
Software Processes

SCSJ 2203 Software Engineering

Topics covered

• Software process models
• Process activities
• Coping with change
• The Rational Unified Process

– An example of a modern software process.

Chapter 2 Software Processes 2

Recap:: What is Software Engineering?
• Quality Focus: The bedrock that

supports software engineering is quality
focus where it ensures continuous
process improvement culture.

• Process :Foundation for software
engineering which enables rational and
timely development of computer
software

• Methods: provide technical how to’s for
building software. Involve different tasks
including requirements analysis, design,
program construction, testing and
support. Methods also include modeling
activities

• Tools: provide automated or semi-
automated support for the process and
methods

2016 Software Engineering 3

Source:
Agarwal, U. (2012). Software Engineering, Kataria and Sons.
http://sesolution.blogspot.my/p/software-engineering-layered-technology.html

Software Engineering as Layered
Technology

** The layered technology will be the focus in this lecture and
throughout the semesters

Focus

4
B.Thomas Golisano College of Computing and Information Sciences

GCCIS

©2009 J. L. Díaz-Herrera

The Role of Process

•Even the finest people can’t perform at their best
when the process is not understood or operating at its
best.

4

Presenter
Presentation Notes
Everyone realizes the importance of having a motivated, quality work force and the latest technology, but even the finest people can’t perform at their best when the process is �not understood �or operating at �its best.

The software process

• A structured set of activities required to develop a
software system.

• Many different software processes but all involve:
– Specification – defining what the system should do;
– Design and implementation – defining the organization of the system

and implementing the system;
– Validation – checking that it does what the customer wants;
– Evolution – changing the system in response to changing customer

needs.

• A software process model is an abstract representation of a
process. It presents a description of a process from some
particular perspective.

5 Chapter 2 Software Processes

Software process models

• The waterfall model
– Plan-driven model. Separate and distinct phases of

specification and development.

• Incremental development
– Specification, development and validation are interleaved.

May be plan-driven or agile.

• Reuse-oriented software engineering
– The system is assembled from existing components. May

be plan-driven or agile.

• In practice, most large systems are developed using a
process that incorporates elements from all of these
models.

8 Chapter 2 Software Processes

The waterfall model

Chapter 2 Software Processes 9

Waterfall model phases

• There are separate identified phases in the waterfall
model:
– Requirements analysis and definition
– System and software design
– Implementation and unit testing
– Integration and system testing
– Operation and maintenance

• The main drawback of the waterfall model is the
difficulty of accommodating change after the process
is underway. In principle, a phase has to be complete
before moving onto the next phase.

10 Chapter 2 Software Processes

Waterfall model problems

• Inflexible partitioning of the project into distinct
stages makes it difficult to respond to changing
customer requirements.
– Therefore, this model is only appropriate when the

requirements are well-understood and changes will be
fairly limited during the design process.

– Few business systems have stable requirements.

• The waterfall model is mostly used for large systems
engineering projects where a system is developed at
several sites.
– In those circumstances, the plan-driven nature of the

waterfall model helps coordinate the work.

11 Chapter 2 Software Processes

Incremental development

12 Chapter 2 Software Processes

Incremental development benefits
• The cost of accommodating changing customer

requirements is reduced.
– The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall
model.

• It is easier to get customer feedback on the
development work that has been done.
– Customers can comment on demonstrations of the

software and see how much has been implemented.

• More rapid delivery and deployment of useful
software to the customer is possible.
– Customers are able to use and gain value from the

software earlier than is possible with a waterfall process.
13 Chapter 2 Software Processes

Incremental development problems

• The process is not visible.
– Managers need regular deliverables to measure progress.

If systems are developed quickly, it is not cost-effective to
produce documents that reflect every version of the
system.

• System structure tends to degrade as new
increments are added.
– Unless time and money is spent on refactoring to improve

the software, regular change tends to corrupt its structure.
Incorporating further software changes becomes
increasingly difficult and costly.

14 Chapter 2 Software Processes

Reuse-oriented software engineering

• Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.

• Process stages
– Component analysis;
– Requirements modification;
– System design with reuse;
– Development and integration.

• Reuse is now the standard approach for building
many types of business system
– Reuse covered in more depth in Chapter 16.

15 Chapter 2 Software Processes

Reuse-oriented software engineering

16 Chapter 2 Software Processes

Types of software component

• Web services that are developed according to service
standards and which are available for remote
invocation.

• Collections of objects that are developed as a
package to be integrated with a component
framework such as .NET or J2EE.

• Stand-alone software systems (COTS) that are
configured for use in a particular environment.

17 Chapter 2 Software Processes

Process activities

• Real software processes are inter-leaved sequences
of technical, collaborative and managerial activities
with the overall goal of specifying, designing,
implementing and testing a software system.

• The four basic process activities of specification,
development, validation and evolution are organized
differently in different development processes. In the
waterfall model, they are organized in sequence,
whereas in incremental development they are inter-
leaved.

18 Chapter 2 Software Processes

The requirements engineering process

20 Chapter 2 Software Processes

A general model of the design process

22 Chapter 2 Software Processes

Stages of testing

25 Chapter 2 Software Processes

System evolution

29 Chapter 2 Software Processes

PART II

Chapter 2 Software Processes 32

Coping with change

• Change is inevitable in all large software projects.
– Business changes lead to new and changed system

requirements
– New technologies open up new possibilities for improving

implementations
– Changing platforms require application changes

• Change leads to rework so the costs of change
include both rework (e.g. re-analysing requirements)
as well as the costs of implementing new
functionality

33 Chapter 2 Software Processes

Reducing the costs of rework
• Change avoidance, where the software process

includes activities that can anticipate possible
changes before significant rework is required.
– For example, a prototype system may be developed to

show some key features of the system to customers.

