DECISION MODELING USING EXCEL

UPDATED FOR MICROSOFT OFFICE XP

AUGUST 2003

Michael R. Middleton

This page is intentionally mostly blank.

Copyright © 2003 by Michael R. Middleton

Detailed Contents

Chapter 1 Introduction to Decision Modeling	9
1.1 Models to Aid Decision Making	
Components of a Decision Model	
1.2 Basic What-If Model	
Influence Diagram Representation	
Decision Tree Representation	
Consequence Table Representation	
Chapter 2 Sensitivity Analysis Using SensIt	
2.1 How to Install SensIt	
2.2 How to Uninstall or Delete SensIt	
2.3 SensIt Overview	16
2.4 Example Problem	16
2.5 Plot	17
Plot Input Variable	17
Plot Output Variable	17
Plot Input Values	17
2.6 Spider	19
Spider Input Variables	19
Spider Output Variable	19
Spider Input Changes	19
2.7 Tornado	22
Tornado Input Variables	22
Tornado Output Variable	
Tornado Input Values	23
2.8 Tornado Tips	25
2.9 Eagle Airlines Problem	
2 10 Seven-Variable Non-SensIt Spider Chart	27

4 Detailed Contents

Chapter 3 Monte Carlo Simulation Using RiskSim	29
3.1 Introduction	29
3.2 Using RiskSim Functions	31
3.3 Using RiskSim Functions	
3.4 Excel Error Message	
3.5 Monte Carlo Simulation	
3.6 Random Number Seed	
3.7 One-Output Example	
3.8 RiskSim Output for One-Output Example	
3.9 Random Number Generator Functions	
RandBinomial	
RandCumulative	38
RandDiscrete	40
RandExponential	
RandInteger	
RandNormal	
RandPoisson	
RandTriangular	
RandUniform	
3.10 RiskSim Technical Details	
3.11 Modeling Uncertain Relationships	
Base Model, Four Inputs	
Three Inputs	
Two Inputs	
Four Inputs with Three Uncertainties	
Intermediate Details	
Chapter 4 Decision Trees Using TreePlan	57
4.1 TreePlan Installation	
Occasional Use	
Selective Use	
Steady Use	
4.2 Building a Decision Tree in TreePlan	
4.3 Anatomy of a TreePlan Decision Tree	
4.4 Step-by-Step TreePlan Tutorial	
DriveTek Problem	
Nodes and Branches	
Terminal Values	
Building the Tree Diagram	
Interpreting the Results	
Formatting the Tree Diagram	
Displaying Model Inputs	76
Printing the Tree Diagram	
Alternative Model	

4.5 Decision Tree Solution	• • • • • • • • • • • • • • • • • • • •
Strategy	79
Payoff Distribution	80
DriveTek Strategies	80
Strategy Choice	84
Certainty Equivalent	
Rollback Method	
Optimal Strategy	
4.6 Newox Decision Tree Problem	
4.7 Brandon Decision Tree Problem	
Decision Tree Strategies	
Chapter 5 Multiattribute Utility	99
5.1 Applications of Multi-Attribute Utility	
5.2 MultiAttribute Utility Swing Weights	
Attribute Scores	
Swing Weights	
Overall Scores	
5.3 Sensitivity Analysis Methods	
Dominance	
Monetary Equivalents Assessment	
Additive Utility Function	
Weight Ratio Assessment	
Weight Ratio Sensitivity Analysis	
Swing Weight Assessment	
Swing Weight Sensitivity Analysis	
Direct Weight Assessment and Sensitivity Analysis	115
Summary	
Sensitivity Analysis Examples References	
Screenshots from Excel to Word	
Chapter 6 Product Mix Optimization	110
6.1 Linear Programming Concepts	110
Formulation	
Graphical Solution	
Sensitivity Analysis	
6.2 Basic Product Mix Problem	121
6.3 Outdoors Problem	
Spreadsheet Model	
Solver Reports	127
Chapter 7 Uncertain Quantities	
7.1 Discrete Uncertain Quantities	
7.2 Continuous Uncertain Quantities	129

Case A: Uniform Density	129
Case B: Ramp Density	
Case C: Triangular Density	
Chapter 8 Simulation Without Add-Ins	137
8.1 Simulation Using Excel Functions	
Chapter 9 Multiperiod What-If Modeling	139
9.1 Apartment Building Purchase Problem	
Apartment Building Analysis Notes	
9.2 Product Launch Financial Model	143
9.3 Machine Simulation Model	147
Chapter 10 Modeling Waiting Lines	155
10.1 Queue Simulation	
Chapter 11 Introduction to Data Analysis	161
11.1 Levels of Measurement	
Categorical Measure	
Numerical Measure	
11.2 Describing Categorical Data	
11.3 Describing Numerical Data	
Frequency Distribution and Histogram	
Numerical Summary Measures	
Distribution Shapes	
Chapter 12 Regression Models for Cross-Sectional Data	165
12.1 Cross-Sectional Regression Checklist	
Plot Y versus each X	
Examine the correlation matrix	
Calculate the regression model with diagnostics	
Use the model	
Chapter 13 Time Series Data and Forecasts	
13.1 Time Series Patterns	167
Chapter 14 Regression Models for Time Series Data	171
14.1 Time Series Regression Checklist	
Plot Y versus time	
Plot Y versus each X	
Examine the correlation matrix	
Calculate the regression model with diagnostics	
Use the model	172

14.2 Autocorrelation of Residuals	173
Chapter 15 Sensitivity Analysis for Decision Trees	175
15.1 One-Variable Sensitivity Analysis	
15.2 Two-Variable Sensitivity Analysis	
Setup for Data Table	
Obtaining Results Using Data Table Command	178
Embellishments	179
15.3 Multiple-Outcome Sensitivity Analysis	180
15.4 Robin Pinelli's Sensitivity analysis	182
Chapter 16 Value of Information in Decision Trees	185
16.1 Value of Information	185
16.2 Expected Value of Perfect Information	185
16.3 DriveTek Post-Contract-Award Problem	188
16.4 Sensitivity Analysis vs EVPI	192
Chapter 17 Value of Imperfect Information	193
17.1 Technometrics Problem	193
Prior Problem	
Imperfect Information	194
Revision of Probability	196
Chapter 18 Modeling Attitude Toward Risk	197
18.1 Risk Utility Function	197
18.2 Exponential Risk Utility	200
18.3 Approximate Risk Tolerance	203
18.4 Exact Risk Tolerance Using Excel	203
18.5 Exact Risk Tolerance Using RiskTol.xla	
18.6 Exponential Utility and TreePlan	208
18.7 Exponential Utility and RiskSim	
18.8 Risk Sensitivity for Machine Problem	
18.9 Risk Utility Summary	
Concepts	
Fundamental Property of Utility Function	
Using a Utility Function To Find the CE of a Lottery	
Exponential Utility Function	212
TreePlan's Simple Form of Exponential Utility	
Approximate Assessment of RiskTolerance	
Exact Assessment of RiskTolerance	
Using Exponential Utility for TreePlan Rollback Values	
Using Exponential Utility for a Payoff Distribution	214

8 Detailed Contents

215
215
221
221
223
223
224
226
229
229
231
233
235

Introduction to **Decision Modeling**

1.1 MODELS TO AID DECISION MAKING

Decision: irrevocable allocation of resources

Model: abstract representation of reality

What makes decision difficult?

Complexity

many factors to consider; relationships among factors

Uncertainty

Conflicting Objectives

How does modeling help?

Complexity Model; consider each factor separately;

consider relationships explicitly;

avoid being overwhelmed

Uncertainty Sensitivity Analysis and Probability

Conflicting Objectives consider each objective;

consider tradeoffs explicitly

Goals of modeling: recommended solution, insight, clarity of action

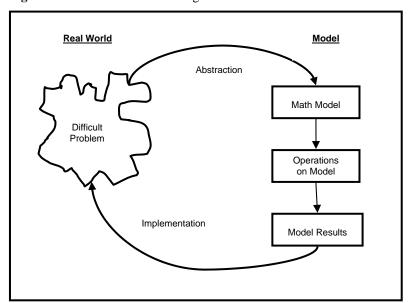


Figure 1.1 Overall Model-Building Flowchart

Components of a Decision Model

Controllable input variables

"What you can do," decision variables, alternatives

Uncontrollable input variables

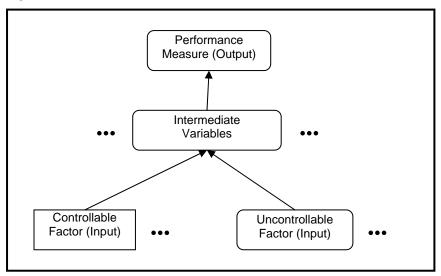
"What you know and don't know," uncertainties, constraints

Relationships

how inputs are related to output, usually with intermediate variables, structure Intermediate variables

useful for linking inputs to output

Output variable


"What you want," performance measure, overall satisfaction

Influence chart

Rectangle for controllable inputs

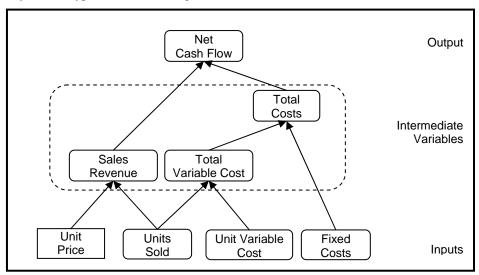
Rounded rectangle or oval for other variables

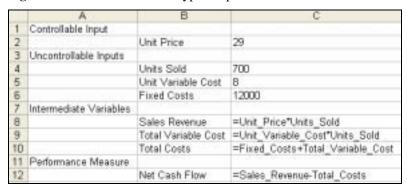
Figure 1.2 Generic Influence Chart

1.2 BASIC WHAT-IF MODEL

Influence Diagram Representation

Figure 1.3 Typical Influence Diagram




Figure 1.4 Typical Spreadsheet Model

	A B	C
1	Controllable Input	
2	Unit Price	\$29
3	Uncontrollable Inputs	
4	Units Sold	700
2 3 4 5 6 7	Unit Variable Cost	\$8
6	Fixed Costs	\$12,000
7	Intermediate Variables	
8	Sales Revenue	\$20,300
9	Total Variable Cost	\$5,600
10	Total Costs	\$17,600
11	Performance Measure	
12	Net Cash Flow	\$2,700

Figure 1.5 Formulas for Typical Spreadsheet Model

	A	В	C
1	Controllable Input	and the same of th	No.
2		Unit Price	29
3	Uncontrollable Inputs		
4		Units Sold	700
5		Unit Variable Cost	8
6		Fixed Costs	12000
7	Intermediate Variables		
8		Sales Revenue	=02*C4
9		Total Variable Cost	=05*C4
10		Total Costs	=06+09
11	Performance Measure		-
12		Net Cash Flow	=C8-C10

Figure 1.6 Defined Names for Typical Spreadsheet Model

Decision Tree Representation

Figure 1.7 Decision Fan and Event Fan

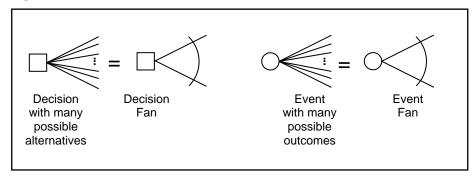
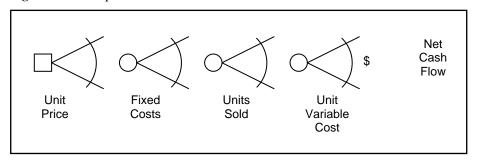



Figure 1.8 Conceptual Decision Tree

Consequence Table Representation

Figure 1.9 Professor's Summer Decision

I igure 115 i i oresse		onflicting Object	tives	
Alternatives	Cash Flow	Hassle-Free	Happy Deans	Professional Fame
Develop Software	\$2700	Yes	Maybe	Maybe
Teach MBAs	\$4300	No	Yes	No
Vacation	\$0	Yes	No	No

Sensitivity Analysis Using SensIt

SensIt is a sensitivity analysis add-in for Microsoft Excel 97 (and later versions of Excel) for Windows and Macintosh. It was written by Mike Middleton of the University of San Francisco and Jim Smith of Duke University.

2.1 HOW TO INSTALL SENSIT

Here are three ways to install SensIt:

- (1) Start Excel, and use Excel's File | Open command to open the SensIt.xla file from floppy or hard drive.
- (2) Copy the SensIt.xla file to the Excel | Library subdirectory of your hard drive. Start Excel, and use Excel's Tools | Add-Ins command to load and unload SensIt as needed.
- (3) Copy the SensIt.xla file to the Excel | Startup subdirectory of your hard drive, in which case the file will be opened every time you start Excel.

All of SensIt's functionality, including its built-in help, is a part of the SensIt.xla file. There is no separate setup file or help file.

2.2 HOW TO UNINSTALL OR DELETE SENSIT

- (A) First, use your file manager to locate SensIt.xla, and delete the file from your hard drive.
- (B1) If SensIt is listed under Excel's add-in manager and the box is checked, when you start Excel you'll see "Cannot find ..." Click OK. Choose Tools | Add-Ins, uncheck the box for SensIt; you'll see "Cannot find ... Delete from list?" Click Yes.
- (B2) If SensIt is listed under Excel's add-in manager and the box is not checked, start Excel and choose Tools | Add-Ins. Check the box for SensIt; you'll see "Cannot find ... Delete from list?" Click Yes.

2.3 SENSIT OVERVIEW

To run SensIt, start Excel and open the SensIt.xla file. Alternatively, install SensIt using one of the methods described above. SensIt adds a Sensitivity Analysis command to the Tools menu. The Sensitivity Analysis command has four subcommands: Plot, Spider, Tornado, and Help.

Before using the SensIt options, you must have a spreadsheet model with one or more inputs and an output. All three SensIt options make it easy for you to see how sensitive the output is to changes in the inputs.

Use SensIt's Plot option to see how your model's output depends on changes in a single input variable.

Use SensIt's Spider option to see how your model's output depends on the same percentage changes for each of the model's input variables.

Use SensIt's Tornado option to see how your model's output depends on ranges you specify for each of the model's input variables.

2.4 EXAMPLE PROBLEM

Figure 2.1 Model Display

8.	A	В	С
1	Spreadsheet Model For Eagle	Airlines	
2			
3	Input Variables	Input Cells	
4	Charter Price/Hour	\$325	
5	Ticket Price/Hour	\$100	
6	Hours Flown	800	
7	Capacity of Scheduled Flights	50%	
8	Proportion of Chartered Flights	0.5	
9	Operating Cost/Hour	\$245	
10	Insurance	\$20,000	
11			
12	Intermediate Calculations		
13	Total Revenue	\$230,000	
14	Total Cost	\$216,000	
15			
16	Performance Measure		
17	Annual Profit	\$14,000	
18			
19	Adapted from Bob Clemen's texts		
20	Making Hard Decisions, 2nd ed.,	Duxbury (1996	6).

Figure 2.2 Model Formulas

Ū	А	В
11		
12	Intermediate Calculations	
13	Total Revenue	=(B8*B6*B4)+((1-B8)*B6*B5*B7*5)
14	Total Cost	=(B6*B9)+B10
15		
16	Performance Measure	
17	Annual Profit	=B13-B14
18		

2.5 PLOT

Use SensIt's Plot option to see how your model's output depends on changes in a single input variable.

Plot Input Variable

Plot Input Variable's Cells: Option: In the Label edit box, type a cell reference, or point to the cell containing a text label and click. Required: In the Cell edit box, type a cell reference, or point to the cell containing a numeric value that's an input to your model.

Plot Output Variable

Plot Output Variable's Cells: Option: In the Label edit box, type a cell reference, or point to the cell containing a text label and click. Required: In the Cell edit box, type a cell reference, or point to the cell containing a formula that's the output of your model.

Plot Input Values

Plot Input Values: Type numbers in the Start, Step, and Stop edit boxes to specify values to be used in the input variable's cell. Cell references are not allowed.

Send Output To: Select the destination for the output table and chart. If you send output to This Worksheet, enter a Cell reference for the top left corner of the output. Output options are not available on the Macintosh; output is always sent to a new worksheet.

Click OK: SensIt Plot uses the Start, Step, and Stop values to prepare a table of values. Each value is copied to the input variable cell, the worksheet is recalculated, and the value of the output variable cell is copied to the table. (You could do this manually using the Edit | Fill | Series and Data | Table commands.) SensIt Plot uses the input and output values to prepare an XY (Scatter) chart; optionally, the text in the label cells you

identified are used as the chart's axis labels. (You could do this manually using the ChartWizard.)

Figure 2.3 SensIt Plot Dialog Box

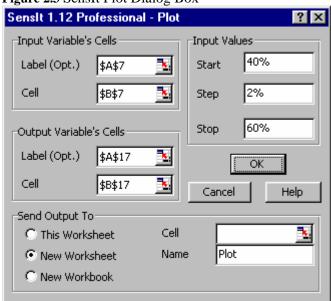


Figure 2.4 SensIt Plot Numerical and Chart Output Sensitivity Analysis ... Output Input SensIt - Sensitivity Analysis - Plot Capacity of Scheduled Flights Annual Profit -\$6,000 40% 42% -\$2,000 \$30,000 44% \$2,000 **Annual Profit** 46% \$6,000 \$20,000 48% \$10,000 \$14,000 \$10,000 50% 52% \$18,000 54% \$22,000 56% \$26,000 -\$10,000 58% \$30,000 50% 60% \$34,000 Capacity of Scheduled Flights

2.6 SPIDER

Use SensIt's Spider option to see how your model's output depends on the same percentage changes for each of the model's input variables. Before using Spider, arrange your model input cells in adjacent cells in a single column, arrange corresponding labels in adjacent cells in a single column, and be sure your model's input cells contain base case values.

For example, if your model has five inputs, the names of the five inputs could be text in A1:A5. The input cells of your model could be numbers in B1:B5; when you change a number in one of these cells, the output of your model changes; enter base case values in the input cells B1:B5 before using Spider.

Spider Input Variables

Spider Input Variables' Ranges: Labels edit box: Type a range reference, or point to the range (click and drag) containing text labels. Cells edit box: Type a range reference, or point to the range containing numeric values that are inputs to your model. Each range must be adjacent cells in a single column.

Spider Output Variable

Spider Output Variable's Cells: Label edit box: Type a cell reference, or point to the cell containing a text label and click. Cell edit box: Type a cell reference, or point to the cell containing a formula that's the output of your model.

Spider Input Changes

Spider Input Changes (%): Type numbers in the Start (%), Step (%), and Stop (%) edit boxes to define the percents that will be multiplied times the current value in each input variable's cell. Cell references are not allowed.

Send Output To: Select the destination for the output table and chart. If you send output to This Worksheet, enter a Cell reference for the top left corner of the output. Output options are not available on the Macintosh; output is always sent to a new worksheet.

Click OK: SensIt Spider uses the Start (%), Step (%), and Stop (%) values and the original (base case) numeric value in each input variable cell to prepare a table of percentage change input values. For each input variable, all other input values are set at their base case values, each percentage change input value is copied to the input variable cell, the worksheet is recalculated, and the value of the output variable cell is copied to the table. The output variable values are also expressed as percentage change of the base case output value. SensIt Spider prepares two XY (Scatter) charts; the horizontal axis is percentage change of input variables; the vertical axis is model output value on one chart

and percentage change of model output value on the other; the input variables' labels are used for chart legends.

