BS EN 1993-1-8:2005

Eurocode 3: Design of Steel Strutures

Part 1-8: Design of Joints

- Introduction
- 2. Basis of Design
- Bolted Connections
- 4. Welded Connections
- 5. Analysis, Classification and Modelling
- 6. Structural Joints connecting H or I sections
- 7. Hollow section joints

- Connections, treated as structural elements
- Rules provided to determine the design parameters
 e.g. stiffness, strength and rotation capacity
- Connections modeled by using <u>component-based</u> <u>approach</u>

OPENCOURSEWARE

2. Basis of Design

BOLTED CONNECTIONS

- Bolt classes 4.6, 4.8, 5.6, 5.8, 6.8, 8.8 and 10.9
- Bolted connection loaded in shear should be designed as:
 - Category A: Bearing type
 - Category B: Slip-resistant at serviceability limit state
 - Category C: Slip-resistant at ultimate limit state
- Bolted connection loaded in tension:
 - Category D: non-preloaded
 - Category E: preloaded

Bolt Connection

Bolt Connection

Positioning of holes

Table 3.3: Minimum and maximum spacing, end and edge distances

Distances and	Minimum	Maximum ^{1) 2) 3)}		
spacings, see Figure 3.1		Structures made from steels conforming to EN 10025 except steels conforming to EN 10025-5		Structures made from steels conforming to EN 10025-5
		Steel exposed to the weather or other corrosive influences	Steel not exposed to the weather or other corrosive influences	Steel used unprotected
End distance e ₁	$1,2d_{0}$	4t + 40 mm		The larger of 8t or 125 mm
Edge distance e_2	$1,2d_{0}$	4t + 40 mm		The larger of 8t or 125 mm
Distance e ₃ in slotted holes	1,5d ₀ ⁴⁾			
Distance e ₄ in slotted holes	1,5d ₀ ⁴⁾			
Spacing p ₁	2,2d0	The smaller of 14t or 200 mm	The smaller of 14t or 200 mm	The smaller of $14t_{\min}$ or 175 mm
Spacing $p_{1,0}$		The smaller of 14t or 200 mm		
Spacing $p_{1,i}$		The smaller of 28t or 400 mm		
Spacing p_2 5)	2,4d0	The smaller of 14t or 200 mm	The smaller of 14t or 200 mm	The smaller of 14t _{min} or 175 mm

Table 3.4: Design resistance for individual fasteners subjected to shear and/or tension

Failure mode	Bolts	Rivets	
Shear resistance per shear plane	$F_{v,Rd} = \frac{\alpha_v f_{ub} A}{\gamma_{M2}}$ - where the shear plane passes through the threaded portion of the bolt (A is the tensile stress area of the bolt A_v): - for classes 4.6, 5.6 and 8.8: $\alpha_v = 0.6$ - for classes 4.8, 5.8, 6.8 and 10.9: $\alpha_v = 0.5$ - where the shear plane passes through the unthreaded portion of the bolt (A is the gross cross section of the bolt): $\alpha_v = 0.6$	$F_{v,Rd} = \frac{0.6 f_{wr} A_0}{\gamma_{M2}}$	
Bearing resistance 13, 23, 33	$F_{b,Rd} = \frac{k_1 a_b f_u dt}{\gamma_{M2}}$ where a_b is the smallest of a_d ; $\frac{f_{ub}}{f_u}$ or 1,0; in the direction of load transfer: - for end bolts: $a_d = \frac{e_1}{3d_0}$; for inner bolts: $a_d = \frac{p_1}{3d_0} - \frac{1}{4}$ perpendicular to the direction of load transfer: - for edge bolts: k_1 is the smallest of $2.8 \frac{e_2}{d_0} - 1.7$ or 2.5 - for inner bolts: k_1 is the smallest of $1.4 \frac{p_2}{d_0} - 1.7$ or 2.5		
Tension resistance 2)	$F_{\text{t,Rd}} = \frac{k_2 \ f_{ub} \ A_s}{\gamma_{M2}}$ where $k_2 = 0,63$ for countersunk bolt, otherwise $k_2 = 0,9$.	$F_{t,Rd} = \frac{0.6 f_{wr} A_0}{\gamma_{M2}}$	
Punching shear resistance Combined shear and tension	$B_{p,Rd} = 0.6 \pi d_{m} t_{p} f_{u} / \gamma_{M2}$ $\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1.4 F_{t,Rd}} \le 1.0$	No check needed	

DESIGN RESISTANCE

Design resistance

Design resistance : Shear resistance per shear plane

Design resistance : Bearing resistance

Other conditions of resistance in bolt connection

Slip resistant connections

Table 3.6: Values of k₅

Description	$k_{\rm s}$
Bolts in normal holes.	1,0
Bolts in either oversized holes or short slotted holes with the axis of the slot perpendicular to the direction of load transfer.	0,85
Bolts in long slotted holes with the axis of the slot perpendicular to the direction of load transfer.	0,7
Bolts in short slotted holes with the axis of the slot parallel to the direction of load transfer.	0,76
Bolts in long slotted holes with the axis of the slot parallel to the direction of load transfer.	0,63

Table 3.7: Slip factor, µ, for pre-loaded bolts

Class of friction surfaces (see 1.2.7 Reference Standard: Group 7)	Slip factor μ	
A	0,5	
В	0,4	
С	0,3	
D	0,2	

NOTE 1: The requirements for testing and inspection are given in 1.2.7 Reference Standards: Group 7.

NOTE 2: The classification of any other surface treatment should be based on test specimens representative of the surfaces used in the structure using the procedure set out in 1.2.7 Reference Standards: Group 7.

NOTE 3: The definitions of the class of friction surface are given in 1.2.7 Reference Standards: Group 7.

NOTE 4: With painted surface treatments a loss of pre-load may occur over time.

Deduction for fastener holes

Table 3.8: Reduction factors β_2 and β_3

Pitch	p_1	≤ 2,5 d _o	≥ 5,0 d _o
2 bolts	β_2	0,4	0,7
3 bolts or more	β_3	0,5	0,7

Figure 3.9: Angles connected by one leg

- a) 1 bolt
- b) 2 bolts
- c) 3 bolts