• Change tolerance, where the process is designed
so that changes can be accommodated at relatively
low cost.
– This normally involves some form of incremental

development. Proposed changes may be implemented in
increments that have not yet been developed. If this is
impossible, then only a single increment (a small part of
the system) may have be altered to incorporate the
change.

34 Chapter 2 Software Processes

Software prototyping

• A prototype is an initial version of a system used to
demonstrate concepts and try out design options.

• A prototype can be used in:
– The requirements engineering process to help with

requirements elicitation and validation;
– In design processes to explore options and develop a UI

design;
– In the testing process to run back-to-back tests.

35 Chapter 2 Software Processes

Benefits of prototyping

• Improved system usability.
• A closer match to users’ real needs.
• Improved design quality.
• Improved maintainability.
• Reduced development effort.

36 Chapter 2 Software Processes

Throw-away prototypes

• Prototypes should be discarded after development
as they are not a good basis for a production system:
– It may be impossible to tune the system to meet non-

functional requirements;
– Prototypes are normally undocumented;
– The prototype structure is usually degraded through rapid

change;
– The prototype probably will not meet normal

organisational quality standards.

39 Chapter 2 Software Processes

Incremental delivery

• Rather than deliver the system as a single delivery,
the development and delivery is broken down into
increments with each increment delivering part of
the required functionality.

• User requirements are prioritised and the highest
priority requirements are included in early
increments.

• Once the development of an increment is started,
the requirements are frozen though requirements for
later increments can continue to evolve.

40 Chapter 2 Software Processes

Incremental delivery advantages

• Customer value can be delivered with each
increment so system functionality is available earlier.

• Early increments act as a prototype to help elicit
requirements for later increments.

• Lower risk of overall project failure.
• The highest priority system services tend to receive

the most testing.

43 Chapter 2 Software Processes

Boehm’s spiral model

• Process is represented as a spiral rather than as a
sequence of activities with backtracking.

• Each loop in the spiral represents a phase in the
process.

• No fixed phases such as specification or design -
loops in the spiral are chosen depending on what is
required.

• Risks are explicitly assessed and resolved throughout
the process.

45 Chapter 2 Software Processes

Boehm’s spiral model of the software process

46 Chapter 2 Software Processes

Spiral model sectors

• Objective setting
– Specific objectives for the phase are identified.

• Risk assessment and reduction
– Risks are assessed and activities put in place to reduce the

key risks.

• Development and validation
– A development model for the system is chosen which can

be any of the generic models.

• Planning
– The project is reviewed and the next phase of the spiral is

planned.

47 Chapter 2 Software Processes

Spiral model usage

• Spiral model has been very influential in helping
people think about iteration in software processes
and introducing the risk-driven approach to
development.

• In practice, however, the model is rarely used as
published for practical software development.

Chapter 2 Software Processes 48

The Rational Unified Process

• A modern generic process derived from the work on
the UML and associated process.

• Brings together aspects of the 3 generic process
models discussed previously.

• Normally described from 3 perspectives
– A dynamic perspective that shows phases over time;
– A static perspective that shows process activities;
– A practive perspective that suggests good practice.

49 Chapter 2 Software Processes

Phases in the Rational Unified Process

50 Chapter 2 Software Processes

Iterative and Incremental Process in RUP

RUP phases

• Inception
– Establish the business case for the system.

• Elaboration
– Develop an understanding of the problem domain and the

system architecture.

• Construction
– System design, programming and testing.

• Transition
– Deploy the system in its operating environment.

52 Chapter 2 Software Processes

RUP iteration

• In-phase iteration
– Each phase is iterative with results developed

incrementally.

• Cross-phase iteration
– As shown by the loop in the RUP model, the whole set of

phases may be enacted incrementally.

Chapter 2 Software Processes 53

Key points

• Processes should include activities to cope with
change. This may involve a prototyping phase that
helps avoid poor decisions on requirements and
design.

• Processes may be structured for iterative
development and delivery so that changes may be
made without disrupting the system as a whole.

• The Rational Unified Process is a modern generic
process model that is organized into phases
(inception, elaboration, construction and transition)
but separates activities (requirements, analysis and
design, etc.) from these phases.
 58 Chapter 2 Software Processes

End…

Chapter 2 Software Processes 59

	Software Processes�
	Topics covered
	Recap:: What is Software Engineering?
	The Role of Process
	The software process
	Software process models
	The waterfall model�
	Waterfall model phases
	Waterfall model problems
	Incremental development �
	Incremental development benefits
	Incremental development problems
	Reuse-oriented software engineering
	Reuse-oriented software engineering
	Types of software component
	Process activities
	The requirements engineering process�
	A general model of the design process �
	Stages of testing�
	System evolution
	Part II
	Coping with change
	Reducing the costs of rework
	Software prototyping
	Benefits of prototyping
	Throw-away prototypes
	Incremental delivery
	Incremental delivery advantages
	Boehm’s spiral model
	Boehm’s spiral model of the software process
	Spiral model sectors
	Spiral model usage
	The Rational Unified Process
	Phases in the Rational Unified Process
	Slide Number 51
	RUP phases
	RUP iteration
	Key points
	End…