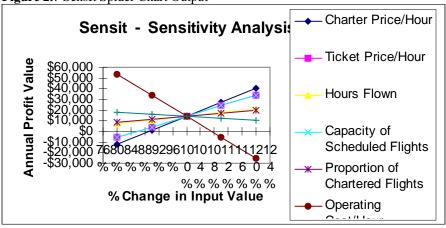

Figure 2.5 SensIt Spider Dialog Box

Figure 2.6 SensIt Spider Numerical Output
--

5	ire 2.0 Selisit Spider Numerica					
	A	В	С	D	E	F
1	Input Variables Values					
2		80%	90%	100%	110%	120%
3	Charter Price/Hour	\$260	\$293	\$325	\$358	\$390
4	Ticket Price/Hour	\$80	\$90	\$100	\$110	\$120
5	Hours Flown	640	720	800	880	960
6	Capacity of Scheduled Flights	40%	45%	50%	55%	60%
7	Proportion of Chartered Flights	0.4	0.45	0.5	0.55	0.6
8	Operating Cost/Hour	\$196	\$221	\$245	\$270	\$294
9	Insurance	\$16,000	\$18,000	\$20,000	\$22,000	\$24,000
10						
11						
12	Output Variable Values (Annua	al Profit)				
13		80%	90%	100%	110%	120%
14	Charter Price/Hour	-\$12,000	\$1,000	\$14,000	\$27,000	\$40,000
15	Ticket Price/Hour	-\$6,000	\$4,000	\$14,000	\$24,000	\$34,000
16	Hours Flown	\$7,200	\$10,600	\$14,000	\$17,400	\$20,800
17	Scheduled Capacity	-\$6,000	\$4,000	\$14,000	\$24,000	\$34,000
18	Chartered Proportion	\$8,000	\$11,000	\$14,000	\$17,000	\$20,000
19	Operating Cost/Hour	\$53,200	\$33,600	\$14,000	-\$5,600	-\$25,200
20	Insurance	\$18,000	\$16,000	\$14,000	\$12,000	\$10,000

Figure 2.7 SensIt Spider Chart Output

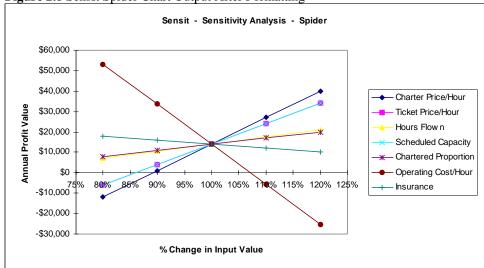


Figure 2.8 SensIt Spider Chart Output After Formatting

2.7 TORNADO

Use SensIt's Tornado option to see how your model's output depends on ranges you specify for each of the model's input variables. Before using Tornado, arrange your model input cells in adjacent cells in a single column, arrange corresponding labels in adjacent cells in a single column, and arrange Low, Base, and High input values for each input variable in three separate columns. Alternatively, the three columns containing input values can be worst case, likely case, and best case.

For example, if your model has five inputs, the names of the five inputs could be text in A1:A5. The input cells of your model could be numbers in B1:B5; when you change a number in one of these cells, the output of your model changes. The Low input values could be numbers in D1:D5, chosen as the minimum possible value you think each input variable could be. The Base input values could be numbers in E1:E5, chosen as the most likely value for each input; you might also have these same numbers in B1:B5 as current inputs to your model. The High input values could be numbers in F1:F5, chosen as the maximum possible value you think each input variable could be.

Tornado Input Variables

Tornado Input Variables' Ranges: Labels edit box: Type a range reference, or point to the range (click and drag) containing text labels. Cells edit box: Type a range reference, or

point to the range containing numeric values that are inputs to your model. Each range must be adjacent cells in a single column.

Tornado Output Variable

Tornado Output Variable's Cells: Label edit box: Type a cell reference, or point to the cell containing a text label and click. Cell edit box: Type a cell reference, or point to the cell containing a formula that's the output of your model.

Tornado Input Values

Tornado Input Values' Ranges: In the Low, Base, and High edit boxes, type a range reference, or point to the range (click and drag) containing numeric values for each of your model's inputs.

Send Output To: Select the destination for the output table and chart. If you send output to This Worksheet, enter a Cell reference for the top left corner of the output. Output options are not available on the Macintosh; output is always sent to a new worksheet.

Click OK: For each input variable, SensIt Tornado sets all other input values at their Base case values, copies the Low input value to the input variable cell, recalculates the worksheet, and copies the value of the output variable cell to the table; the steps are repeated using each High input value. For each input variable, SensIt Tornado computes the range of the output variable values, sorts the table from largest range down to smallest range, and prepares a bar chart.

Figure 2.9 Example with Lower and Upper Bounds

5	L L L L L L L L L L L L L L L L L L L	В	С	T D	l E	l F
<u> </u>	A	_	U	D		Г
1	Spreadsheet Model For Eagle Airlines					
2						
3	Input Variables	Input Cells		Lower Bound	Base Value	Upper Bound
4	Charter Price/Hour	\$325		\$300	\$325	\$350
5	Ticket Price/Hour	\$100		\$95	\$100	\$108
6	Hours Flown	800		500	800	1000
7	Capacity of Scheduled Flights	50%		40%	50%	60%
8	Proportion of Chartered Flights	0.5		0.45	0.5	0.7
9	Operating Cost/Hour	\$245		\$230	\$245	\$260
10	Insurance	\$20,000		\$18,000	\$20,000	\$25,000
11						
12	Intermediate Calculations					
13	Total Revenue	\$230,000				
14	Total Cost	\$216,000				
15						
16	Performance Measure					
17	Annual Profit	\$14,000				
18						
19	Adapted from Bob Clemen's textl	oook,				
20	Making Hard Decisions, 2nd ed.,).				

Figure 2.10 SensIt Tornado Dialog Box

Figure 2.11 SensIt Tornado Numerical and Chart Output

Ĭ	A	В	С	D	Е	F	G	Н		J	K
1	Tornado Analysis										
2											
3											
4		lı	nput Value	es	0	utput Va	lues (Anr	nual Profi	t)		Percent
	Input Variable	Low	Base	High		Low	Base	High		Swing	Variance
	Capacity of Scheduled Flights	40%	50%	60%			\$14,000			\$40,000	46.1%
	Operating Cost/Hour	\$230	\$245	\$260			\$14,000			\$24,000	16.6%
	Hours Flown	500	800	1000			\$14,000			\$21,250	13.0%
-	Charter Price/Hour	\$300	\$325	\$350			\$14,000			\$20,000	11.5%
	Proportion of Chartered Flights	0.45	0.5	0.7			\$14,000			\$15,000	6.5%
11	Ticket Price/Hour	\$95	\$100	\$108		\$9,000	\$14,000	\$22,000		\$13,000	4.9%
	Insurance	\$18,000	\$20,000	\$25,000		\$16,000	\$14,000	\$9,000		\$7,000	1.4%
13											
14											
15											
16		8	iensit -	Sensitiv	ity Analy	sis - I	ornado				
17											
18 19	Capacity of Scheduled Flight	ts	40%							60%	
20	Operating Cost/Hou	ır		\$260		+	-		\$230		
21 22	Hours Flow	n		500		+	-	1000	-)		
23	1					-	-				
24	Charter Price/Hou	ır		\$3	300			\$3	350		
25	Proportion of Chartered Flight	is			0	.45			0.7		
26	Ticket Price/Hou	ır			\$95		-	\$108	_		
27	- Tioket Fried/Fred	41			Ψοσ	-	-	φισσ			
28 29	Insuranc	e			\$25,000		\$18,0	00			ŀ
30		\$15,000	-\$5,0	000	\$5,000	\$1:	5.000	\$25,0	000	\$35,000	
31 32	1	Annual Profit									
33	-				•						
33											

2.8 TORNADO TIPS

When defining the high and low cases for each variable, it is important to be consistent so that the "high" cases are all equally high and the "low" cases are equally low. For example, you might take all of the base case values to be estimates of the mean of the input variable, take low cases to be values such there is a 1-in-10 chance of the variable being below this amount, and take the high cases to be values such that there is a 1-in-10 chance of the variable being above this amount. Alternatively, you may specify low and high values that are the absolute lowest and highest possible values.

When you click OK, SensIt sets all of the input variables to their base-case values and records the output value. Then SensIt goes through each of the input variables one at a time, plugs the low-case value into the input cell, and records the value in the output cell. It then repeats the process for the high case. For each substitution, all input values are kept at their base-case values except for the single input value that is setn at it low or high value. SensIt then produces a spreadsheet that lists the numerical results as shown in columns F, G, and H above.

In the worksheet, the variables are sorted by their "swing" -- the absolute value of the difference between the output values in the low and high cases. "Swing" serves as a rough measure of the impact of each input variable. The rows of numerical output are sorted from highest swing at the top down to lowest swing at the bottom. Then SensIt creates a bar chart of the sorted data.

"Percent variance" is a standardized measure of impact: it squares each swing, sums them up to get a "Total Variance", and reports the percentage of the "total variance" attributed to each input variable.

In general, you should focus your modeling efforts on those variables with the greatest impact on the value measure.

If your model has input variables that are discrete or categorical, you should create multiple tornado charts using different base case values of that input variable. For example, if your model has an input variable "Government Regulation" that has possible values 0 (zero) or 1, the low and high values will be 0 and 1, but you should run one tornado chart with base case = 0 and another tornado chart with base case = 1.

2.9 EAGLE AIRLINES PROBLEM

Figure 2.12 Eagle Model Display

rig	Figure 2.12 Eagle Model Display									
	Α	В	С	D	E	F				
1	Spreadsheet Model For Eagle									
2										
3	Variable	Input Cells		Lower Bound	Base Value	Upper Bound				
4	Hours Flown	800		500	800	1000				
5	Charter Price/Hour	\$325		\$300	\$325	\$350				
6	Ticket Price/Hour	\$100		\$95	\$100	\$108				
7	Capacity of Scheduled Flights	50%		40%	50%	60%				
8	Proportion Of Chartered Flights	0.5		0.45	0.5	0.7				
9	Operating Cost/Hour	\$245		\$230	\$245	\$260				
10	Insurance	\$20,000		\$18,000	\$20,000	\$25,000				
11	Proportion Financed	0.4		0.3	0.4	0.5				
12	Interest Rate	11.5%		10.5%	11.5%	13.0%				
13	Purchase Price	\$87,500		\$85,000	\$87,500	\$90,000				
14										
15	Total Revenue	\$230,000								
16	Total Cost	\$220,025								
17										
18	Annual Profit	\$9,975								
19										
20	Adapted from Bob Clemen's textl	oook, Making	Hard Decis	sions						

Figure 2.13 Eagle Model Formulas

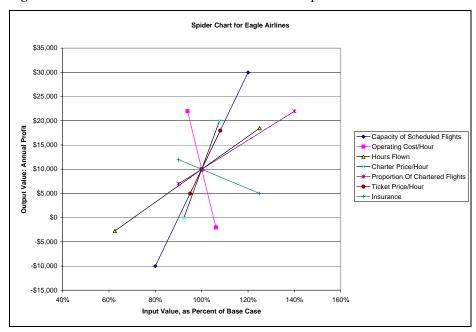
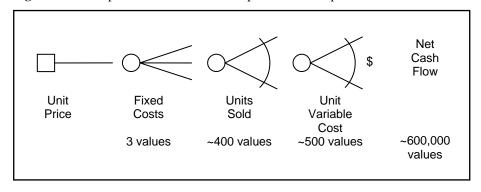

	Α	В	С	D	E	F
14						
15	Total Revenue	=(B8*B4*B5)	+((1-B8)*B4			
16	Total Cost	=(B4*B9)+B10+(B13*B11*B12)				
17						
18	Annual Profit	=B15-B16				
19						

Figure 2.14 Worst Case and Best Case Inputs Determined by Solver

Variable	Worst Case	Base Case	Best Case
Hours Flown	1000	800	1000
Charter Price/Hour	\$300	\$325	\$350
Ticket Price/Hour	\$95	\$100	\$108
Capacity of Scheduled Flights	40%	50%	60%
Proportion Of Chartered Flights	0.45	0.5	0.7
Operating Cost/Hour	\$260	\$245	\$230
Insurance	\$25,000	\$20,000	\$18,000
Proportion Financed	0.5	0.4	0.3
Interest Rate	13.0%	11.5%	10.5%
Purchase Price	\$90,000	\$87,500	\$85,000
Total Revenue	\$239,500	\$230,000	\$342,200
Total Cost	\$290,850	\$220,025	\$250,678
Annual Profit	-\$51,350	\$9,975	\$91,523

2.10 SEVEN-VARIABLE NON-SENSIT SPIDER CHART

Figure 2.15 Extremes Associated With Tornado-Like Inputs

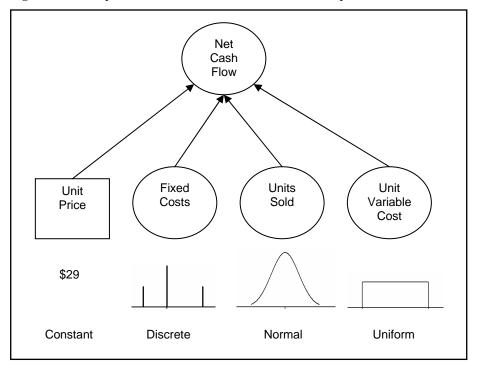


This page is intentionally mostly blank.

Monte Carlo Simulation Using RiskSim

3.1 INTRODUCTION

Figure 3.1 Conceptual Simulation as a Sample of Tree Endpoints



Unit Fixed Units Unit Price Costs Sold Variable Cost

Discrete Normal Uniform

Figure 3.2 Probability Distributions for Sampling Tree Endpoints

Figure 3.3 Conceptual Simulation as Influence Chart with Repeated What-Ifs

3.2 USING RISKSIM FUNCTIONS

RiskSim is a Monte Carlo Simulation add-in for Microsoft Excel 97 (and later versions of Excel) for Windows and Macintosh.

RiskSim provides random number generator functions as inputs for your model, automates Monte Carlo simulation, and creates charts. Your spreadsheet model may include various uncontrollable uncertainties as input assumptions (e.g., demand for a new product, uncertain variable cost of production, competitor reaction), and you can use simulation to determine the uncertainty associated with the model's output (e.g., annual profit). RiskSim automates the simulation by trying hundreds of what-ifs consistent with your assessment of the uncertainties.

To use RiskSim, you

- (1) create a spreadsheet model
- (2) optionally use SensIt to identify critical inputs
- (3) enter one of RiskSim's nine random number generator functions in each input cell of your model
- (4) choose Tools | Risk Simulation from Excel's menu
- (5) specify the model output cell and the number of what-if trials
- (6) interpret RiskSim's histogram and cumulative distribution charts.

RiskSim facilitates Monte Carlo simulation by providing:

Nine random number generator functions Ability to set the seed for random number generation Automatic repeated sampling for simulation

Frequency distribution of simulation results

Histogram and cumulative distribution charts

3.3 USING RISKSIM FUNCTIONS

RiskSim adds nine random number generator functions to Excel. You can use these functions as inputs to your model by typing in a worksheet cell or by using the Function Wizard. From the Insert menu choose Function, or click the Function Wizard button. RiskSim's functions are listed in a User Defined category. The nine functions are:

RANDBINOMIAL(trials,probability_s)

 $RANDCUMULATIVE (value_cumulative_table)$

RANDDISCRETE(value discrete table)

RANDEXPONENTIAL(lambda)

RANDINTEGER(bottom,top)

RANDNORMAL(mean, standard dev)

RANDPOISSON(mean)

RANDTRIANGULAR(minimum,most_likely,maximum)

RANDUNIFORM(minimum,maximum)

RiskSim's RAND... functions include extensive error checking of arguments. After verifying that the functions are working properly, you may want to substitute RiskSim's FAST... functions which have minimal error checking and therefore run faster. From the Edit menu choose Replace; in the Replace dialog box, type =RAND in the "Find What" edit box, type =FAST in the "Replace with" edit box, and click the Replace All button.

3.4 EXCEL ERROR MESSAGE

When you insert a RiskSim random number generator function in a worksheet cell, the function is linked to RiskSim.xla. When you save the workbook, Excel saves the complete path to the function in RiskSim.xla. When you open the workbook, Excel looks for RiskSim.xla using the saved path. If Excel cannot find RiskSim.xla at the saved path location (e.g., if you deleted RiskSim.xla or if you opened the workbook on another computer where RiskSim.xla isn't located at the same path), Excel displays a dialog box: "This document contains links. Re-establish links?" Click No. The workbook will be opened, but any cell containing a reference to a RiskSim function will display the #REF!, #NAME?, or other error code. To fix the links, be sure that RiskSim.xla is open (e.g., File | Open | RiskSim.xla), choose Edit | Links | Change Source, and locate the RiskSim.xla file that is open.

3.5 MONTE CARLO SIMULATION

After specifying random number generator functions as inputs to your model, from the Tools choose Risk Simulation | One Output.

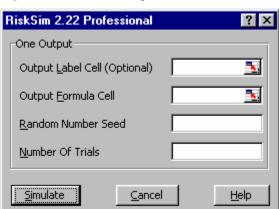


Figure 3.4 RiskSim Dialog Box

Optionally, select the "Output Label Cell" edit box, and point or type a reference to a cell containing the name of the model output (for example, a cell whose contents is the text label "Net Profit").

Select the "Output Formula Cell" edit box, and point to a single cell on your worksheet or type a cell reference. The output cell of your model must contain a formula that depends, usually indirectly, on the model inputs determined by the random number generator functions.

Select the "Random Number Seed" edit box, and type a number between zero and one. (If you want to change the seed without performing a simulation, enter zero in the "Number of iterations" edit box.)

Select the "Number Of Trials" edit box, and type an integer value (for example, 100 or 500). This value, sometimes called the sample size or number of iterations, specifies the number of times the worksheet will be recalculated to determine output values of your model.

3.6 RANDOM NUMBER SEED

The "Random Number Seed" edit box on the RiskSim dialog box allows you to set the seed for RiskSim's random number generator functions. These functions depend on RiskSim's own uniform random number function that is completely independent of Excel's built-in RAND().

Random numbers generated by the computer are actually pseudo-random. The numbers appear to be random, and they pass various statistical tests for randomness. But they are

actually calculated by an algorithm where each random number depends on the previous random number. Such an algorithm generates a repeatable sequence. The seed specifies where the algorithm starts in the sequence.

A Monte Carlo simulation model usually has uncontrollable inputs (uncertain quantities using random number generator functions), controllable inputs (decision variables that have fixed values for a particular set of simulation iterations), and an output variable (a performance measure or operating characteristic of the system).

For example, a simple queuing system model may have an uncertain arrival pattern, a controllable number of servers, and total cost (waiting time plus server cost) as output. To evaluate a different number of servers, you would specify the same seed before generating the uncertain arrivals. Then the variation in total cost should depend on the different number of servers, not on the particular sequence of random numbers that generates the arrivals.

