

Methods of design:

- 1. Simple Construction The joints should be assumed not to develop moments adversely affecting either the members or the structure as a whole.
- 2. Rigid Construction The joints should also be capable of resisting the moments and forces resulting from the analysis.
- 3. Semi-Continuous Construction The joints have some degree of strength and stiffness, but insufficient to develop full continuity.

- connections between members are assumed not to develop moments
- joint pin connected
- necessary to maintain stability against sway
- elastic analysis

- some degree of connection stiffness is assumed
- joint semi-rigidly inected
- Limitation (the design specific tions

- members capable to develop full sangth/stiffness
- joint ris "y connected
- elastic analysis plastic analysis

OPENCOURSEWARE

Horizontal loads are carried by the bracing or by horizontal support

Horizontal forces are carried by the frame

Types of frame analysis and design

Beam subjected to shear and moment

Kena redraw

the second

(a). Flexible (pinned) connection

Bending moment diagram

No end moment. M = 0

(b). Rigid connection

Fixed end moment.

M=wL2

(Assuming that the stiffness of the columns is infinity)

(c). Semi-rigid connection

Less than fixed end moment. M<wL²

Thank You