

		Swa	ay Stabil	ity		
	Multisto	rey S	Steel Frame			
	Non-sway		<u>Sway</u>			
Def	Depends on frame geometry and load Cases under consideration					
finitor	Horizontal loads are carried by the bracing or by horizontal supp	Horizontal loads are carried by the frame				
-	Change of geometry (2nd-order effect) is negligible	Change of geometry (2nd-order effect) significant				

		Nur	nber of	column	s (m)		Global initial sway imperfections ø,
Height of the structure (h)	1	2	3	4	5	6	$\phi = \phi_o \alpha_h \alpha_m$
1	0.00500	0.00433	0.00408	0.00395	0.00387	0.00382	where $\phi_{c} = 1/200$
2	0.00500	0.00433	0.00408	0.00395	0.00387	0.00382	
3	0.00500	0.00433	0.00408	0.00395	0.00387	0.00382	$\alpha_{h} = \left(\frac{2}{\sqrt{2}}\right)$ but $\frac{2}{\sqrt{2}} \le \alpha_{h} \le 1$
4	0.00500	0.00433	0.00408	0.00395	0.00387	0.00382	(\sqrt{h}) 3 "
5	0.00447	0.00387	0.00365	0.00353	0.00346	0.00341	$\left[2 \left(1 - \frac{1}{2} \right) \right]$
6	0.00408	0.00354	0.00333	0.00323	0.00316	0.00312	$\alpha_m = \sqrt{0.5 \left(1 + \frac{1}{m}\right)}$
7	0.00378	0.00327	0.00309	0.00299	0.00293	0.00289	
8	0.00354	0.00306	0.00289	0.00280	0.00274	0.00270	
9	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
10	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
12	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	F2
13	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
14	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
15	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	16 16
16	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255]‴Ψ ^{™Ψ} ←⊥ ←⊥
17	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
18	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	Equivalent forces
19	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
20	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255]
22	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
24	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	
25	0.00333	0.00289	0.00272	0.00264	0.00258	0.00255	ATIVE MINDS

2/18/2010

		Steel	Frame			
		Non-sway	Śway			
	Depends on frame geometry and load cases under consideration					
Defi	Determined by influenced of P∆ effect					
niton	1	Horizontal loads are carried by the bracing or by horizontal support	Horizontal loads are carried by the frame			
		Change of geometry (2nd-order effect) is negligible	Change of geometry (2nd-order effect) significant			
Me	<u>Elastic</u> analysi	First-order elastic analysis (stifness analysis, moment distribution)	First-order elastic analysis with indirect allowance for second order effect (P- Δ and P- δ effect)			
thod	<u>. S</u>	Second-order elastic analysis				
of analysi	Plastic a	First-order rigid-plastic analysis	First-order rigid-plastic analysis with indirect allowance for second order effect (P- Δ and P- δ effect)			
N.	inaly	Second-order elastic plastic hinged analysis				
	Sis	Second-order	elasto-plastic analysis			

5		STIT TEKNOLOGI MALAYSIA	Steel	Frame		
-		utm.mu Non-sw	ay	Sw	vay	
	Depends on frame geometry and load cases under consideration					
Defi	Determined by influenced of P∆ effect					
niton	Horizontal loads are carried by the bracing or by horizontal support		Horizontal loads are carried by the frame			
		Change of ge (2nd-order effect)	eometry is negligible	Change of geometry (2nd-order effect) significant		
Me	First-ord (stifness analys		elastic analysis moment distribution)	First-order elastic a allowance for se (P-∆ and	nalysis with indirect cond order effect P-&effect)	
thod	2 is		Second-ord			
of analysi	Plastic analy	First-order rigi	id-plastic analysis	First-order rigid-plasti allowance for se (P- ∆ and	c analysis with indirect cond order effect P-&effect)	
<u>v</u> .			Second-order elas	stic plastic hinged analysis	5	
	sis		Second-order	elasto-plastic analysis		
		INSPIRING	CREATIVE AND I			

	Desigr	n practice and	its implications			
www.utm.my						
Role	Case A	Case B1	Case B2			
M em ber design	Engineer	Engineer	Fabricator			
Joint design	Fabricator	Engineer	Fabricator			
Fabrication	Fabricator	Fabricator	Fabricator			
Roles of the parties in the design and fabrication processes						
 Case A sometimes leads to costly joint reinforcement if rigid joints have been adopted Case B1 requires the designer to be aware of the implications of joint accumption on costs 						
 Case B2 is ideal for a consistent design approach which aims at global economy 						