3.7 ONE-OUTPUT EXAMPLE

In this example the decision maker has described his subjective uncertainty using normal, triangular, and discrete probability distributions.

Figure 3.5 One-Output Example Model Display

	Α	В	С	D	E	F	G	Н
1	Software Decision Analysis							
2								
3	Unit Price	\$29		Price is cor				
4	Units Sold	739		Normal	Normal Mean = 700, StDev = 100			
5	Unit Variable Cost	\$8.05		Triangular	Triangular Min = \$6, Mode = \$8, Max = \$11			
6	Fixed Costs	\$12,000		Discrete	Value	Probability		
7					\$10,000	0.25		
8	Net Cash Flow	\$3,485			\$12,000	0.50		
9			-		\$15,000	0.25		

Figure 3.6 One-Output Example Model Formulas

	Α	В				
1	Software Decision Analysis					
2						
3	Unit Price	\$29				
4	Units Sold	=INT(RANDNORMAL(700,100))				
5	Unit Variable Cost	=RANDTRIANGULAR(6,8,11)				
6	Fixed Costs	=RANDDISCRETE(E7:F9)				
7						
8	Net Cash Flow	=B4*(B3-B5)-B6				

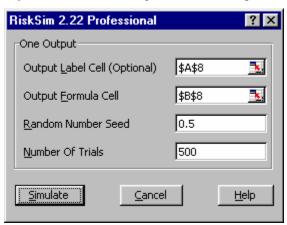


Figure 3.7 RiskSim Dialog Box for One-Output Example

3.8 RISKSIM OUTPUT FOR ONE-OUTPUT EXAMPLE

When you click the Simulate button, RiskSim creates a new worksheet in your Excel workbook named "RiskSim Summary 1." A summary of your inputs and the output is shown in cells L1:R9 with the accompanying histogram and cumulative distribution charts.

Figure 3.8 RiskSim Summary Output for One-Output Example

	L	М	N	0	Р	Q	R
1	RiskSim - One				F	Mean	\$2,454
2	Date	(current da				St. Dev.	\$2,434
3	Time					Mean St. Error	\$2,794
-	Workbook	(current tim	,				
4		risksamp.x	IS			Minimum	-\$5,455
5	Worksheet	Simulation				First Quartile	\$536
6	Output Cell	\$B\$8				Median	\$2,458
7	Output Label	Net Cash F	low			Third Quartile	\$4,416
8	Seed	0.5				Maximum	\$10,236
9	Trials	500				Skewness	0.0028
10							
11		Pie	kSim Hietoar	am, (current da	ite) (current ti	ma)	
12		1113	Komi i natogra	am, (current de	ite), (current til	ille)	
13	1.40						
14	140 T						Ц
15	120 +						
16							
17	100 +						
18	∑ 80 -						
19							
20	- 08 + 08 + 08 + 08						
21	_						
22	40 +					\neg	
23	20 1	_					
24	20						
25	† o ↓	$\overline{}$			+		+
26	-\$6,0	000 -\$2	2,000	\$2,000	\$6,000	\$10,000	
27			Net Ca	sh Flow, Uppe	er Limit of Inter	val	-
28							
29							
30							
31	H	RiskSii	m Cumulative	Chart, (curren	t date), (currer	nt time)	H
32	H						H
33	1.0 						H
34	0.9						H
35	0.8						H
36	1 1 0.0						
37	H dad 0.7						□ H
-	를 0.6						\neg
38	0.5						→ H
39	- <u>f</u> 0.4 +						
40	0.5 0.6 0.5 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3						_ H
41	J ぴ _{0.2}						H
42	0.1						
43			_ _				
44	0.0	\$4,000 \$2,4))))	\$2,000 \$4,	000 \$6,000	\$9,000 \$10,000	\$12,000 H
45	-\$0,000	-\$4,000 -\$2,0	000 \$0		000 \$6,000	\$8,000 \$10,000	φ1∠,∪∪∪
46				Net Cash FI	OW		Ц
47				I	1	I	

The histogram is based on the frequency distribution in columns I:J. The cumulative distribution is based on the sorted output values in column C and the cumulative probabilities in column D.

Figure 3.9 RiskSim Numerical Output for One-Output Example

	Α	В	С	D	Е	F	G	Н	I	J
1	Trial	Net Cash Flow	Sorted	Cumulative		Percent	Percentile		Upper Limit	Frequency
2	1	\$1,653	-\$5,455	0.0010		0%	-\$5,455		-\$6,000	0
3	2	\$2,804	-\$4,267	0.0030		5%	-\$1,996		-\$4,000	3
4	3	\$2,280	-\$4,185	0.0050		10%	-\$1,132		-\$2,000	22
5	4	\$761	-\$3,898	0.0070		15%	-\$637		\$0	72
6	5	-\$1,817	-\$3,675	0.0090		20%	\$77		\$2,000	122
7	6	-\$692	-\$3,582	0.0110		25%	\$536		\$4,000	128
8	7	\$623	-\$3,569	0.0130		30%	\$923		\$6,000	105
9	8	\$5,575	-\$3,562	0.0150		35%	\$1,331		\$8,000	38
10	9	\$1,389	-\$3,547	0.0170		40%	\$1,823		\$10,000	9
11	10	\$445	-\$3,275	0.0190		45%	\$2,063		\$12,000	1
12	11	\$2,573	-\$3,207	0.0210		50%	\$2,458			0
13	12	\$5,055	-\$3,137	0.0230		55%	\$2,756			
14	13	\$1,430	-\$3,135	0.0250		60%	\$3,138			
15	14	\$4,529	-\$3,063	0.0270		65%	\$3,644			
16	15	\$701	-\$3,036	0.0290		70%	\$4,104			
17	16	-\$903	-\$3,008	0.0310		75%	\$4,416			
18	17	\$3,900	-\$2,968	0.0330		80%	\$4,867			
19	18	\$7,282	-\$2,950	0.0350		85%	\$5,412			
20	19	\$9,901	-\$2,774	0.0370		90%	\$5,897			
21	20	\$285	-\$2,649	0.0390		95%	\$7,109			
22	21	\$3,833	-\$2,485	0.0410		100%	\$10,236			
23	22	\$4,369	-\$2,370	0.0430						
24	23	\$1,991	-\$2,319	0.0450						
25	24	-\$11	-\$2,219	0.0470						
26	25	\$1,100	-\$2,195	0.0490						
27	26	-\$1,100	-\$1,986	0.0510						
28	27	-\$5,455	-\$1,969	0.0530						

The cumulative probabilities start at 1/(2*N), where N is the number of trials, and increase by 1/N. The rationale is that the lowest ranked output value of the sampled values is an estimate of the population's values in the range from 0 to 1/N, and the lowest ranked value is associated with the median of that range.

Column B contains the original sampled output values.

Columns F:G show percentiles based on Excel's PERCENTILE worksheet function. Refer to Excel's online help for the interpolation method used by the PERCENTILE function.

The summary measures in columns Q:R are also based on Excel worksheet functions: AVERAGE, STDEV, QUARTILE, and SKEW.

3.9 RANDOM NUMBER GENERATOR FUNCTIONS

RandBinomial

Returns a random value from a binomial distribution. The binomial distribution can model a process with a fixed number of trials where the outcome of each trial is a success or failure, the trials are independent, and the probability of success is constant. RANDBINOMIAL counts the total number of successes for the specified number of trials. If n is the number of trials, the possible values for RANDBINOMIAL are the nonnegative integers 0,1,...,n.

RANDBINOMIAL Syntax: RANDBINOMIAL(trials,probability_s)

Trials (often denoted n) is the number of independent trials.

Probability_s (often denoted p) is the probability of success on each trial.

RANDBINOMIAL Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if an argument is text and the name is undefined.

Returns #NUM! if trials is non-integer or less than one, or probability_s is less than zero or more than one.

Returns #VALUE! if an argument is a defined name of a cell and the cell is blank or contains text.

RANDBINOMIAL Example

A salesperson makes ten unsolicited calls per day, where the probability of making a sale on each call is 30 percent. The uncertain total number of sales in one day is =RANDBINOMIAL(10,0.3)

RANDBINOMIAL Related Function

FASTBINOMIAL: Same as RANDBINOMIAL without any error checking of the arguments.

 $\label{lem:critical} CRITBINOM (trials, probability_s, RAND()): Excel's inverse of the cumulative binomial, or CRITBINOM (trials, probability_s, RANDUNIFORM(0,1)) to use the RiskSim Seed feature.$

RandCumulative

Returns a random value from a piecewise-linear cumulative distribution. This function can model a continuous-valued uncertain quantity, X, by specifying points on its cumulative distribution. Each point is specified by a possible value, x, and a

corresponding left-tail cumulative probability, $P(X \le x)$. Random values are based on linear interpolation between the specified points.

RANDCUMULATIVE Syntax: RANDCUMULATIVE(value_cumulative_table)

Value_cumulative_table must be a reference, or the defined name of a reference, for a two-column range, with values in the left column and corresponding cumulative probabilities in the right column.

RANDCUMULATIVE Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if the argument is text and the name is undefined.

Returns #NUM! if the first (top) cumulative probability is not zero, if the last (bottom) cumulative probability is not one, or if the values or cumulative probabilities are not in ascending order.

Returns #REF! if the number of columns in the table reference is not two.

Returns #VALUE! if the argument is not a reference, if the argument is a defined name but not for a reference, or if any cell of the table contains text or is blank.

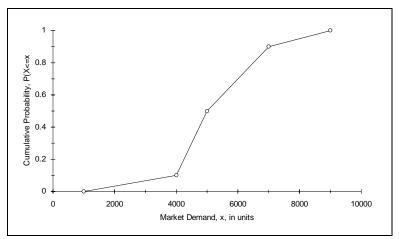
RANDCUMULATIVE Example

A corporate planner thinks that minimum possible market demand is 1000 units, median is 5000, and maximum possible is 9000. Also, there is a ten percent chance that demand will be less than 4000 and a ten percent chance it will exceed 7000. The values, x, and cumulative probabilities, $P(X \le x)$, are entered into spreadsheet cells A1:B5.

Figure 3.10 RandDiscrete Example Spreadsheet Data

	Α	В
1	3000	0.3
2	4000	0.6
3	5000	0.1

The function is entered into another cell: =RANDCUMULATIVE(A1:B5)


RANDCUMULATIVE Related Function

FASTCUMULATIVE: Same as RANDCUMULATIVE without any error checking of the arguments.

0.0005 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 Market Demand, x, in units

Figure 3.11 RandCumulative Example Probability Density Function

Figure 3.12 RandCumulative Example Cumulative Probability Function

RandDiscrete

Returns a random value from a discrete probability distribution. This function can model a discrete-valued uncertain quantity, X, by specifying its probability mass function. The function is specified by each possible discrete value, x, and its corresponding probability, P(X=x).

RANDDISCRETE Syntax: RANDDISCRETE(value_discrete_table)

Value_discrete_table must be a reference, or the defined name of a reference, for a two-column range, with values in the left column and corresponding probability mass in the right column.

RANDDISCRETE Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if the argument is text and the name is undefined.

Returns #NUM! if a probability is negative or if the probabilities do not sum to one.

Returns #REF! if the number of columns in the table reference is not two.

Returns #VALUE! if the argument is not a reference, if the argument is a defined name but not for a reference, or if any cell of the table contains text or is blank.

RANDDISCRETE Example

A corporate planner thinks that uncertain market demand, X, can be approximated by three possible values and their associated probabilities: P(X=3000) = 0.3, P(X=4000) = 0.6, and P(X=5000) = 0.1. The values and probabilities are entered into spreadsheet cells A1:B3.

Figure 3.13 RandDiscrete Example Spreadsheet Data

	Α	В
1	3000	0.3
2	4000	0.6
3	5000	0.1

The function is entered into another cell: =RANDDISCRETE(A1:B3)

RANDDISCRETE Related Function

FASTDISCRETE: Same as RANDDISCRETE without any error checking of the arguments.

RandDiscrete Example Probability Mass Function

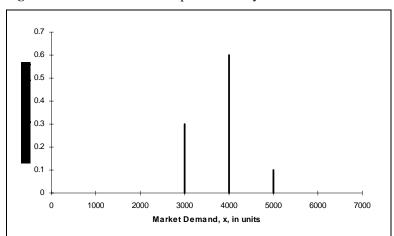
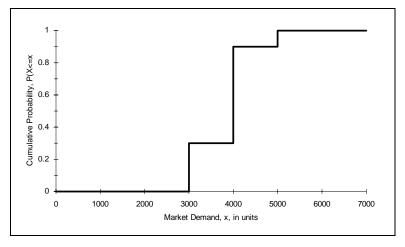



Figure 3.14 RandDiscrete Example Probability Mass Function

Figure 3.15 RandDiscrete Example Cumulative Probability Function

RandExponential

Returns a random value from an exponential distribution. This function can model the uncertain time interval between successive arrivals at a queuing system or the uncertain time required to serve a customer.

 $RANDEXPONENTIAL\ Syntax:\ RANDEXPONENTIAL (lambda)$

Lambda is the mean number of occurrences per unit of time.

RANDEXPONENTIAL Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if the argument is text and the name is undefined.

Returns #NUM! if lambda is negative or zero.

Returns #VALUE! if the argument is a defined name of a cell and the cell is blank or contains text.

RANDEXPONENTIAL Examples

Cars arrive at a toll plaza with a mean rate of 3 cars per minute. The uncertain time between successive arrivals, measured in minutes, is =RANDEXPONENTIAL(3). The average value returned by repeated recalculation of RANDEXPONENTIAL(3) is 0.333.

A bank teller requires an average of two minutes to serve a customer. The uncertain customer service time, measured in minutes, is =RANDEXPONENTIAL(0.5). The average value returned by repeated recalculation of RANDEXPONENTIAL(0.5) is 2.

RANDEXPONENTIAL Related Functions

FASTEXPONENTIAL: Same as RANDEXPONENTIAL without any error checking of the arguments.

- -LN(RAND())/lambda: Excel's inverse of the exponential, or
- -LN(RANDUNIFORM(0,1))/lambda to use the RiskSim Seed feature.

RANDPOISSON: Counts number of occurrences for a Poisson process.

RandInteger

Returns a uniformly distributed random integer between two integers you specify.

RANDINTEGER Syntax: RANDINTEGER(bottom,top)

Bottom is the smallest integer RANDINTEGER will return.

Top is the largest integer RANDINTEGER will return.

RANDINTEGER Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if an argument is text and the name is undefined.

Returns #NUM! if top is less than or equal to bottom.

Returns #VALUE! if bottom or top is not an integer or if an argument is a defined name of a cell and the cell is blank or contains text.

RANDINTEGER Example

The number of orders a particular customer will place next year is between 7 and 11, with no number more likely than the others. The uncertain number of orders is =RANDINTEGER(7,11).

RANDINTEGER Related Function

FASTINTEGER: Same as RANDINTEGER without any error checking of the arguments.

RANDBETWEEN(bottom,top): Excel's function for uniformly distributed integers, without RiskSim's capability of setting the seed.

RandNormal

Returns a random value from a normal distribution. This function can model a variety of phenomena where the values follow the familiar bell-shaped curve, and it has wide application in statistical quality control and statistical sampling.

RANDNORMAL Syntax: RANDNORMAL(mean,standard dev)

Mean is the arithmetic mean of the normal distribution.

Standard dev is the standard deviation of the normal distribution.

RANDNORMAL Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if an argument is text and the name is undefined.

Returns #NUM! if standard_dev is negative.

Returns #VALUE! if an argument is a defined name of a cell and the cell is blank or contains text.

RANDNORMAL Example

The total market for a product is approximately normally distributed with mean 60,000 units and standard deviation 5,000 units. The uncertain total market is =RANDNORMAL(60000,5000).

RANDNORMAL Related Function

FASTNORMAL: Same as RANDNORMAL without any error checking of the arguments.

NORMINV(RAND(), mean, standard dev): Excel's inverse of the normal, or NORMINV(RANDUNIFORM(0,1), mean, standard dev) to use the RiskSim Seed feature.

RandPoisson

Returns a random value from a Poisson distribution. This function can model the uncertain number of occurrences during a specified time interval, for example, the number of arrivals at a service facility during an hour. The possible values of RANDPOISSON are the non-negative integers, 0, 1, 2,

RANDPOISSON Syntax: RANDPOISSON(mean)

Mean is the mean number of occurrences per unit of time.

RANDPOISSON Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if the argument is text and the name is undefined.

Returns #NUM! if mean is negative or zero.

Returns #VALUE! if mean is a defined name of a cell and the cell is blank or contains text.

RANDPOISSON Examples

Cars arrive at a toll plaza with a mean rate of 3 cars per minute. The uncertain number of arrivals in a minute is =RANDPOISSON(3). The average value returned by repeated recalculation of RANDPOISSON(3) is 3.

A bank teller requires an average of two minutes to serve a customer. The uncertain number of customers served in a minute is =RANDPOISSON(0.5). The average value returned by repeated recalculation of RANDPOISSON(0.5) is 0.5.

RANDPOISSON Related Functions

FASTPOISSON: Same as RANDPOISSON without any error checking of the arguments.

RANDEXPONENTIAL: Describes time between occurrences for a Poisson process.

RandTriangular

Returns a random value from a triangular probability density function. This function can model an uncertain quantity where the most likely value (mode) has the largest probability of occurrence, the minimum and maximum possible values have essentially zero probability of occurrence, and the probability density function is linear between the minimum and the mode and between the mode and the maximum. This function can also model a ramp density function where the minimum equals the mode or the mode equals the maximum.

RANDTRIANGULAR Syntax:

RANDTRIANGULAR(minimum,most_likely,maximum)

Minimum is the smallest value RANDTRIANGULAR will return.

Most_likely is the most likely value RANDTRIANGULAR will return.

Maximum is the largest value RANDTRIANGULAR will return.

RANDTRIANGULAR Remarks

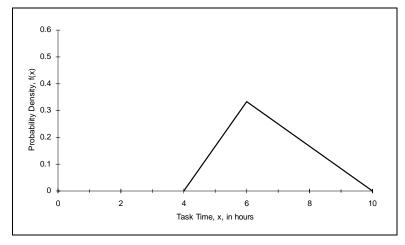
Returns #N/A if there are too few or too many arguments.

Returns #NAME! if an argument is text and the name is undefined.

Returns #NUM! if minimum is greater than or equal to maximum, if most_likely is less than minimum, or if most_likely is greater than maximum.

Returns #VALUE! if an argument is a defined name of a cell and the cell is blank or contains text.

RANDTRIANGULAR Example


The minimum time required to complete a particular task that is part of a large project is 4 hours, the most likely time required is 6 hours, and the maximum time required is 10 hours.

The function returning the uncertain time required for the task is entered into a cell: =RANDTRIANGULAR(4,6,10).

RANDTRIANGULAR Related Function

FASTTRIANGULAR: Same as RANDTRIANGULAR without any error checking of arguments.

