
Array

Array

• Part 1
- Accessing array
- Array and loop
arrays must be used with loops
- Array and bound checking
Be careful of array bound: invalid subscripts => corrupt memory;
cause bugs
- Array initialization
- Processing array contents
- Arrays and operators; arrays assignment

Array

Array Part 2

Array operations
– Printing array content; Sum and average value;
Find highest and lowest value; comparing two
arrays
- Parallel Array
- Array and Function

Array Part 3

- 2-dimensional arrays
- 2-dimensional array operations
- Arrays of Strings
- N-dimensional arrays

ARRAY OPERATIONS

Printing, sum and average array elements, finding highest and lowest
values, partial filled arrays, comparing arrays

Printing the Contents of an Array

• You can display the contents of a character
array by sending its name to cout:

 char fName[] = "Henry";

cout << fName << endl;

But, this ONLY works with character arrays!

Printing the Contents of an Array

• For other types of arrays, you must print
element-by-element:

 for (i = 0; i < ARRAY_SIZE; i++)

 cout << tests[i] << endl;

Summing and Averaging Array
Elements

• Use a simple loop to add together array
elements:
 int tnum;

 double average, sum = 0;

 for(tnum = 0; tnum < SIZE; tnum++)

 sum += tests[tnum];

• Once summed, can compute average:
 average = sum / SIZE;

Finding the Highest Value in an
Array

int count;

int highest;

highest = numbers[0];

for (count = 1; count < SIZE; count++)

{

 if (numbers[count] > highest)

 highest = numbers[count];

}

When this code is finished, the highest variable will contain

the highest value in the numbers array.

Finding the Lowest Value in an
Array

int count;

int lowest;

lowest = numbers[0];

for (count = 1; count < SIZE; count++)

{

 if (numbers[count] < lowest)

 lowest = numbers[count];

}

When this code is finished, the lowest variable will contain

the lowest value in the numbers array.

Partially-Filled Arrays

• If it is unknown how much data an array
will be holding:

–Make the array large enough to hold the
largest expected number of elements.

–Use a counter variable to keep track of the
number of items stored in the array.

Comparing Arrays
• To compare two arrays, you must compare

element-by-element:
const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray[SIZE] = { 5, 10, 15, 20, 25 };

bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable

// Compare the two arrays.

while (arraysEqual && count < SIZE)

{

 if (firstArray[count] != secondArray[count])

 arraysEqual = false;

 count++;

}

if (arraysEqual)

 cout << "The arrays are equal.\n";

else

 cout << "The arrays are not equal.\n";

In-Class Exercise

• Given the following array definition:

 int values[] = {2,6,10,14};

What does each of the following display?

a)cout<<values[2];

b)cout<<++values[0];

c)cout<< values[1]++;

d)x = 2;

 cout<<values[++x];

In-Class Exercise

• Do Lab 12, Exercise 2, No. 1 (pg. 176)

• Do Lab 12, Exercise 2, No. 2 (pg. 176)

• Do Lab 12, Exercise 2, No. 3 (pg. 177)

• Do Lab 12, Exercise 2, No. 4 (pg. 178)

• Declare an integer array named names with
20 elements. Write a loop that prints each
element of the array.

In-Class Exercise

• Write a program that lets the user enter 10 values
into an array. The program should then display the
largest and smallest values stored in the array.

• Write a program that lets the user enter the total
rainfall for each of 12 months into an array of
doubles. The program should then calculate and
display the total rainfall for the year, the average
monthly rainfall, and the months with the highest
and lowest amounts.

 Input Validation: Do not accept negative numbers
for monthly rainfall figures.

PARALLEL ARRAY

Using Parallel Arrays

• Parallel arrays: two or more arrays that
contain related data

• A subscript is used to relate arrays: elements
at same subscript are related

• Arrays may be of different types

Parallel Array Example

 const int SIZE = 5; // Array size

 int id[SIZE]; // student ID

 double average[SIZE]; // course average

 char grade[SIZE]; // course grade

 ...

 for(int i = 0; i < SIZE; i++)
{

 cout << "Student ID: " << id[i]

 << " average: " << average[i]

 << " grade: " << grade[i]

 << endl;
}

(Program Continues)

Parallel Array Example

Program 7-12 (Continued)

Parallel Array Example

The hours and payRate arrays are related through their

subscripts:

Parallel Array Example

In-Class Exercise

• What is the output of the following code? (You may need

to use a calculator.) .

const int SIZE = 5;

int time[SIZE] = {1, 2, 3, 4, 5},

speed[SIZE] = {18, 4, 27, 52, 100},

dist[SIZE];

for (int count = 0; count < SIZE; count++)

 dist[count] = time[count] * speed[count];

for (int count = 0; count < SIZE; count++) {

 cout << time[count] << " ";

 cout << speed[count] << " ";

 cout « dist[count] << endl;

}

In-Class Exercise

• Write a program that store the populations of
12 countries. Define 2 arrays that may be used
in parallel to store the names of the countries
and their populations. Write a loop that uses
these arrays to print each country’s name and
its population.

