\0'};

In-Class Exercise

• Are each of the following valid or invalid array

definitions? (If a definition is invalid, explain

why)
int numbers[l0] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};

int matrix[5] = {1, 2, 3, 4, 5, 6, 7};

double radix[10] = {3.2, 4.7};

int table[7] = {2, , , 27, , 45, 39};

char codes [] = {‘A', 'X', '1', '2', 's'};

int blanks[];

char name[6] = "Joanne";

• Do Lab 12, Exercise 1, No. 3 (pg. 174)

PROCESSING ARRAY CONTENTS
Arrays and operators; arrays assignment

Processing Array Contents

• Array elements can be treated as ordinary
variables of the same type as the array

• When using ++, -- operators, don’t confuse
the element with the subscript:
 tests[i]++; // add 1 to tests[i]

 tests[i++]; // increment i, no

 // effect on tests

Array Assignment

To copy one array to another,

• Don’t try to assign one array to the other:

 newTests = tests; // Won't work

• Instead, assign element-by-element:

 for (i = 0; i < ARRAY_SIZE; i++)

 newTests[i] = tests[i];