Figure 3.16 RandTriangular Example Probability Density Function

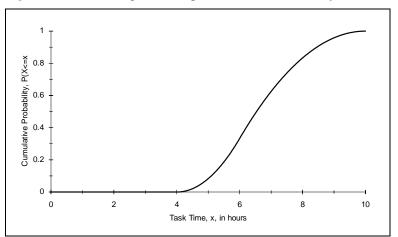


Figure 3.17 RandTriangular Example Cumulative Probability Function

RandUniform

Returns a uniformly distributed random value between two values you specify. As a special case, RANDUNIFORM(0,1) is the same as Excel's built-in RAND() function.

RANDUNIFORM Syntax: RANDUNIFORM(minimum,maximum)

Minimum is the smallest value RANDUNIFORM will return.

Maximum is the largest value RANDUNIFORM will return.

RANDUNIFORM Remarks

Returns #N/A if there are too few or too many arguments.

Returns #NAME! if an argument is text and the name is undefined.

Returns #NUM! if minimum is greater than or equal to maximum.

Returns #VALUE! if an argument is a defined name of a cell and the cell is blank or contains text.

RANDUNIFORM Example

A corporate planner thinks that the company's product will garner between 10% and 15% of the total market, with all possible percentages equally likely in the specified range. The uncertain market proportion is =RANDUNIFORM(0.10,0.15).

RANDUNIFORM Related Function

FASTUNIFORM: Same as RANDUNIFORM without any error checking of the arguments.

3.10 RISKSIM TECHNICAL DETAILS

RiskSim's random number generator functions are based on a (0,1) uniformly distributed random number function called RandSeed which is not directly accessible by the user. Internally, decimal values for RandSeed are calculated by dividing a uniformly distributed random integer by 2147483647, which is RandSeed's period. Random integers are generated using the well-documented Park-Miller algorithm, where each random integer depends on the previous random integer.

When RiskSim starts, the initial integer seed depends on the system clock. Unlike Excel's RAND() function, you can use RiskSim at any time to specify an integer seed, which is used as the previous random integer for the sequence of random numbers generated by the RiskSim functions.

In the Risk Simulation dialog box, the "Random number seed" edit box changes the seed only for the RiskSim functions; it does not have any effect on Excel's built-in RAND() function.

Each of RiskSim's random number generator functions use RandSeed as a building block.

RANDBINOMIAL(trials,probability_s) uses RandSeed as the cumulative probability in Excel's built-in CRITBINOM function.

RANDCUMULATIVE(value_cumulative_table) uses the value of RandSeed, R, searches to find the adjacent cumulative probabilities that bracket R, and interpolates on the linear segment of the cumulative distribution to find the corresponding value.

RANDDISCRETE(value_discrete_table) compares RandSeed with summed probabilities of the input table until the sum exceeds the RandSeed value, and then returns the previous value from the input table.

RANDEXPONENTIAL(lambda) uses the value of RandSeed, R, as follows. If the exponential density function is f(t) = lambda*EXP(-lambda*t), the cumulative is $P(T \le t) = 1 - EXP(-lambda*t)$. Associating R with $P(T \le t)$, the inverse cumulative is t = -LN(1-R)/lambda. Since R and 1-R are both uniformly distributed between 0 and 1, RiskSim uses -LN(R)/lambda for the returned value.

 $RANDINTEGER(bottom, top)\ returns\ bottom + INT(RandSeed*(top-bottom+1)).$

RANDNORMAL(mean, standard_dev) uses two RandSeed values in the well-documented Box-Muller method.7

RANDPOISSON(mean) compares RandSeed with cumulative probabilities of Excel's built-in POISSON function until the probability exceeds the RandSeed value, and then returns the previous value.

RANDTRIANGULAR(minimum,most_likely,maximum) uses RandSeed once. The triangular density function has two linear segments, so the cumulative distribution has two quadratic segments. The returned value is determined by interpolation on the appropriate quadratic segment.

RANDUNIFORM(minimum,maximum) returns minimum + RandSeed*(maximum-minimum). RANDUNIFORM(0,1) is equivalent to Excel's built-in RAND() function.

RiskSim includes a FAST... version of each of the nine functions, e.g., FASTBINOMIAL, FASTCUMULATIVE, etc. The FAST... functions are identical to the RAND... functions except there is no error checking of arguments.

3.11 MODELING UNCERTAIN RELATIONSHIPS

Base Model, Four Inputs

Price is fixed. The three uncontrollable inputs are independent.

Figure 3.18 Four Inputs Influence Chart

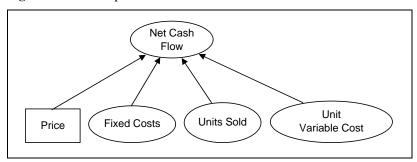


Figure 3.19 Four Inputs Display

	А	В			
1	Controllable Input				
2	Price	\$29			
3	Uncontrollable Inputs				
4	Fixed Costs	\$12,000			
5	Units Sold	700			
6	Unit Variable Cost	\$8			
7	Output Variable				
8	Net Cash Flow	\$2,700			

Figure 3.20 Four Inputs Formulas

	А	В
1	Controllable Input	
2	Price	29
3	Uncontrollable Inputs	
	Fixed Costs	12000
5	Units Sold	700
6	Unit Variable Cost	8
	Output Variable	
8	Net Cash Flow	=(B2-B6)*B5-B4

Three Inputs

Price is variable. Units sold depends on price. The two cost inputs are independent.

Figure 3.21 Three Inputs Influence Chart

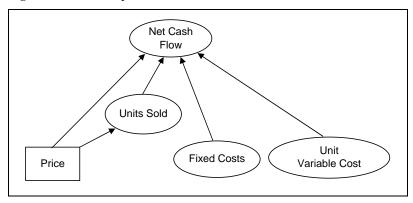


Figure 3.22 Three Inputs Display

	Α	В	С	D	Е
1	Controllable Input			Price	Units Sold
2	Price	\$29		\$29	700
3	Uncontrollable Inp	uts		\$39	550
4	Fixed Costs	\$12,000		\$49	400
5	Unit Variable Cost	\$8		\$59	250
6	Intermediate Varia	ble			
7	Units Sold	700		Slope	-15
8	Output Variable			Intercept	1135
9	Net Cash Flow	\$2,700			

Figure 3.23 Three Inputs Formulas

	А	В	С	D	Е
1	Controllable Input			Price	Units Sold
2	Price	29		29	700
3	Uncontrollable Inputs			39	550
4	Fixed Costs	12000		49	400
5	Unit Variable Cost	8		59	250
6	Intermediate Variable				
7	Units Sold	=E8+E7*B2		Slope	=SLOPE(E2:E5,D2:D5)
8	Output Variable			Intercept	=INTERCEPT(E2:E5,D2:D5)
9	Net Cash Flow	=(B2-B5)*B7-B4			

Two Inputs

Price is variable. Units sold depends on price. Unit variable cost depends on fixed costs.

Figure 3.24 Two Inputs Influence Chart

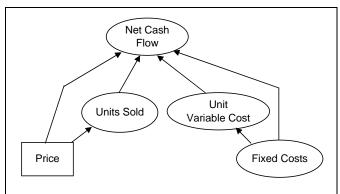


Figure 3.25 Two Inputs Display

	Α	В	С	D	Е
1	Controllable Input			Price	Units Sold
2	Price	\$29		\$29	700
3	Uncontrollable Inp	uts		\$39	550
4	Fixed Costs	\$12,000		\$49	400
5	Intermediate Varial	ble		\$59	250
6	Unit Variable Cost	\$8.00			
7	Units Sold	700		Slope	-15
8	Output Variable			Intercept	1135
9	Net Cash Flow	\$2,700			
10					
11				Fixed Costs	Unit Variable Cost
12				\$10,000	\$11
13				\$12,000	\$8
14				\$15,000	\$6
15					
16				а	0.000000166667
17				b	-0.005166666667
18				С	46

Figure 3.26 Two Inputs Formulas

	Α	В	С	D	E
1	Controllable Input			Price	Units Sold
2	Price	29		29	700
3	Uncontrollable Inputs			39	550
4	Fixed Costs	12000		49	400
5	Intermediate Variable			59	250
6	Unit Variable Cost	=E16*B4^2+E17*B4+E18			
7	Units Sold	=E8+E7*B2		Slope	=SLOPE(E2:E5,D2:D5)
8	Output Variable			Intercept	=INTERCEPT(E2:E5,D2:D5)
9	Net Cash Flow	=(B2-B6)*B7-B4			
10					
11				Fixed Costs	Unit Variable Cost
12				10000	11
13				12000	8
14				15000	6
15					
16				а	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))
17				b	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))
18				С	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))

Four Inputs with Three Uncertainties

Price is variable. Units sold depends on price. Unit variable cost depends on fixed costs.

Fixed costs, units sold, and unit variable cost are uncertain.

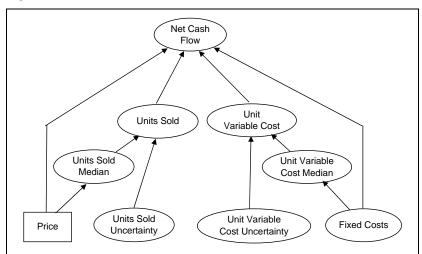


Figure 3.27 Three Uncertainties Influence Chart

Figure 3.28 Three Uncertainties Display

	Α	В	С	D	Е
1	Controllable Input			Price	Units Sold
2	Price	\$29		\$29	700
3	Uncontrollable Inputs			\$39	550
4	Fixed Costs	\$12,000		\$49	400
5	Units Sold Uncertainty	10		\$59	250
6	Unit Variable Cost Uncertainty	\$0.10			
7	Intermediate Variable			Slope	-15
8	Units Sold Median	700		Intercept	1135
9	Units Sold	710			
10	Unit Variable Cost Median	\$8.00			
11	Unit Variable Cost	\$8.10		Fixed Costs	Unit Variable Cost
12	Output Variable			\$10,000	\$11
13	Net Cash Flow	\$2,839		\$12,000	\$8
14				\$15,000	\$6
15					
16				а	0.000000166667
17				b	-0.005166666667
18				С	46

Figure 3.29 Three Uncertainties Formulas

	A	В	С	D	E
1	Controllable Input			Price	Units Sold
2	Price	29		29	700
3	Uncontrollable Inputs			39	550
4	Fixed Costs	12000		49	400
5	Units Sold Uncertainty	10		59	250
6	Unit Variable Cost Uncertainty	0.1			
7	Intermediate Variable			Slope	=SLOPE(E2:E5,D2:D5)
8	Units Sold Median	=E8+E7*B2		Intercept	=INTERCEPT(E2:E5,D2:D5)
9	Units Sold	=B8+B5			
10	Unit Variable Cost Median	=E16*B4^2+E17*B4+E18			
	Unit Variable Cost	=B10+B6		Fixed Costs	Unit Variable Cost
12	Output Variable			10000	11
13	Net Cash Flow	=(B2-B11)*B9-B4		12000	8
14				15000	6
15					
16				а	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))
17				b	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))
18				С	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))

Intermediate Details

Price is variable. Units sold depends on price. Unit variable cost depends on fixed costs.

Fixed costs, units sold, and unit variable cost are uncertain.

Include revenue, total variable cost, and total costs as intermediate variables.

Figure 3.30 Intermediate Details Influence Chart

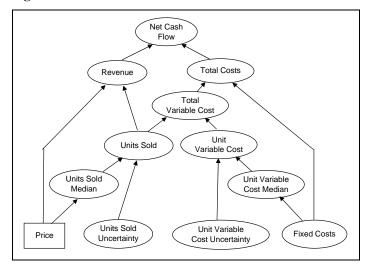


Figure 3.31 Intermediate Details Display

	А	В	С	D	Е
1	Controllable Input			Price	Units Sold
2	Price	\$29		\$29	700
3	Uncontrollable Inputs			\$39	550
4	Fixed Costs	\$12,000		\$49	400
5	Units Sold Uncertainty	10		\$59	250
6	Unit Variable Cost Uncertainty	\$0.10			
7	Intermediate Variable			Slope	-15
8	Units Sold Median	700		Intercept	1135
9	Units Sold	710			
10	Revenue	\$20,590			
11	Unit Variable Cost Median	\$8.00		Fixed Costs	Unit Variable Cost
12	Unit Variable Cost	\$8.10		\$10,000	\$11
13	Total Variable Cost	\$5,751		\$12,000	\$8
14	Total Costs	\$17,751		\$15,000	\$6
15	Output Variable				
16	Net Cash Flow	\$2,839		а	0.000000166667
17				b	-0.005166666667
18				С	46

Figure 3.32 Intermediate Details Formulas

	Λ.	В		D	E
	A	В	С		_
1	Controllable Input			Price	Units Sold
2	Price	29		29	700
3	Uncontrollable Inputs			39	550
4	Fixed Costs	12000		49	400
5	Units Sold Uncertainty	10		59	250
6	Unit Variable Cost Uncertainty	0.1			
7	Intermediate Variable			Slope	=SLOPE(E2:E5,D2:D5)
8	Units Sold Median	=E8+E7*B2		Intercept	=INTERCEPT(E2:E5,D2:D5)
9	Units Sold	=B8+B5			
10	Revenue	=B9*B2			
11	Unit Variable Cost Median	=E16*B4^2+E17*B4+E18		Fixed Costs	Unit Variable Cost
12	Unit Variable Cost	=B11+B6		10000	11
13	Total Variable Cost	=B12*B9		12000	8
14	Total Costs	=B4+B13		15000	6
15	Output Variable				
16	Net Cash Flow	=B10-B14		а	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))
17				b	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))
18				С	=TRANSPOSE(LINEST(E12:E14,D12:D14^{1,2}))

This page is intentionally mostly blank.

Decision Trees Using TreePlan

TreePlan is a decision tree add-in for Microsoft Excel 97 (and later versions of Excel) for Windows and Macintosh. It was developed by Professor Michael R. Middleton at the University of San Francisco and modified for use at Fuqua (Duke) by Professor James E. Smith.

4.1 TREEPLAN INSTALLATION

All of TreePlan's functionality is in a single file, TreePlan.xla. Depending on your preference, there are three ways to install TreePlan. (These instructions also apply to the other Decision ToolPak add-ins: SensIt.xla and RiskSim.xla.)

Occasional Use

If you plan to use TreePlan on an irregular basis, simply use Excel's File | Open command to load TreePlan.xla each time you want to use it. You may keep the TreePlan.xla file on a floppy disk, your computer's hard drive, or a network server.

Selective Use

You can use Excel's Add-In Manager to install TreePlan. First, copy TreePlan.xla to a location on your computer's hard drive. Second, if you save TreePlan.xla in the Excel or Office Library subdirectory, go to the third step. Otherwise, run Excel, choose Tools | Add-Ins; in the Add-Ins dialog box, click the Browse button, use the Browse dialog box to specify the location of TreePlan.xla, and click OK. Third, in the Add-Ins dialog box, note that TreePlan is now listed with a check mark, indicating that its menu command will appear in Excel, and click OK.

If you plan to not use TreePlan and you want to free up main memory, uncheck the box for TreePlan in the Add-In Manager. When you do want to use TreePlan, choose Tools | Add-Ins and check TreePlan's box.

To remove TreePlan from the Add-In Manager, use Windows Explorer or another file manager to delete TreePlan.xla from the Library subdirectory or from the location you specified when you used the Add-In Manager's Browse command. The next time you start Excel and choose Tools | Add-Ins, a dialog box will state "Cannot find add-in ... treeplan.xla. Delete from list?" Click Yes.

Steady Use

If you want TreePlan's options immediately available each time you run Excel, use Windows Explorer or another file manager to save TreePlan.xla in the Excel XLStart directory. Alternatively, in Excel you can use Tools | Options | General to specify an alternate startup file location and use a file manager to save TreePlan.xla there. When you start Excel, it tries to open all files in the XLStart directory and in the alternate startup file location.

For additional information visit "TreePlan FAQ" at www.treeplan.com.

After opening TreePlan.xla in Excel, the command "Decision Tree" appears at the bottom of the Tools menu (or, if you have a customized main menu, at the bottom of the sixth main menu item).

4.2 BUILDING A DECISION TREE IN TREEPLAN

You can start TreePlan either by choosing **Tools** | **Decision Tree** from the menu bar or by pressing **Ctrl+t** (hold down the Ctrl key and press t). If the worksheet doesn't have a decision tree, TreePlan prompts you with a dialog box with three options; choose **New Tree** to begin a new tree. TreePlan draws a default initial decision tree with its upper left corner at the selected cell. For example, the figure below shows the initial tree when \$B\$2 is selected. (Note that TreePlan writes over existing values in the spreadsheet: begin your tree to the *right* of the area where your data is stored, and *do not subsequently add or delete rows or columns in the tree-diagram area.*) In Excel 5 and 95 a terminal node is represented by a triangle instead of a vertical bar.

Figure 4.1 TreePlan Initial Default Decision Tree

Build up a tree by adding or modifying branches or nodes in the default tree. To change the branch labels or probabilities, click on the cell containing the label or probability and type the new label or probability. To modify the structure of the tree (e.g., add or delete branches or nodes in the tree), select the node or the cell containing the node in the tree to modify, and choose **Tools** | **Decision Tree** or press **Ctrl+t**. TreePlan will then present a dialog box showing the available commands.

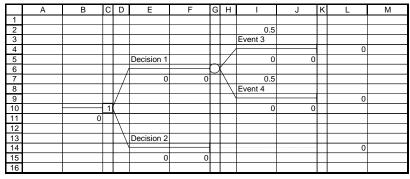

For example, to add an event node to the top branch of the tree shown above, select the square cell (cell G4) next to the vertical line at the end of a terminal branch and press **Ctrl+t**.. TreePlan then presents this dialog box.

Figure 4.2 TreePlan Terminal Dialog Box

To add an event node to the branch, we change the selected terminal node to an event node by selecting **Change to event node** in the dialog box, selecting the number of branches (here two), and pressing **OK**. TreePlan then redraws the tree with a chance node in place of the terminal node.

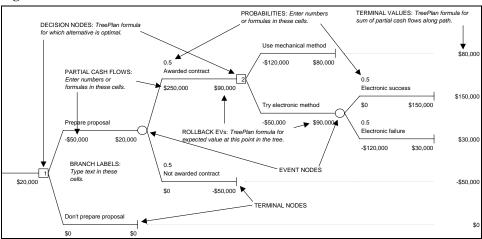
Figure 4.3

The dialog boxes presented by TreePlan vary depending on what you have selected when you choose **Tools** | **Decision Tree** or press **Ctrl+t**. The dialog box shown below is presented when you press **Ctrl+t** with an event node selected; a similar dialog box is

presented when you select a decision node. If you want to add a branch to the selected node, choose **Add branch** and press **OK**. If you want to insert a decision or event node before the selected node, choose **Insert decision** or **Insert event** and press **OK**. To get a description of the available commands, click on the **Help** button.

Figure 4.4

The **Copy subtree** command is particularly useful when building large trees. If two or more parts of the tree are similar, you can copy and paste "subtrees" rather than building up each part separately. To copy a subtree, select the node at the root of the subtree and choose **Copy subtree**. This tells TreePlan to copy the selected node and everything to the right of it in the tree. To paste this subtree, select a terminal node and choose **Paste subtree**. TreePlan then duplicates the specified subtree at the selected terminal node.


