

Design factors which will influence the lateral stability can be summarized as:

- The slenderness of the member between adequate lateral restraints;
- the shape of cross-section;
- the variation of moment along the beam;
- the form of end restraint provided,
- the manner in which the load is applied, i.e. to tension or compression flange.

Elastic buckling of beams

Critical Buckling Moment for uniform bending moment diagram is

$$M_{cr} = \frac{\pi^2 E I_z}{L^2} \sqrt{\left[\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}\right]}$$

Includes:

- Lateral flexural stiffness El₇
- Torsional and Warping stiffnesses GI_t and Ei_w

Their relative importance depends on the type of crosssection used.

Effect of Slenderness

Non-dimensional plot permits results from different test series to be compared

- u Stocky beams ($\bar{\lambda}_{LT}$ < 0,4) unaffected by lateral torsional buckling
- u Slender beams ($\bar{\lambda}_{LT}>1,2$)
 resistance close to
 theoretical elastic critical
 moment M_{cr}
- Intermediate slenderness adversely affected by inelasticity and geometric imperfections
- u EC3 uses a reduction factor P_{LT} on plastic resistance moment to cover the whole slenderness range

Design buckling resistance

The design buckling resistance moment $M_{b.Rd}$ of a laterally unrestrained beam is calculated as

$$M_{b.Rd} = \chi_{LT} \beta_{w} W_{pl.y} f_{y} / \gamma_{M1}$$

which is effectively the plastic resistance of the section multiplied by the reduction factor χ_{LT}

Reduction factor for LTB

Determining λ_{IT}

The non-dimensional slenderness

$$\overline{\lambda}_{LT} = \sqrt{M_{pl.Rd} / M_{cr}}$$

calculated by calculating the plastic resistance moment $M_{pl,Rd}$ and elastic critical moment M_{cr} from first principles

or using
$$\left| \overline{\lambda}_{LT} = \left[\frac{\lambda_{LT}}{\lambda_I} \right] \beta_w^{0.5} \right|$$
 where $\left| \lambda_I = \pi \left[\frac{E}{fy} \right]^{0.5} \right|$

$$\lambda_I = \pi \left[\frac{E}{fy} \right]^{0.5}$$

For any plain I or H section with equal flanges, under uniform moment with simple end restraints

$$\lambda_{LT} = \frac{L/i_z}{\left[1 + \frac{1}{20} \left[\frac{L/i_z}{h/t_f}\right]^2\right]^{0.25}}$$

Effect of load pattern on LTB

The elastic critical moment for a beam under uniform bending moment is

$$M_{cr} = \frac{\pi}{L} \sqrt{EI_z GI_t} \sqrt{1 + \frac{\pi^2 EI_w}{L^2 GI_t}}$$

The elastic critical moment (mid-span moment) for a beam with a central point load is

$$M_{cr} = \frac{4,24}{L} \sqrt{EI_z GI_t} \sqrt{1 + \frac{\pi^2 EI_w}{L^2 GI_t}}$$

... which is increased from the basic (uniform moment) case by a factor $C_1=4.24/$ =1.365

C₁ factor

Loads	Bending moment	M_{max}	C ₁
(MM)		M	1.00
C M		M	1.879
M -M		M	2.752
F		FL/4	1.365
F		FL/8	1.132
ŢF ŢF		FL/4	1.046

EC3 expresses the elastic critical moment M_{cr} for a particular loading case as

$$M_{cr} = C_1 \frac{\pi}{L} \sqrt{EI_z GI_t} \sqrt{1 + \frac{\pi^2 EI_w}{L^2 GI_t}}$$

C₁ appears:

- as a simple multiplier in expressions for Mcr
- as $1/C_1^{0.5}$ in expressions for 2LT.

End support conditions

 Basic case assumes end conditions which prevent lateral movement and twist but permit rotation on plan.

End support conditions

- End conditions which prevent rotation on plan enhance the elastic buckling resistance
- Can include the effect of different support conditions by redefining the unrestrained length as an effective length
- Two effective length factors, k and k_w.
- Reflect the two possible types of end fixity, lateral bending restraint and warping restraint.
- Note: it is recommended that k_w be taken as 1.0 unless special provision for warping fixing is made.
- EC3 recommends k values of 0,5 for fully fixed ends, 0,7 for one free and one fixed end and of course 1,0 for two free ends.

Choice of k is at the designer's discretion