ARRAY AND FUNCTION

Arrays as Function Arguments

• To pass an array to a function, just use the array
name:
 showScores(tests);

• To define a function that takes an array parameter,
use empty [] for array argument:
void showScores(int []); // function prototype

void showScores(int tests[])// function header

Arrays as Function Arguments

• When passing an array to a function, it is
common to pass array size so that function
knows how many elements to process:
 showScores(tests, ARRAY_SIZE);

• Array size must also be reflected in prototype,
header:
void showScores(int [], int);

 // function prototype

void showScores(int tests[], int
size)

 // function header

(Program Continues)

Arrays as Function Arguments - example

Program 7-14 (Continued)

Arrays as Function Arguments - example

Modifying Arrays in Functions

• Array names in functions are like reference
variables – changes made to array in a function
are reflected in actual array in calling function

• Need to exercise caution that array is not
inadvertently changed by a function

In-Class Exercise

• The following program skeleton, when completed, will ask

the user to enter 10 integers which are stored in an array.
The function avgArray, which you must write, is to

calculate and return the average of the numbers entered.

#include <iostream>

//Write your function prototype here

int main() {

 const int SIZE = 10;

 int userNums[SIZE];

 cout << "Enter 10 numbers: ";

 for (int count = 0; count < SIZE; count++){

 cout << "#" « (count + 1) << " ";

 cin >> userNums[count];

 }

 cout << "The average of those numbers is ";

 cout << avgArray(userNUms, SIZE) << endl;

 return 0;

}

//Write the function avgArray here.

In-Class Exercise
#include <iostream>

using namespace std;

void Test(int []);

int main()

{

int myArr [4]={3,4,5,6};

 for(int i=0;i<5;i++)

 cout<<myArr[i]<<" ";

 cout<<endl;

 Test(myArr);

 cout<<endl;

 for(int i=0;i<4;i++)

 cout<<myArr[i]<<" ";

 system("pause");

 return 0;}

void Test(int z[])

{

 int temp=z[3];

 z[3]=z[0];

 z[0]=temp;

 for(int

j=0;j<4;j++)

 cout<<z[j]<<"

";

}

In-Class Exercise
#include <iostream>

using namespace std;

void Test(int , int,int[]);

int main()

{ int x = 1;

 int y[3];

 y[0]=1;

 Test(x,y[0],y);

 cout<<"x is: " << x<<

endl;

 cout<<"y[0] is: " <<y[0]

<< endl;

 for(int i=0;i<3;i++)

 cout<<y[i]<<endl;

 system("pause");

 return 0;}

void Test(int num, int num1,

int z[])

{

 num=1001;

 num1=290;

 z[1]=34;

 z[2]=35;

}

In-Class Exercise

• Each of the following definitions and program
segments has errors. Locate as many as you
can and correct the errors.

a) void showValues(int nums)

{

 for(int i = 0; i<8; i++)

 cout<<nums[i];

}

b) void showValues(int nums [4])

{

 for(int i = 0; i<8; i++)

 cout<<nums[i];

}

In-Class Exercise

• Consider the following function prototypes:

 void funcOne(int [], int);

 int findSum(int, int);

And the declarations:

 int list[50];

 int num;

Write a C++ statements that:

a) Call the function funcOne with the actual parameters, list and
50 respectively.

b) Print the value returned by the function funcSum with the actual
parameters, 50, and the fourth element of list respectively.

c) Print the value returned by the function funcSum with the actual
parameters, the thirtieth and tenth elements of list, respectively.

In-Class Exercise

• Write a program that has two overloaded
functions that return the average of an array
with the following headers:

 int average(int array[], int size)

 double average(int array[], int size

Use {1,2,3,4,5,6} and

{6.0,4.4,1.9,2.9,3.4,3.5} to test the functions.

In-Class Exercise

• Write a program that has a function that returns
the index of the smallest element in an array of
integers. If there are more than one such
elements, return the smallest index. Use
{1,2,4,5,10,100,2,-22} to test the
function.