Since TreePlan decision trees are built directly in Excel, you can use Excel's commands to format your tree. For example, you can use bold or italic fonts for branch labels: select the cells you want to format and change them using Excel's formatting commands. To help you, TreePlan provides a **Select** dialog box that appears when you choose **Tools Decision Tree** or press **Ctrl+t** without a node selected. You can also bring up this dialog box by pressing the **Select** button on the **Node** dialog box. From here, you can select all items of a particular type in the tree. For example, if you choose **Probabilities** and press **OK**, TreePlan selects all cells containing probabilities in the tree. You can then format all of the probabilities simultaneously using Excel's formatting commands. (Because of limitations in Excel, the **Select** dialog box will not be available when working with very large trees.)

4.3 ANATOMY OF A TREEPLAN DECISION TREE

An example of a TreePlan decision tree is shown below. In the example, a firm must decide (1) whether to prepare a proposal for a possible contract and (2) which method to use to satisfy the contract. The tree consists of decision nodes, event nodes and terminal nodes connected by branches. Each branch is surrounded by cells containing formulas,

cell references, or labels pertaining to that branch. You may edit the labels, probabilities, and partial cash flows associated with each branch. The partial cash flows are the amount the firm "gets paid" to go down that branch. Here, the firm pays \$50,000 if it decides to prepare the proposal, receives \$250,000 up front if awarded the contract, spends \$50,000 to try the electronic method, and spends \$120,000 on the mechanical method if the electronic method fails.

Figure 4.5

The trees are "solved" using formulas embedded in the spreadsheet. The *terminal values* sum all the partial cash flows along the path leading to that terminal node. The tree is then "rolled back" by computing expected values at event nodes and by maximizing at decision nodes; the *rollback EVs* appear next to each node and show the expected value at that point in the tree. The numbers in the decision nodes indicate which alternative is optimal for that decision. In the example, the "1" in the first decision node indicates that it is optimal to prepare the proposal, and the "2" in the second decision node indicates the firm should try the electronic method because that alternative leads to a higher expected value, \$90,000, than the mechanical method, \$80,000.

TreePlan has a few options that control the way calculations are done in the tree. To select these options, press the **Options** button in any of TreePlan's dialog boxes. The first choice is whether to **Use Expected Values** or **Use Exponential Utility Function** for computing certainty equivalents. The default is to rollback the tree using expected values. If you choose to use exponential utilities, TreePlan will compute utilities of endpoint cash flows at the terminal nodes and compute expected utilities instead of expected values at event nodes. Expected utilities are calculated in the cell below the certainty equivalents. You may also choose to **Maximize (profits)** or **Minimize (costs)** at decision nodes; the default is to maximize profits. If you choose to minimize costs instead, the cash flows are

interpreted as costs, and decisions are made by choosing the minimum expected value or certainty equivalent rather than the maximum. See the Help file for details on these options.

4.4 STEP-BY-STEP TREEPLAN TUTORIAL

A decision tree can be used as a model for a sequential decision problems under uncertainty. A decision tree describes graphically the decisions to be made, the events that may occur, and the outcomes associated with combinations of decisions and events. Probabilities are assigned to the events, and values are determined for each outcome. A major goal of the analysis is to determine the best decisions.

Decision tree models include such concepts as nodes, branches, terminal values, strategy, payoff distribution, certainty equivalent, and the rollback method. The following problem illustrates the basic concepts.

DriveTek Problem

DriveTek Research Institute discovers that a computer company wants a new tape drive for a proposed new computer system. Since the computer company does not have research people available to develop the new drive, it will subcontract the development to an independent research firm. The computer company has offered a fee of \$250,000 for the best proposal for developing the new tape drive. The contract will go to the firm with the best technical plan and the highest reputation for technical competence.

DriveTek Research Institute wants to enter the competition. Management estimates a cost of \$50,000 to prepare a proposal with a fifty-fifty chance of winning the contract.

However, DriveTek's engineers are not sure about how they will develop the tape drive if they are awarded the contract. Three alternative approaches can be tried. The first approach is a mechanical method with a cost of \$120,000, and the engineers are certain they can develop a successful model with this approach. A second approach involves electronic components. The engineers estimate that the electronic approach will cost only \$50,000 to develop a model of the tape drive, but with only a 50 percent chance of satisfactory results. A third approach uses magnetic components; this costs \$80,000, with a 70 percent chance of success.

DriveTek Research can work on only one approach at a time and has time to try only two approaches. If it tries either the magnetic or electronic method and the attempt fails, the second choice must be the mechanical method to guarantee a successful model.

The management of DriveTek Research needs help in incorporating this information into a decision to proceed or not.

[Source: The tape drive example is adapted from Spurr and Bonini, *Statistical Analysis for Business Decisions*, Irwin.]

Nodes and Branches

Decision trees have three kinds of nodes and two kinds of branches. A decision node is a point where a choice must be made; it is shown as a square. The branches extending from a decision node are decision branches, each branch representing one of the possible alternatives or courses of action available at that point. The set of alternatives must be mutually exclusive (if one is chosen, the others cannot be chosen) and collectively exhaustive (all possible alternatives must be included in the set).

There are two major decisions in the DriveTek problem. First, the company must decide whether or not to prepare a proposal. Second, if it prepares a proposal and is awarded the contract, it must decide which of the three approaches to try to satisfy the contract.

An event node is a point where uncertainty is resolved (a point where the decision maker learns about the occurrence of an event). An event node, sometimes called a "chance node," is shown as a circle. The event set consists of the event branches extending from an event node, each branch representing one of the possible events that may occur at that point. The set of events must be mutually exclusive (if one occurs, the others cannot occur) and collectively exhaustive (all possible events must be included in the set). Each event is assigned a subjective probability; the sum of probabilities for the events in a set must equal one.

The three sources of uncertainty in the DriveTek problem are: whether it is awarded the contract or not, whether the electronic approach succeeds or fails, and whether the magnetic approach succeeds or fails.

In general, decision nodes and branches represent the controllable factors in a decision problem; event nodes and branches represent uncontrollable factors.

Decision nodes and event nodes are arranged in order of subjective chronology. For example, the position of an event node corresponds to the time when the decision maker learns the outcome of the event (not necessarily when the event occurs).

The third kind of node is a terminal node, representing the final result of a combination of decisions and events. Terminal nodes are the endpoints of a decision tree, shown as the end of a branch on hand-drawn diagrams and as a triangle on computer-generated diagrams.

The following table shows the three kinds of nodes and two kinds of branches used to represent a decision tree.

Figure 4.6 Nodes and Symbols	Figure	4.6	Nodes	and :	Symbols
------------------------------	--------	-----	-------	-------	---------

Type of Node	Written Symbol	Computer Symbol	Node Successor
Decision	square	square	decision branches
Event	circle	circle	event branches
Terminal	endpoint	triangle or bar	terminal value

Terminal Values

Each terminal node has an associated terminal value, sometimes called a payoff value, outcome value, or endpoint value. Each terminal value measures the result of a *scenario*: the sequence of decisions and events on a unique path leading from the initial decision node to a specific terminal node.

To determine the terminal value, one approach assigns a cash flow value to each decision branch and event branch and then sum the cash flow values on the branches leading to a terminal node to determine the terminal value. In the DriveTek problem, there are distinct cash flows associated with many of the decision and event branches. Some problems require a more elaborate value model to determine the terminal values.

The following diagram shows the arrangement of branch names, probabilities, and cash flow values on an unsolved tree.

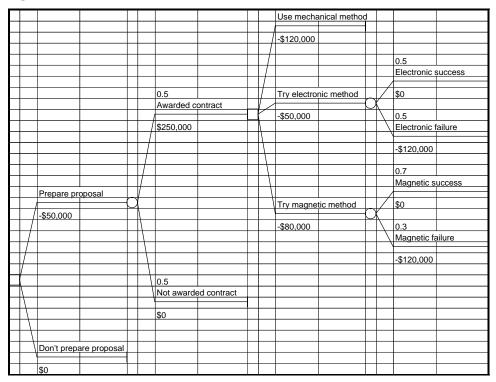


Figure 4.7

To build the decision tree, you use TreePlan's dialog boxes to develop the structure. You enter a branch name, branch cash flow, and branch probability (for an event) in the cells above and below the left side of each branch. As you build the tree diagram, TreePlan enters formulas in other cells.

Building the Tree Diagram

- 1. Start with a new worksheet. (If no workbook is open, choose File | New. If a workbook is open, choose Insert | Worksheet.)
- Select cell A1. From the Tools menu, choose Decision Tree. In the TreePlan New dialog box, click the New Tree button. A decision node with two branches appears.

Figure 4.8

Figure 4.9

	Α	В	С	D	E	F	G
1							
2				Decision 1			
3							0
4				0	0		
5		1					
6	0						
7				Decision 2			
8			'				0
9				0	0		

3. Do not type the quotation marks in the following instructions. Select cell D2, and enter **Prepare proposal**. Select cell D4, and enter **–50000**. Select cell D7, and enter **Don't prepare proposal**.

Figure 4.10

	Α	В	O	D	Е	F	G
1							
2				Prepare pr	oposal		
3							-50000
4				-50000	-50000		
5		2					
6	0						
7				Don't prepa	are proposa		
8			'				0
9				0	0		

4. Select cell F3. From the Tools menu, choose Decision Tree. In the TreePlan Terminal dialog box, select Change To Event Node, select Two Branches, and click OK. The tree is redrawn.

Figure 4.11

Figure 4.12

	Α	В	С	D	Е	F	G	Н	ı	J	K
1								0.5			
2								Event 3			
3											-50000
4				Prepare pro	oposal			0	-50000		
5						\bigcirc					
6				-50000	-50000			0.5			
7								Event 4			
8			/								-50000
9		2						0	-50000		
10	0		\								
11											
12				Don't prepa	are proposa						
13			,								0
14				0	0						

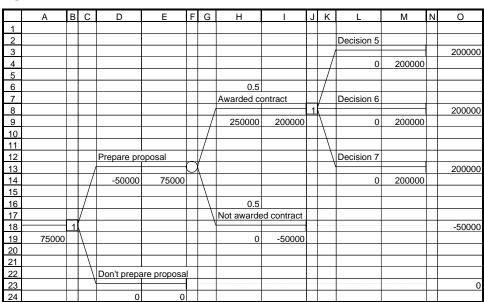

5. Select cell H2, and enter **Awarded contract**. Select cell H4, and enter **250000**. Select cell H7, and enter **Not awarded contract**.

Figure 4.13

	Α	В	С	D	Е	F	G	Н		J	K
1								0.5			
2								Awarded co	ontract		
3											200000
4				Prepare pro	oposal			250000	200000		
5			/			\bigcirc					
6				-50000	75000			0.5			
7								Not awarde	ed contract		
8			/								-50000
9		1						0	-50000		
10	75000										
11											
12				Don't prepa	are proposa	I					
13			_								0
14				0	0						

6. Select cell J3. From the Tools menu, choose Decision Tree. In the TreePlan Terminal dialog box, select Change To Decision Node, select Three Branches, and click OK. The tree is redrawn.

Figure 4.14

7. Select cell L2, and enter **Use mechanical method**. Select cell L4, and enter **120000**. Select cell L7, and enter **Try electronic method**. Select cell L9, and

enter **–50000**. Select cell L12, and enter **Try magnetic method**. Select cell L14, and enter **-80000**.

Figure 4.15

	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	Ν	0
1															
2												Use mecha	anical metho	od	
3															80000
4												-120000	80000		
5															
6								0.5			/				
7								Awarded co	ontract	L	/	Try electron	nic method		
8										2					150000
9							_/	250000	150000		Ι\	-50000	150000		
10							\perp				\perp				
11							_				\perp				
12				Prepare pro	oposal	$\overline{}$	_				<u> </u>	Try magne	tic method		
13			_/				—								120000
14			-/	-50000	50000		1					-80000	120000		
15			+				\perp								
16			+				\rightarrow	0.5							
17		\vdash						Not awarde	ed contract	_					
18		_1	١												-50000
19	50000		\vdash					0	-50000	\vdash				\vdash	
20			+							H					
21			+	Danill and						-					
22			\rightarrow	Don't prepa	ire proposa									Н	
23														\vdash	0
24				0	0										

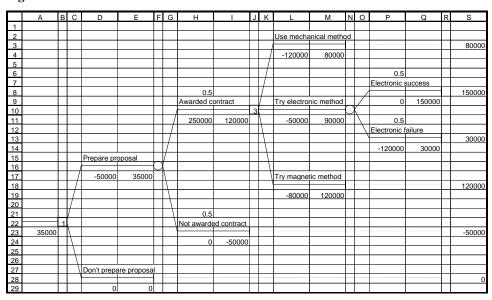

Select cell N8. From the Tools menu, choose Decision Tree. In the TreePlan Terminal dialog box, select Change To Event Node, select Two Branches, and click OK. The tree is redrawn.

Figure 4.16

	Α	В	С	D	Е	F	G	;	Н	ı	J	K	L	М	Ν	0	Р	Q	R	S
1																			П	
2													Use mecha	anical metho	pd					
3								Т											П	80000
4													-120000	80000						
5																				
6																	0.5			
7																	Event 8			
8									0.5							_	 			150000
9								Α	Awarded co	ontract			Try electro	nic method			0	150000		
10								\perp			2				\bigcirc	K				
11								/	250000	150000		\	-50000	150000			0.5			
12								4				1_					Event 9		Ш	
13												1					1		Ш	150000
14							I/					_\					0	150000		
15				Prepare pro	oposal		/					_\								
16						\bigcirc	<u> </u>					_\							Ш	
17			_/	-50000	50000		\						Try magne	tic method						
18							Ц													120000
19			\perp				\Box						-80000	120000					Ш	
20								Ш											Ш	
21							'	\L	0.5										Ш	
22		1				L	$oxed{oxed}$	\ N	Not awarde	ed contract	Ш				L				Ц	
23	50000		\																Ш	-50000
24			\			L		_	0	-50000					L				Ш	
25		Ш	1			L	$oxed{oxed}$	\perp			Ш				L				Ц	
26			_\					_											Ш	
27			_\	Don't prepa	are proposa	<u>l</u>													Ш	
28		Ш		'		L		1											Ш	0
29				0	0															

Select cell P7, and enter Electronic success. Select cell P12, and enter Electronic failure. Select cell P14, and enter -120000.

Figure 4.17

10. Select cell N18. From the Tools menu, choose Decision Tree. In the TreePlan Terminal dialog box, select Change To Event Node, select Two Branches, and click OK. The tree is redrawn.

Figure 4.18

	Α	В	С	D	Е	F	G	i	Н	1	J	K	L	М	Ν	0	Р	Q	R	S
1																			П	
2													Use mecha	anical metho	od				П	
3								Т								-			П	80000
4												- 1	-120000	80000					П	
5		П						T				\neg							П	
6		П										7					0.5		П	
7												1					Electronic	success		
8		П				Г		T				1			П				П	150000
9									0.5			1	Try electro	nic method		1	0	150000	П	
10		П						A۱	warded co	ontract		1 -	,		\Box	K			П	
11		П				Т		1			3		-50000	90000	ĭ		0.5		П	
12		П						/	250000	120000	Ŭ	\			T	$\overline{}$	Electronic		П	
13		П				ı		/		0000		1			t	Т,			Ħ	30000
14		П						+				1					-120000	30000	Ħ	00000
15		П					\forall	\top				1					120000	00000	П	
16		П					1	T				1					0.5		Ħ	
17		П					/	1				1					Event 10		П	
18		П		Prepare pre	onosal		/	\top				1				١,	EVOIR 10		Ħ	120000
19		П		r roparo pri	оросы	n		T				1	Try magne	tic method		1	0	120000	Ħ	120000
20		П	-/	-50000	35000	\vdash	١	1				_	magne	lio mounou	1	k^-		120000	П	
21		П	-/	00000	00000		1	\top					-80000	120000	Γ		0.5		H	
22		П	1				1	1					00000	120000		\vdash	Event 11		Ħ	
23		П	_				1	1								\vdash	2.00.11		Ħ	120000
24		П					1	\top									0	120000	П	120000
25		П	/				\vdash	T							T			0000	Ħ	
26		1				Т	Γ'	1	0.5						T				П	
27	35000	П	\			T		/N		d contract					T				H	
28	20000	П	1					1	2. 2. rai ac										Ħ	-50000
29		П	1			T		\dagger	0	-50000					T				H	50000
30		П	1			H		T		20000					t				H	
31		П	_			t		+							t				H	
32		Н	_	Don't prepa	are proposa	ıl		+			H				H				H	
33		Н	_	Don't prepa	are propose	Ϊ		+			H				H				H	0
34		Н		0	0	H		+			H				H				H	- 0
J4		\mathbf{L}		U	U	_									_		1		ш	

Select cell P16, and enter .7. Select cell P17, and enter Magnetic success. Select cell P21, and enter .3. Select cell P22, and enter Magnetic failure. Select cell P24, and enter **–120000**.

Use mechanical metho 80000 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 -120000 80000 0.5 Electronic success 150000 0.5 Try electronic method 15000 Awarded contract -50000 250000 90000 Electronic failure 30000 -120000 30000 Magnetic success 120000 Prepare proposal Try magnetic method -50000 -80000 84000 0.3 Magnetic failure -120000 0.5 Not awarded contract -50000 -50000 Don't prepare proposal

Figure 4.19

12. Double-click the sheet tab (or right-click the sheet tab and choose Rename from the shortcut menu), and enter **Original**. Save the workbook.

Interpreting the Results

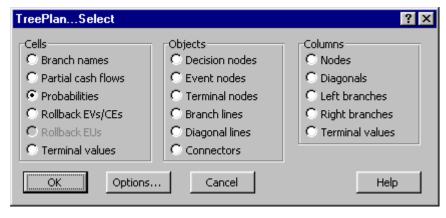
The \$30,000 terminal value on the far right of the diagram in cell S13 is associated with the following scenario:

Figure 4.20

Branch Type	Branch Name	Cash Flow
Decision	Prepare proposal	-\$50,000
Event	Awarded contract	\$250,000
Decision	Try electronic method	-\$50,000
Event	Electronic failure (Use mechanical method)	_\$120,000
	Terminal value	\$30,000

TreePlan put the formula =SUM(P14,L11,H12,D20) into cell S13 for determining the terminal value.

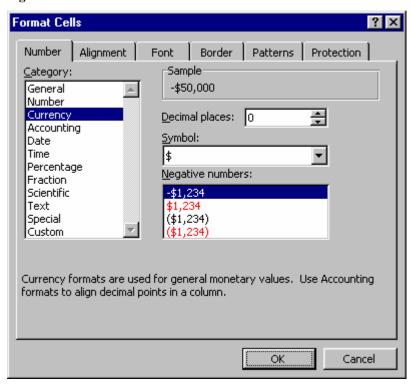
Other formulas, called rollback formulas, are in cells below and to the left of each node. These formulas are used to determine the optimal choice at each decision node.


In cell B26, a formula displays 1, indicating that the first branch is the optimal choice. Thus, the initial choice is to prepare the proposal. In cell J11, a formula displays 2, indicating that the second branch (numbered 1, 2, and 3, from top to bottom) is the optimal choice. If awarded the contract, DriveTek should try the electronic method. A subsequent chapter provides more details about interpretation.

Formatting the Tree Diagram

The following steps show how to use TreePlan and Excel features to format the tree diagram. You may choose to use other formats for your own tree diagrams.

- 13. From the Edit menu, choose Move or Copy Sheet (or right-click the sheet tab and choose Move Or Copy from the shortcut menu). In the lower left corner of the Move Or Copy dialog box, check the Create A Copy box, and click OK.
- 14.On sheet Original (2), select cell H9. From the Tools menu, choose Decision Tree. In the TreePlan Select dialog box, verify that the option button for Cells with Probabilities is selected, and click OK. With all probability cells selected, click the Align Left button.


Figure 4.21

15. Select cell H12. From the Tools menu, choose Decision Tree. In the TreePlan Select dialog box, verify that the option button for Cells with Partial Cash Flows is selected, and click OK. With all partial cash flow cells selected, click the Align Left button. With those cells still selected, choose Format | Cells. In the Format Cells dialog box, click the Number tab. In the Category list box, choose

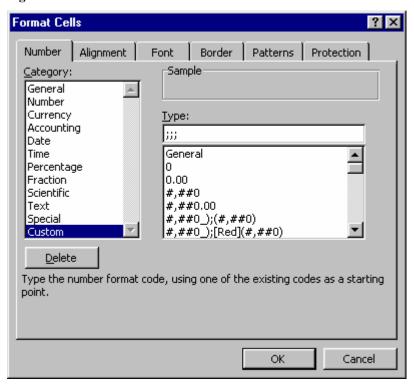
Currency; type **0** (zero) for Decimal Places; select \$ in the Symbol list box; select -\$1,234 for Negative Numbers. Click OK.

Figure 4.22

- 16. Select cell I12. From the Tools menu, choose Decision Tree. In the TreePlan Select dialog box, verify that the option button for Cells with Rollback EVs/CEs is selected, and click OK. With all rollback cells selected, choose Format | Cells. Repeat the Currency formatting of step 16 above.
- 17. Select cell S3. From the Tools menu, choose Decision Tree. In the TreePlan Select dialog box, verify that the option button for Cells with Terminal Values is selected, and click OK. With all terminal value cells selected, choose Format | Cells. Repeat the Currency formatting of step 16 above.

Use mechanical method 3 \$80,000 4 -\$120,000 \$80.000 5 6 7 Electronic success 8 \$150,000 \$150,000 Try electronic method 10 11 Awarded contract -\$50,000 \$90,000 0.5 12 13 \$250,000 \$90,000 Electronic failure \$30,000 14 15 16 17 -\$120,000 \$30,000 Magnetic success 18 19 \$120,000 Try magnetic method \$0 \$120,000 20 21 -\$80.000 \$84.000 0.3 22 Magnetic failure -\$120,000 Not awarded contract -\$50,000 \$0 -\$50,000 31 32 Don't prepare proposal

Figure 4.23

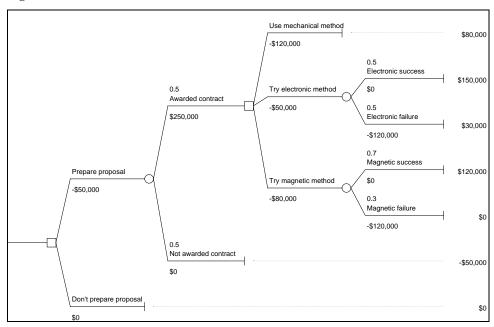

18. Double-click the Original (2) sheet tab (or right-click the sheet tab and choose Rename from the shortcut menu), and enter **Formatted**. Save the workbook.

Displaying Model Inputs

When you build a decision tree model, you may want to discuss the model and its assumptions with co-workers or a client. For such communication it may be preferable to hide the results of formulas that show rollback values and decision node choices. The following steps show how to display only the model inputs.

- 19. From the Edit menu, choose Move or Copy Sheet (or right-click the sheet tab and choose Move Or Copy from the shortcut menu). In the lower left corner of the Move Or Copy dialog box, check the Create A Copy box, and click OK.
- 20. On sheet Formatted (2), select cell B1. From the Tools menu, choose Decision Tree. In the TreePlan Select dialog box, verify that the option button for Columns with Nodes is selected, and click OK. With all node columns selected, choose Format | Cells | Number. In the Category list box, select Custom. Select the entry in the Type edit box, and type ;;; (three semicolons). Click OK.

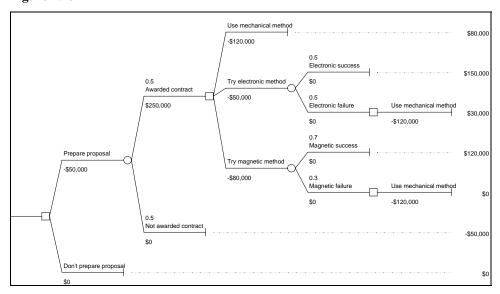
Figure 4.24


Explanation: A custom number format has four sections of format codes. The sections are separated by semicolons, and they define the formats for positive numbers, negative numbers, zero values, and text, in that order. When you specify three semicolons without format codes, Excel does not display positive numbers, negative numbers, zero values, or text. The formula remains in the cell, but its result is not displayed. Later, if you want to display the result, you can change the format without having to enter the formula again. Editing an existing format does not delete it. All formats are saved with the workbook unless you explicitly delete a format.

- 21. Select cell A27. From the Tools menu, choose Decision Tree. In the TreePlan Select dialog box, verify that the option button for Cells with Rollback EVs/CEs is selected, and click OK. With all rollback values selected, choose Format | Cells | Number. In the Category list box, select Custom. Scroll to the bottom of the Type list box, and select the three-semicolon entry. Click OK.
- 22. Double-click the Formatted (2) sheet tab (or right-click the sheet tab and choose Rename from the shortcut menu), and enter **Model Inputs**. Save the workbook.

Printing the Tree Diagram

- 23. In the Name Box list box, select TreeDiagram (or select cells A1:S34).
- 24. To print the tree diagram from Excel, with the tree diagram range selected choose File | Print Area | Set Print Area. Choose File | Page Setup. In the Page Setup dialog box, click the Page tab; for Orientation click the option button for Landscape, and for Scaling click the option button for Fit To 1 Page Wide By 1 Page Tall. Click the Header/Footer tab; in the Header list box select None, and in the Footer list box select None (or select other appropriate headers and footers). Click the Sheet tab; clear the check box for Gridlines, and clear the check box for Row And Column Headings. Click OK. Choose File | Print and click OK.
- 25. To print the tree diagram from Word, clear the check boxes for Gridlines and for Row And Column Headings on Excel's Page Setup dialog box Sheet tab. Select the tree diagram range. Hold down the Shift key and from the Edit menu choose Copy Picture. In the Copy Picture dialog box, click the option button As Shown When Printed, and click OK. In Word select the location where you want to paste the tree diagram and choose Edit | Paste.


Figure 4.25

Alternative Model

If you want to emphasize that the time constraint forces DriveTek to use the mechanical approach if they try either of the uncertain approaches and experience a failure, you can change the terminal nodes in cells R13 and R23 to decision nodes, each with a single branch.

Figure 4.26

4.5 DECISION TREE SOLUTION

Strategy

A strategy specifies an initial choice and any subsequent choices to be made by the decision maker. The subsequent choices usually depend upon events. The specification of a strategy must be comprehensive; if the decision maker gives the strategy to a colleague, the colleague must know exactly which choice to make at each decision node.

Most decision problems have many possible strategies, and a goal of the analysis is to determine the optimal strategy, taking into account the decision maker's risk attitude. There are four strategies in the DriveTek problem. One of the strategies is: Prepare the proposal; if not awarded the contract, stop; if awarded the contract, try the magnetic method; if the magnetic method is successful, stop; if the magnetic method fails, use the mechanical method. The four strategies will be discussed in detail below.

Payoff Distribution

Each strategy has an associated payoff distribution, sometimes called a risk profile. The payoff distribution of a particular strategy is a probability distribution showing the probability of obtaining each terminal value associated with a particular strategy.

In decision tree models, the payoff distribution can be shown as a list of possible payoff values, x, and the discrete probability of obtaining each value, P(X=x), where X represents the uncertain terminal value associated with a strategy. Since a strategy specifies a choice at each decision node, the uncertainty about terminal values depends only on the occurrence of events. The probability of obtaining a specific terminal value equals the product of the probabilities on the event branches on the path leading to the terminal node.

DriveTek Strategies

In this section each strategy of the DriveTek problem is described by a shorthand statement and a more detailed statement. The possible branches following a specific strategy are shown in decision tree form, and the payoff distribution is shown in a table with an explanation of the probability calculations.

Strategy 1 (Mechanical): Prepare; if awarded, use mechanical.

Details: Prepare the proposal; if not awarded the contract, stop (payoff = -\$50,000); if awarded the contract, use the mechanical method (payoff = \$80,000).

Figure 4.27

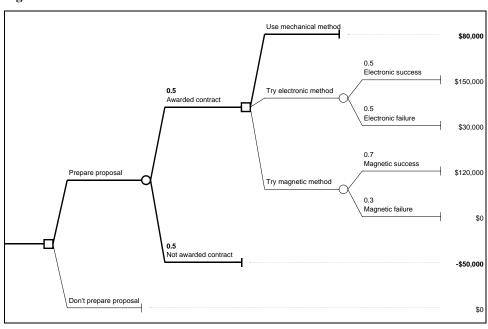


Figure 4.28

	Probability
Value, x	P(X=x)
\$80,000	0.50
-\$50,000	0.50
	1.00

Strategy 2 (Electronic): Prepare; if awarded, try electronic.

Details: Prepare the proposal; if not awarded the contract, stop (payoff = -\$50,000); if awarded the contract, try the electronic method; if the electronic method is successful, stop (payoff = \$150,000); if the electronic method fails, use the mechanical method (payoff = \$30,000).

Figure 4.29

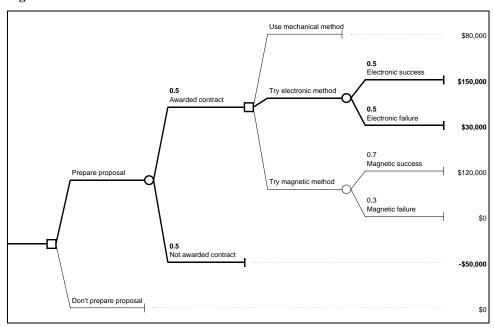


Figure 4.30

Value, x	Probability P(X=x)	
\$150,000	0.25	= 0.5 * 0.5
\$30,000	0.25	= 0.5 * 0.5
-\$50,000	0.50	
	1.00	

Strategy 3 (Magnetic): Prepare; if awarded, try magnetic.

Details: Prepare the proposal; if not awarded the contract, stop (payoff = -\$50,000); if awarded the contract, try the magnetic method; if the magnetic method is successful, stop (payoff = \$120,000); if the magnetic method fails, use the mechanical method (payoff = \$0).

Figure 4.31

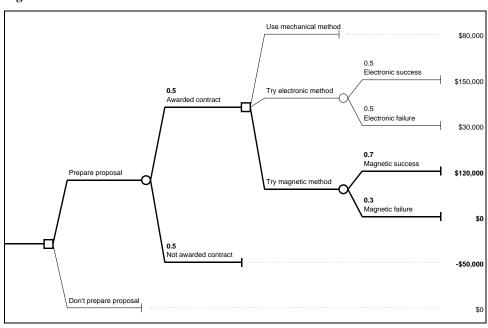


Figure 4.32

Value, x	Probability P(X=x)	
\$120,000	0.35	= 0.5 * 0.7
\$0	0.15	= 0.5 * 0.3
-\$50,000	0.50	
	1.00	

Strategy 4 (Don't): Don't.

Details: Don't prepare the proposal (payoff = \$0).

Figure 4.33

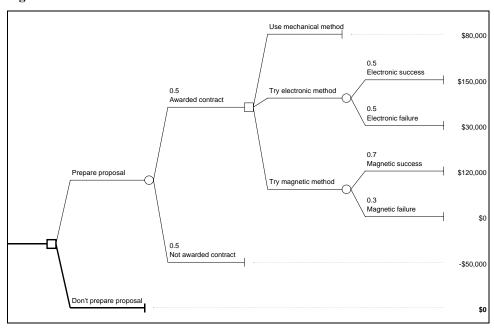


Figure 4.34

Strategy Choice

Since each strategy can be characterized completely by its payoff distribution, selecting the best strategy becomes a problem of choosing the best payoff distribution.

One approach is to make a choice by direct comparison of the payoff distributions.

T7.		4	25
H 19	ure	4.).

Strategy 1 (Mechanical)		Strategy 2 (Electronic)	
	Probability		Probability
Value, x	P(X=x)	Value, x	P(X=x)
\$80,000	0.50	\$150,000	0.25
-\$50,000	0.50	\$30,000	0.25
	1.00	-\$50,000	0.50
			1.00
			1.00
Strategy 3 (N	Magnetic)	Strategy 4 (I	
Strategy 3 (N	Magnetic) Probability	Strategy 4 (I	
Strategy 3 (N	8 /	Strategy 4 (I	Oon't)
<i>&</i> \	Probability		Don't) Probability
Value, x	Probability P(X=x)	Value, x	Don't) Probability P(X=x)
Value, x \$120,000	Probability P(X=x) 0.35	Value, x	Probability P(X=x) 1.00

Another approach for making choices involves certainty equivalents.

Certainty Equivalent

A certainty equivalent is a certain payoff value which is equivalent, for the decision maker, to a particular payoff distribution. If the decision maker can determine his or her certainty equivalent for the payoff distribution of each strategy, then the optimal strategy is the one with the highest certainty equivalent.

The certainty equivalent is the minimum selling price for a payoff distribution; it depends on the decision maker's personal attitude toward risk. A decision maker may be risk preferring, risk neutral, or risk avoiding.

If the terminal values are not regarded as extreme (relative to the decision maker's total assets), if the decision maker will encounter other decision problems with similar payoffs, and if the decision maker has the attitude that he or she will "win some and lose some," then the decision maker's attitude toward risk may be described as risk neutral.

If the decision maker is risk neutral, the expected value is the appropriate certainty equivalent for choosing among the strategies. Thus, for a risk neutral decision maker, the optimal strategy is the one with the highest expected value.

The expected value of a payoff distribution is calculated by multiplying each terminal value by its probability and summing the products. The expected value calculations for each of the four strategies of the DriveTek problem are shown below.

Figure 4.36

a		
Strategy	1	(Mechanical)

	Probability	
Value, x	P(X=x)	x * P(X=x)
\$80,000	0.50	\$40,000
-\$50,000	0.50	-\$25,000
		\$15,000

Strategy 2 (Electronic)

	Probability	
Value, x	P(X=x)	x * P(X=x)
\$150,000	0.25	\$37,500
\$30,000	0.25	7,500
-\$50,000	0.50	-\$25,000
		\$20,000

Strategy 3 (Magnetic)

	Probability	
Value, x	P(X=x)	x * P(X=x)
\$120,000	0.35	\$42,000
\$0	0.15	\$0
-\$50,000	0.50	-\$25,000
		\$17,000

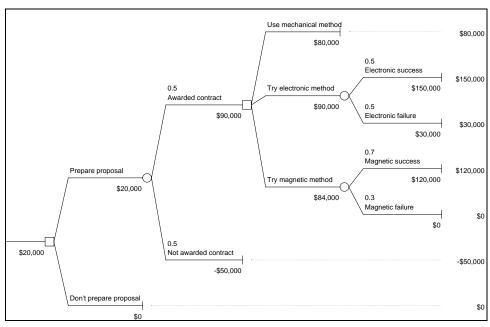
Strategy 4 (Don't)

T 7 1	Probability	* D/W
Value, x	P(X=x)	x * P(X=x)
\$0	1.00	\$0
		\$0

The four strategies of the DriveTek problem have expected values of \$15,000, \$20,000, \$17,000, and \$0. Strategy 2 (Electronic) is the optimal strategy with expected value \$20,000.

A risk neutral decision maker's choice is based on the expected value. However, note that if strategy 2 (Electronic) is chosen, the decision maker does not receive \$20,000. The actual payoff will be \$150,000, \$30,000, or -\$50,000, with probabilities shown in the payoff distribution.

Rollback Method

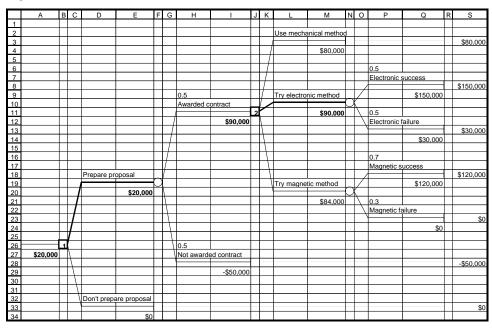

If we have a method for determining certainty equivalents (expected values for a risk neutral decision maker), we don't need to examine every possible strategy explicitly. Instead, the method known as rollback determines the single best strategy.

The rollback algorithm, sometimes called backward induction or "average out and fold back," starts at the terminal nodes of the tree and works backward to the initial decision node, determining the certainty equivalent rollback values for each node. Rollback values are determined as follows:

- At a terminal node, the rollback value equals the terminal value.
- At an event node, the rollback value for a risk neutral decision maker is
 determined using expected value; the branch probability is multiplied times the
 successor rollback value, and the products are summed.
- At a decision node, the rollback value is set equal to the highest rollback value on the immediate successor nodes.

In TreePlan tree diagrams the rollback values are located to the left and below each decision, event, and terminal node. Terminal values and rollback values for the DriveTek problem are shown below.

Figure 4.37


Optimal Strategy

After the rollback method has determined certainty equivalents for each node, the optimal strategy can be identified by working forward through the tree. At the initial decision node, the \$20,000 rollback value equals the rollback value of the "Prepare proposal" branch, indicating the alternative that should be chosen. DriveTek will either be awarded the contract or not; there is a subsequent decision only if DriveTek obtains the contract. (In a more complicated decision tree, the optimal strategy must include decision choices for all decision nodes that might be encountered.) At the decision node following "Awarded contract," the \$90,000 rollback value equals the rollback value of the "Try electronic method" branch, indicating the alternative that should be chosen. Subsequently, if the electronic method fails, DriveTek must use the mechanical method to satisfy the contract.

Cell B26 has the formula =IF(A27=E20,1,IF(A27=E34,2)) which displays 1, indicating that the first branch is the optimal choice. Thus, the initial choice is to prepare the proposal. Cell J11 has the formula =IF(I12=M4,1,IF(I12=M11,2,IF(I12=M21,3))) which displays 2, indicating that the second branch (numbered 1, 2, and 3, from top to bottom) is the optimal choice. If awarded the contract, DriveTek should try the electronic method.

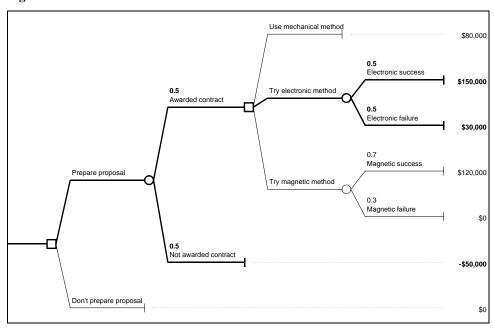

The pairs of rollback values at the relevant decision nodes (\$20,000 and \$90,000) and the preferred decision branches are shown below in bold.

Figure 4.38

Taking into account event branches with subsequent terminal nodes, all branches and terminal values associated with the optimal risk neutral strategy are shown below.

Figure 4.39

The rollback method has identified strategy 2 (Electronic) as optimal. The rollback value on the initial branch of the optimal strategy is \$20,000, which must be the same as the expected value for the payoff distribution of strategy 2. Some of the intermediate calculations for the rollback method differ from the calculations for the payoff distributions, but both approaches identify the same optimal strategy with the same initial expected value. For decision trees with a large number of strategies, the rollback method is more efficient.

4.6 NEWOX DECISION TREE PROBLEM

The Newox Company is considering whether or not to drill for natural gas on its own land. If they drill, their initial expenditure will be \$40,000 for drilling costs. If they strike gas, they must spend an additional \$30,000 to cap the well and provide the necessary hardware and control equipment. (This \$30,000 cost is not a decision; it is associated with the event "strike gas.") If they decide to drill but no gas is found, there are no other subsequent alternatives, so their outcome value is \$-40,000.

If they drill and find gas, there are two alternatives. Newox could sell to West Gas, which has made a standing offer of \$200,000 to purchase all rights to the gas well's production

(assuming that Newox has actually found gas). Alternatively, if gas is found, Newox can decide to keep the well instead of selling to West Gas; in this case Newox manages the gas production and takes its chances by selling the gas on the open market.

At the current price of natural gas, if gas is found it would have a value of \$150,000 on the open market. However, there is a possibility that the price of gas will rise to double its current value, in which case a successful well will be worth \$300,000.

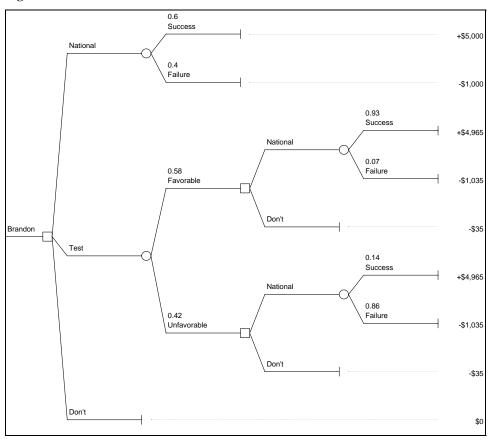
The company's engineers feel that the chance of finding gas is 30 percent; their staff economist thinks there is a 60 percent chance that the price of gas will double.

4.7 BRANDON DECISION TREE PROBLEM

Brandon Appliance Corporation, a predominant producer of microwave ovens, is considering the introduction of a new product. The new product is a microwave oven that will defrost, cook, brown, and boil food as well as sense when the food is done.

Brandon must decide on a course of action for implementing this new product line. An initial decision must be made to (1) nationally distribute the product from the start, (2) conduct a marketing test first, or (3) not market the product at all. If a marketing test is conducted, Brandon will consider the result and then decide whether to abandon the product line or make it available for national distribution.

The finance department has provided some cost information and probability assignments relating to this decision. The preliminary costs for research and development have already been incurred and are considered irrelevant to the marketing decision. A success nationally will increase profits by \$5,000,000, and failure will reduce them by \$1,000,000, while abandoning the product will not affect profits. The test market analysis will cost Brandon an additional \$35,000.


If a market test is not performed, the probability of success in a national campaign is 60 percent. If the market test is performed, the probability of a favorable test result is 58 percent. With favorable test results, the probability for national success is approximately 93 percent. However, if the test results are unfavorable, the national success probability is approximately 14 percent.

Decision Tree Strategies

Brandon Appliance Corporation must decide on a course of action for implementing this new microwave oven. An initial decision must be made to (1) nationally distribute the product from the start, (2) conduct a marketing test first, or (3) not market the product at all. If a marketing test is conducted, Brandon will consider the result and then decide whether to abandon the product line or make it available for national distribution. The

following decision tree is based on information about cash flows and probability assignments.

Figure 4.40

In a decision tree model, a strategy is a specification of an initial choice and any subsequent choices that must be made by the decision maker.

How many strategies are there in the Brandon problem?

Describe each strategy.

0.6 Success +\$5,000 0.4 Failure -\$1,000 0.93 Success +\$4,965 National 0.07 Failure 0.58 Favorable -\$1,035 Don't -\$35 0.14 Success +\$4,965 National 0.86 Failure -\$1,035 Don't -\$35 Don't \$0

Figure 4.41 Strategy 1: National

0.6 Success +\$5,000 0.4 Failure -\$1,000 0.93 Success +\$4,965 National 0.07 Failure 0.58 Favorable -\$1,035 -\$35 0.14 Success +\$4,965 National 0.42 Unfavorable -\$1,035 -\$35 Don't \$0

Figure 4.42 Strategy 2: Test; if Favorable, National; if Unfavorable, National

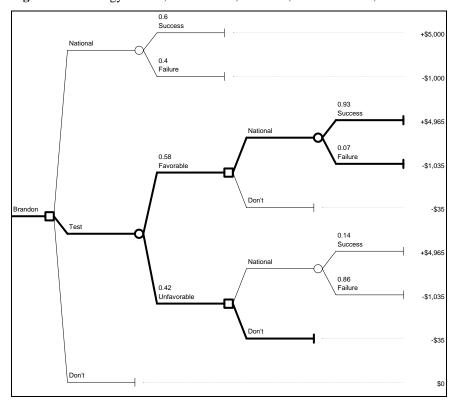


Figure 4.43 Strategy 3: Test; if Favorable, National; if Unfavorable, Don't

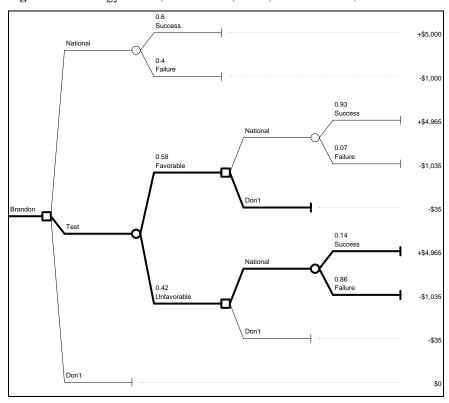


Figure 4.44 Strategy 4: Test; if Favorable, Don't; if Unfavorable, National

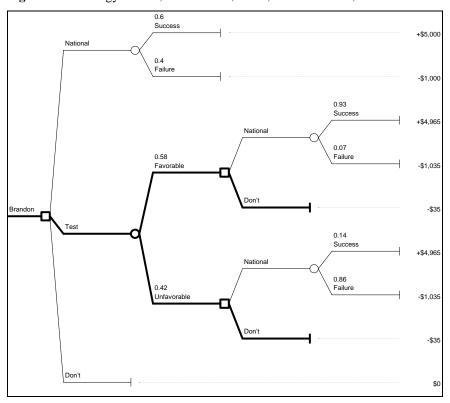
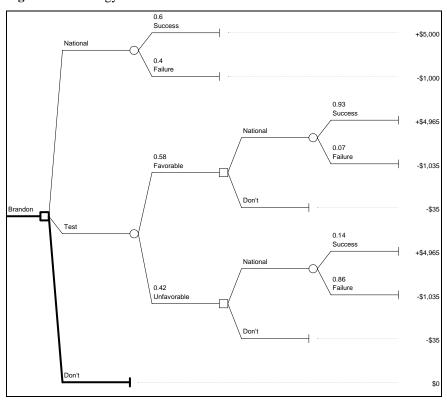



Figure 4.45 Strategy 5: Test; if Favorable, Don't; if Unfavorable, Don't

Figure 4.46 Strategy 6: Don't

Multiattribute Utility

5.1 APPLICATIONS OF MULTI-ATTRIBUTE UTILITY

Strategy for Dealing with Microcomputer Networking

Impact on microcomputer users

Productivity enhancement

User satisfaction

Impact on mainframe capacity

Costs

Upward compatibility of the network

Impacts on organizational structure

Risks

Purchase of manufacturing machinery

Price

Technical features

Service

Choosing a manager candidate

Education

Management skills

Technical skills

Personal skills

Choosing a beverage container (soft drink industry)

Energy to produce

Cost

Environmental waste

Customer service

Selecting a best job

Monetary compensation

Geographical location

Travel requirements

Nature of work

5.2 MULTIATTRIBUTE UTILITY SWING WEIGHTS

Excel Workbook Clemen15.xls

Conflicting Objectives: Fundamental Objectives versus Means Objectives

Clemen, Making Hard Decisions, Ch. 15

Multiattribute Utility

Set of Objectives should be

- 1) complete
- 2) as small as possible
- 3) not redundant
- 4) decomposable ("independent" or unrelated)

Additive Utility Function

Overall Score of Alternative = Sum [Weight times Attribute Score of Alternative]

Figure 5.1 Data for Example

8			
<u>Attribute</u>	Red Portalo	Blue Norushi	Yellow Standard
Life span, in years	12	9	6
Price	\$17,000	\$10,000	\$8,000
Color	Red	Blue	Yellow

Attribute Scores

Figure 5.2 Individual Utility for Life Span

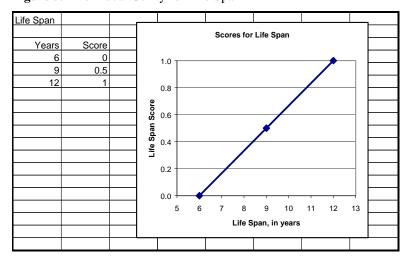


Figure 5.3 Individual Utility for Price

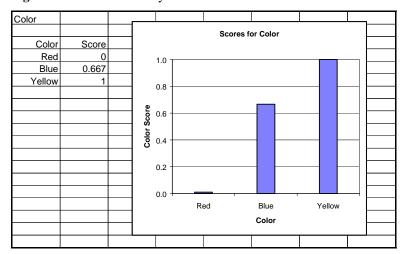


Figure 5.4 Individual Utility for Color

Swing Weights

Figure 5.5 Swing Weight Assessment Display

	А	В	С	D	Е	F	G
1	Swing Weights						
2							
3		Consequ	ence to Co	mpare			
4	Attribute Swung from						
5	Worst to Best	Life span	Price	Color	Rank	Rate	Weight
6	(Benchmark)	6 years	\$17,000	red	4	0	0.000
7	Life span	12 years	\$17,000	red	2	75	0.405
8	Price	6 years	\$8,000	red	1	100	0.541
9	Color	6 years	\$17,000	yellow	3	10	0.054
10						185	

- Hypothetical alternatives (number of attributes plus one)
 Benchmark alternative is worst for all attributes
 Each other hypothetical alternative has one attribute at best, all others at worst
- 2) Rank the hypothetical alternatives
- 3) Benchmark has rating zero, first ranked alternative has rating 100

Assign level-of-satisfaction ratings to the intermediate alternatives

4) Weight equals rating divided by sum of ratings

Figure 5.6 Swing Weight Assessment Formulas

	А	В	С	D	Е	F	G
1	Swing Weights						
2							
3		Consequ	ence to Co	mpare			
4	Attribute Swung from						
5	Worst to Best	Life span	Price	Color	Rank	Rate	Weight
6	(Benchmark)	6 years	\$17,000	red	4	0	=F6/\$F\$10
7	Life span	12 years	\$17,000	red	2	75	=F7/\$F\$10
8	Price	6 years	\$8,000	red	1	100	=F8/\$F\$10
9	Color	6 years	\$17,000	yellow	3	10	=F9/\$F\$10
10						=SUM(F6:F9)

Overall Scores

Figure 5.7 Swing Weight Overall Scores Display

_									
		J	K	L	M	N	0	Р	Q
1	Overall Scores	3							
2									
3		Red P	ortalo		Blue N	orushi		Yellow S	Standard
4		Attribute	Attribute		Attribute	Attribute		Attribute	Attribute
5	Attribute	Value	Score		Value	Score		Value	Score
6	Life span	12	1.000		9	0.500		6	0.000
7	Price	\$17,000	0.000		\$10,000	0.780		\$8,000	1.000
8	Color	Red	0.000		Blue	0.667		Yellow	1.000
9									
10	Overall Score		0.40541			0.66038			0.59459
11									
12	Best	Blue Norus	shi						

Figure 5.8 Swing Weight Overall Scores Formulas

	I	J	K	L	М	N	0	Р	Q	R
1	Overall Scores									
2										
3			Red Portalo			Blue Norushi			Yellow Standard	
4		Attribute	Attribute		Attribute	Attribute		Attribute	Attribute	
5	Attribute	Value	Score		Value	Score		Value	Score	
6	Life span	12	1.000		9	0.500		6	0.000	
7	Price	\$17,000	0.000		\$10,000	0.780		\$8,000	1.000	
8	Color	Red	0.000		Blue	0.667		Yellow	1.000	
9										
10	Overall Score		=SUMPRODUCT(\$G\$7:\$	G\$9,K6:K	(8)	=SUMPRODUCT(\$G\$7:\$	G\$9,N6:N	18)	=SUMPRODUCT(\$G\$7:\$	G\$9,Q6:Q8)
11										
12	Best	=IF(K10=MAX(K10,N10,Q10),"Red Portalo",IF(N10=MAX(K10,N10,Q10),"Blue Norushi","Yellow Standard"))								

Figure 5.9 Sensitivity Analysis

	U	V	W	Χ	Υ	Z	AA
1		Sensitivity Analysis Data Tab		oles			
2			•				
3		Life Span F	Rate (10 to 100)		Color Rate	(0 to 75)	
4							
5		W9 Output	Formula: =J12		Z9 Output I	Formula: =J12	
6		Column Inp	out Cell: F7		Column Inp	out Cell: F9	
7							
8	Life	Span Rate	Best		Color Rate	Best	
9		-					
10		10	Yellow Standard		0	Blue Norushi	
11		15	Yellow Standard		5	Blue Norushi	
12		20	Yellow Standard		10	Blue Norushi	Base Case
13		25	Yellow Standard		15	Blue Norushi	
14		30	Yellow Standard		20	Blue Norushi	
15		35	Yellow Standard		25	Blue Norushi	
16		40	Yellow Standard		30	Blue Norushi	
17		45	Yellow Standard		35	Blue Norushi	
18		50	Yellow Standard		40	Blue Norushi	
19		55	Blue Norushi		45	Blue Norushi	
20		60	Blue Norushi		50	Yellow Standard	
21		65	Blue Norushi		55	Yellow Standard	
22		70	Blue Norushi		60	Yellow Standard	
23	Base Case	75	Blue Norushi		65	Yellow Standard	
24		80	Blue Norushi		70	Yellow Standard	
25		85	Blue Norushi		75	Yellow Standard	
26		90	Blue Norushi				
27		95	Blue Norushi				
28		100	Blue Norushi				

5.3 SENSITIVITY ANALYSIS METHODS

SENSITIVITY ANALYSIS FOR MULTI-ATTRIBUTE UTILITY USING EXCEL

This paper describes several standard methods for analyzing decisions where the outcomes have multiple attributes. The example problem concerns a large company that is planning to purchase several hundred cars for use by the sales force. The company wants a car that is inexpensive, safe, and lasts a long time. Figure 1 shows data for seven cars that are being considered.

С Α В Ε F G Н Alternatives 2 Attribute Bulldog Cruiser Fleet Alta **Delta** Egret Garnett \$16 \$14 3 Cost \$12 \$10 \$20 \$18 \$15 4 Lifetime 10 8 5 Safety High Medium High Medium Medium Low Low 7 Cost thousands of dollars 8 Lifetime expected years 9 Safety third-party rating

Figure 1 Attribute Data for Seven Alternatives

Other attributes might be important, e.g., comfort and prestige. The cost attribute should include operating costs, insurance, and salvage value, in addition to purchase price. It might be appropriate to combine the cost and lifetime attributes into a single attribute, e.g., cost per year. Clemen [1] suggests that a set of attributes should be complete (so that all important objectives are included), as small as possible (to facilitate analysis), not redundant (to avoid double-counting a common underlying characteristic), and decomposable (so that the decision maker can think about each attribute separately).

Dominance

An alternative can be eliminated if another alternative is better on some objectives and no worse on the others. The Garnett is more expensive than the Delta, has the same lifetime, and has a lower safety rating. So the Garnett can be eliminated from further consideration.

Monetary Equivalents Assessment

One method for comparing multi-attribute alternatives is to subjectively assign monetary values to the non-monetary attributes. For example, the decision maker may determine that each additional year of expected lifetime is worth \$500, medium safety is \$4,000 better than low safety, and high safety is \$6,000 better than low safety. Arbitrarily using Fleet as the base case with total equivalent cost of \$10,000, Figure 2 shows costs and equivalent costs, in thousands of dollars, in rows 9:11. The negative entries for Lifetime and Safety correspond to positive benefits relative to the Fleet car's base case values.

Based on this method, the Egret is chosen. Sensitivity analysis, not shown here, would involve seeing how the choice depends on subjective equivalents different from the \$500 per year lifetime and the \$4,000 and \$6,000 safety assessments.

Hammond et al. [3] describe another method involving even swaps that could be used to select the best alternative.

С Α В D F G Non-Dominated Alternatives <u>Attribu</u>te Fleet 2 Alta Bulldog Cruiser Delta Egret 3 \$20 \$14 \$10 Cost \$18 \$16 \$12 4 Lifetime, years 10 10 8 8 5 Safety rating High Medium High Medium Medium Low 6 Non-Dominated Alternatives 8 Attribute Alta Bulldog Fleet Cruiser Delta **Egret** 9 Cost \$20 \$18 \$16 \$14 \$12 \$10 10 Lifetime, \$ -\$2 -\$1 -\$1 \$0 \$0 -\$2 -\$6 \$0 11 Safety, \$ -\$4 -\$6 -\$4 -\$4 12 Equiv. Cost \$12 \$12 \$9 \$9 \$8 \$10

Figure 2 Monetary Equivalents for Non-Dominated Alternatives

Additive Utility Function

The additive multi-attribute utility function U includes individual utility functions U_i for each attribute x_i , usually scaled from 0 to 1, and weights w_i that reflect the decision maker's tradeoffs among the attributes.

$$U(x_1,x_2,x_3) = w_1 \cdot U_1(x_1) + w_2 \cdot U_2(x_2) + w_3 \cdot U_3(x_3), \text{ where } w_1 + w_2 + w_3 = 1$$
 (1)

Weights may be specified directly, as ratios, or using a swing weight procedure. Individual utility functions are assessed using the range of attribute values for the alternatives being considered.

The individual utility values for Cost and Lifetime shown in Figure 3 are based on proportional scores, corresponding to linear utility functions. For example, each thousand dollar difference in cost is associated with a 0.1 difference in utility. The utility values for Safety are subjective judgments. For example, the decision maker thinks that a change in Safety from Low to Medium achieves only two-thirds of the satisfaction associated with a change from Low to High.

Α В С D Ε F G Non-Dominated Alternatives 2 Attribute <u>Alta</u> **Bulldog** <u>Cruiser</u> <u>Delta</u> **Egret** Fleet 3 Cost \$10 \$14 \$20 \$18 \$16 \$12 4 Lifetime 10 10 8 8 6 High Safety High Medium Medium Medium Low Assess individual utility for each attribute. 8 Cost U(\$20,000)=0, U(\$10,000)=1, linear 9 Lifetime U(6 years)=0, U(10 years)=1, linear 10 Safety U(Low)=0, U(Medium)=2/3, U(High)=1 11 12 Non-Dominated Alternatives 13 Attribute Alta Bulldog Delta Fleet Cruiser **Egret** 14 Cost 0.000 0.200 0.400 0.600 0.800 1.000 15 Lifetime 1.000 1.000 0.500 0.500 0.000 0.000 16 Safety 1.000 0.667 1.000 0.667 0.667 0.000

Figure 3 Individual Utilities

Compared to the assessments for individual utility, the assessments for tradeoffs are usually much more difficult to make. The following sections focus on assessments of tradeoff weights and sensitivity analysis.

Weight Ratio Assessment

One method for measuring trade-offs among the conflicting objectives is to assess weight ratios. For example, the decision maker may judge that cost is five times as important as lifetime, which may be interpreted to mean that the change in overall satisfaction corresponding to a change in cost from \$20,000 to \$10,000 is five times the change in overall satisfaction corresponding to a change in lifetime from 6 years to 10 years. Similarly, the decision maker may judge that a \$10,000 decrease in cost is one and a half times as satisfying as a change from a low to a high safety rating. The assessments are shown in cells J4:J5 in Figure 4.

В С D Α F G Н 1 .I Non-Dominated Alternatives Assess weight ratios. 2 Attribute Bulldog Cruiser Delta **Egret** <u>Fleet</u> Cost 0.000 0.200 0.400 0.600 0.800 1.000 Weight Ratio Input 4 Lifetime 1.000 1.000 0.500 0.500 0.000 0.000 Cost/Lifetime 5.0 5 Safety 1.000 0.667 1.000 0.667 0.667 0.000 Cost/Safety 1.5 0.536 Overall 0.464 0.452 0.625 0.613 0.667 Weights 8 0.536 Cost 9 Max Value 0.667 0.107 Lifetime 10 Location Safety 0.357 11 Choice Egret 13 Choice Egret

Figure 4 Weight Ratio Assessment and Choice

With three attributes, the two assessed weight ratios determine two equations and the requirement that the weights sum to one determines a third equation. Using algebra, a solution for the three unknown weights is shown in cells J8:J10 in Figure 5.

The formula for overall utility in cell B7, with a relative reference to the attribute utilities in B3:B5 and an absolute reference to the weights in J8:J10, is copied to cells C7:G7.

The MAX worksheet function determines the maximum overall utility in B7:G7, the MATCH function determines the location of that maximum in B7:G7, and the INDEX function returns the alternative name located in B2:G2. The zero argument in the MATCH function is needed to specify that an exact match is required; the zero argument in the INDEX function is used as a placeholder and could be omitted in this application without affecting the results. Cell B13 combines these functions into a single formula.

Fig	ure 5 Fo	rmulas for	Weight Ratio	Assessment a	nd Cho	ice
	^		D		_	

	Α	В	Н		J
1		Non-Dominated Alternatives		Assess weight ratios.	
2	<u>Attribute</u>	<u>Alta</u>			
3	Cost	0		Weight Ratio	Input
4	Lifetime	1		Cost/Lifetime	<u>5</u>
5	Safety	1		Cost/Safety	<u>1.5</u>
6					
7	Overall	=SUMPRODUCT(B3:B5,\$J\$8:\$J\$10)		Weights	
8				Cost	=1/(1/J4+1/J5+1)
9	Max Value	=MAX(B7:G7)		Lifetime	=J8/J4
10	Location	=MATCH(B9,B7:G7,0)		Safety	=J8/J5
11	Choice	=INDEX(B2:G2,0,B10)			
12					
13	Choice	=INDEX(B2:G2,0,MATCH(MAX(B7:G7),B7:G7,0))			

After deleting cells A9:B12, the single formula is in cell B9. The arrangement shown in Figure 6 is used for the remaining analyses.

В С D Α G Non-Dominated Alternatives Fleet 2 **Attribute** <u>Alta</u> <u>Bulldog</u> Cruiser <u>Delta</u> **Egret** 3 Cost 0.400 1.000 0.000 0.200 0.600 0.800 4 Lifetime 1.000 1.000 0.500 0.500 0.000 0.000 5 Safety 1.000 0.000 1.000 0.667 0.667 0.667 6 Overall 0.464 0.452 0.625 0.613 0.667 0.536 8 Choice 9 Egret

Figure 6 Weight Ratio Choice for Sensitivity Analysis

Weight Ratio Sensitivity Analysis

The decision maker specified tradeoffs using weight ratios, so it is appropriate to see whether the choice is sensitive to changes in those assessed values. To construct a two-way data table for sensitivity analysis of the weight ratios as shown in Figures 7 and 8, enter a set of values in a row, N4:R4, and another set of values in a column, M5:M13. In the top left cell of the data table, M4, enter a formula for determining the data table's output values, =B9. (To improve the appearance of the table, cell M4 is formatted with a custom three-semicolon format so that the formula result is not displayed.) Select M4:R13. Choose Data | Table. In the Data Table dialog box, specify J4 as the Row Input Cell and J5 as the Column Input Cell. Click OK.

	L	М	N	0	Р	Q	R
1	Two-Factor S	Sensitivity A	nalysis				
2							
3			Cost/Lifetin	ne Weight F	Ratio		
4			3.0	4.0	5.0	6.0	7.0
5	Cost/Safety	1.00	Cruiser	Cruiser	Cruiser	Cruiser	Cruiser
6	Weight	1.25	Cruiser	Egret	Egret	Egret	Egret
7	Ratio	1.50	Egret	Egret	Egret	Egret	Egret
8		1.75	Egret	Egret	Egret	Egret	Egret
9		2.00	Egret	Egret	Egret	Egret	Egret
10		2.25	Egret	Egret	Egret	Egret	Egret
11		2.50	Egret	Egret	Egret	Egret	Egret
12		2.75	Egret	Egret	Egret	Egret	Egret
13		3.00	Egret	Egret	Egret	Egret	Egret

Figure 7 Coarse Two-Factor Sensitivity Analysis of Weight Ratios

Cell P7, corresponding to the original assessments, has a border. The data table is dynamic, so the macro view may be refined near the base-case assessments by specifying different input values.

M Ν 0 Q R Two-Factor Sensitivity Analysis 2 Cost/Lifetime Weight Ratio 3 5.0 5.5 6.0 4 4.0 Cost/Safety 5 1.00 Cruiser Cruiser Cruiser Cruiser Cruiser Weight 1.10 Cruiser Cruiser Cruiser Egret Egret 7 Ratio 1.20 Cruiser Egret Egret Egret Egret 8 1.30 Egret Egret Egret Egret Egret 9 1.40 Egret Egret Egret Egret Egret 1.50 10 Egret Egret Egret Egret Egret 11 1.60 Egret Egret Egret Egret Egret 12 1.70 Egret Egret Egret Egret Egret 1.80 Egret Egret Egret Egret Egret

Figure 8 Fine Two-Factor Sensitivity Analysis of Weight Ratios

Figure 8 shows that the Cost/Safety weight ratio must be less than 1.2 to affect the choice. If the decision maker regards 1.2 as "far away" from 1.5, then the Egret choice is appropriate. Otherwise, the decision maker should think more carefully about the original assessments before making a choice based on this analysis. The assessment of the Cost/Lifetime weight ratio is not as critical, because any value between 4 and 6 yields the same choice.

Swing Weight Assessment

Compared to weight ratio assessment, the swing weight method requires assessments that are similar to directly assigning an overall utility to an alternative. However, the hypothetical alternatives requiring assessment in this method are constructed so that it should be easier for the decision maker to assign overall utilities to them instead of to the actual alternatives.

The swing weight method involves four steps as shown in Figure 9.

- Develop the hypothetical alternatives. The number of hypothetical alternatives
 equals the number of attributes plus one. The benchmark alternative in column J
 is worst for all attributes. Each other hypothetical alternative, shown in columns
 K, L, and M, has one attribute at best and all others at worst.
- 2) Rank the hypothetical alternatives, as shown in row 7. This is an intermediate step that facilitates assigning overall utilities.
- 3) Assign overall utility scores reflecting overall satisfaction for the hypothetical alternatives. The benchmark worst case has score zero, and the first-ranked alternative has score 100. Then assign level-of-satisfaction scores to the intermediate alternatives, as shown in cells L9 and M9.

4) Sum the scores, as shown in cell N9. In the additive utility function, the weight for each attribute equals the score divided by sum of the scores. (The algebra solution, not shown here, is based on the special zero and one individual utility values of the hypothetical alternatives.) Formulas are shown in Figure 10.

Figure 9 Hypothetical Alternatives and Weights for Swing Weight Assessment

	I	J	K	L	M	N
1			Hypotheti	cal Alternatives	i	
2	<u>Attribute</u>	Worst	Best Cost	Best Lifetime	Best Safety	
3	Cost	\$20	\$10	\$20	\$20	
4	Lifetime	6	6	10	6	
5	Safety	Low	Low	Low	High	
6						
7	Rank	4	<u>1</u>	<u>3</u>	<u>2</u>	
8						Total
9	Overall Score	0	100	<u>20</u>	<u>70</u>	190
10						
11	Weight	0.000	0.526	0.105	0.368	
12						
13	Decision Make	r's Inputs U	nderlined			

Figure 10 Formulas for Swing Weight Assessment

	I	J	K	L	М	N
1		Нурс	othetical Alte	ernatives		
2	<u>Attribute</u>	Worst	Best Cost	Best Lifetime	Best Safety	
3	Cost	20	10	20	20	
4	Lifetime	6	6	10	6	
5	Safety	Low	Low	Low	High	
6						
7	Rank	4	<u>1</u>	<u>3</u>	2	
8						Total
9	Overall Score	0	100	<u>20</u>	<u>70</u>	=SUM(J9:M9)
10						
11	Weight	=J9/\$N\$9	=K9/\$N\$9	=L9/\$N\$9	=M9/\$N\$9	
12						
13	Decision Make	r's Inputs U	nderlined			

The individual utility values are in a column, and the weights are in a row. The SUMPRODUCT function requires that the two arrays for its arguments have the same orientation, so the TRANSPOSE function converts the weights into a column format, as shown in Figure 11. The function in B7 must be array-entered; after typing the function, hold down Control and Shift while you press Enter.

Figure 11 Formulas for Swing Weight Choice

	Α	В
1		Non-Dominated Alternatives
2	<u>Attribute</u>	<u>Alta</u>
3	Cost	0
4	Lifetime	1
5	Safety	1
6		
7	Overall	=SUMPRODUCT(B3:B5,TRANSPOSE(\$K\$11:\$M\$11))
8		
9	Choice	=INDEX(B2:G2,0,MATCH(MAX(B7:G7),B7:G7,0))

Figure 12 Swing Weight Choice

	Α	В	С	D	E	F	G					
1			Non-Dominated Alternatives									
2	<u>Attribute</u>	<u>Alta</u>	Bulldog	Cruiser	<u>Delta</u>	Egret	Fleet					
3	Cost	0.000	0.200	0.400	0.600	0.800	1.000					
4	Lifetime	1.000	1.000	0.500	0.500	0.000	0.000					
5	Safety	1.000	0.667	1.000	0.667	0.667	0.000					
6												
7	Overall	0.474	0.456	0.632	0.614	0.667	0.526					
8												
9	Choice	Egret										

Swing Weight Sensitivity Analysis

The decision maker specified tradeoffs using overall scores for the hypothetical alternatives, so it is appropriate to see whether the choice is sensitive to changes in those assessed values. Figure 13 shows the sensitivity for the Best-Lifetime score that was specified as 20 relative to the worst-case benchmark and the highest-ranked Best-Cost hypothetical alternative. The Best-Lifetime alternative is still ranked 3 as long as its score is between 0 and 70.

To improve the appearance of the sensitivity analysis tables in Figure 13, the output formula cells, R13 and T13, have a three-semicolon custom format.

Q R S U Т Single-Factor Sensitivity Analysis 2 Best Lifetime Overall Score 3 4 Base case Score is 20 Rank 3 as long as Score is between 0 and 70 5 6 Output Formula in cell R13: =B9 8 Data Table Column Input Cell: M9 9 10 Detail 11 Best Lifetime Best Lifetime 12 Overall Score Choice Overall Score Choice 13 14 Egret 30 Egret 15 5 Egret 31 Egret 16 10 Egret 32 Egret 17 15 33 Egret Egret 18 Base Case 20 Egret 34 Cruiser 19 25 Egret 35 Cruiser 20 21 22 23 24 25 30 Egret 35 Cruiser 40 Cruiser 45 Cruiser

Cruiser

Cruiser

Cruiser

Cruiser Cruiser

50

55

60

65

26

27

Figure 13 Sensitivity Analysis of Swing Weight Best-Lifetime Score

The results in the left table Figure 13, cells Q13:R28, indicate that the Best-Lifetime score must be greater than 30 to affect the choice. A refined data table in cells T13:U19 shows that the score must be greater than 33 before the choice changes from Egret to Cruiser. If the decision maker regards 33 as "far away" from 20, then the Egret choice is appropriate.

Figure 14 shows a similar sensitivity analysis for the Best-Safety score. The assessed score of 70 must be greater than 89 to affect the choice.

Figure 14 Sensitivity Analysis of Swing Weight Best-Safety Score

	W	Х	Υ	Z	AA	AB
1	Single-Facto	or Sensitivity	Analysis			
2						
3	Best Safety	Overall Sco	re			
4	Base case S	Score is 70				
5	Rank 2 as lo	ng as Score	e is betweer	n 20 and 10	0	
6						
7		II AB13: =B9	9			
8						
9						
10					Detail	
11		Best Safety		l	Best Safety	
12	Ov	erall Score	Choice	Ov	erall Score	Choice
13						
14		20	Fleet		85	Egret
15		25	Fleet		86	Egret
16		30	Fleet		87	Egret
17		35	Egret		88	Egret
18		40	Egret		89	Egret
19		45	Egret		90	Cruiser
20		50	Egret			
21		55	Egret			
22		60	Egret			
23		65	Egret			
24	Base Case	70	Egret			
25		75	Egret			
26		80	Egret			
27		85	Egret			
28		90	Cruiser			
29		95	Cruiser			
30		100	Cruiser			

To construct a two-way data table for sensitivity analysis of the swing weight assessments as shown in Figure 15, enter a set of values in a row, R4:V4, and another set of values in a column, Q5:Q13. In the top left cell of the data table, Q4, enter a formula for determining the data table's output values, =B9. (To improve the appearance of the table, cell Q4 is formatted with a custom three-semicolon format so that the formula result is not displayed.) Select Q4:V13. Choose Data | Table. In the Data Table dialog box, specify L9 as the Row Input Cell and M9 as the Column Input Cell. Click OK.

Q S U R Т ٧ Two-Way Sensitivity Analysis 2 3 Best Lifetime Overall Score 4 10 25 30 15 50 5 Best Egret Egret Egret Egret Egret Safety 55 Egret Egret Egret Egret Egret Overall 60 Egret Egret Egret Egret Egret 8 Score 65 Egret Egret Egret Egret Egret 9 70 Egret Egret Egret Egret Egret 10 75 Egret Egret Egret Egret Cruiser 11 80 Egret Egret Cruiser Egret Egret 12 85 Egret Cruiser Cruiser Egret Egret 13 90 Egret Egret Cruiser Cruiser Cruiser

Figure 15 Sensitivity Analysis of Both Swing Weight Scores

The table shows that the choice changes from Egret to Cruiser if the combination of assessments is changed from 20 & 70 to 30 & 75. This table could be refined to examine the exact threshold values.

Direct Weight Assessment and Sensitivity Analysis

In some situations the decision maker may be able to assign tradeoff weights directly. Figure 16 shows results using the formulas shown in Figure 17.

Figure 16 Direct Weight Assessment

	Α	В	С	D	E	F	G	Н	I	J
1			No	n-Dominate			Weights			
2	<u>Attribute</u>	Alta	Bulldog	Cruiser	Delta	Egret	Fleet		Cost	0.500
3	Cost	0.000	0.200	0.400	0.600	0.800	1.000		Lifetime	0.100
4	Lifetime	1.000	1.000	0.500	0.500	0.000	0.000		Safety	0.400
5	Safety	1.000	0.667	1.000	0.667	0.667	0.000			
6										
7	Overall	0.500	0.467	0.650	0.617	0.667	0.500			
8										
9	Choice	Egret								

The formula in cell B9 includes an IF function to verify that each weight is between 0 and 1, inclusive, and that the sum of the weights equals one. If not, the formula returns empty text. This formula must be array-entered; after typing the function, hold down Control and Shift while you press Enter.

Figure 17 Formulas for Direct Weight Assessment

	Α	В	Н	ı	J
1		Non-Dominated Alternatives		Weights	
2	<u>Attribute</u>	<u>Alta</u>		Cost	0.5
3	Cost	0		Lifetime	0.1
4	Lifetime	1		Safety	=1-J3-J2
5	Safety	1			
6					
7	Overall	=SUMPRODUCT(B3:B5,\$J\$2:\$J\$4)			
8					
9	Choice	=IF(AND(SUM(J2:J4)<=1,J2:J4>=0),INDEX(B2:G2,0,MATCH(MAX(B7:G7),B7:G7,0)),"")			

Figure 18 shows a two-way table for sensitivity analysis of the weights. Cell R5 corresponds to the approximate base case assessments in the weight ratio and swing weight methods.

Figure 18 Sensitivity Analysis of Direct Weight Assessment

	L	М	N	0	Р	Q	R	S	Т	U	V
1	Two-Factor S	Sensitivity A	nalysis								
2											
3			Cost Wei	ght							
4			0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5	Lifetime	0.1	Alta	Cruiser	Cruiser	Cruiser	Egret	Egret	Fleet	Fleet	Fleet
6	Weight	0.2	Alta	Alta	Cruiser	Cruiser	Cruiser	Egret	Fleet	Fleet	
7		0.3	Alta	Alta	Alta	Cruiser	Delta	Fleet	Fleet		
8		0.4	Alta	Alta	Alta	Bulldog	Bulldog	Fleet			
9		0.5	Alta	Alta	Alta	Bulldog	Bulldog				
10		0.6	Alta	Alta	Bulldog	Bulldog					
11		0.7	Alta	Bulldog	Bulldog						
12		0.8	Alta	Bulldog							
13		0.9	Bulldog								

Figure 19 is a more detailed view. The choice formula in cell B9 is modified by placing the INDEX function inside the LEFT function so that only the first letter of the alternative's name is returned.

M N O P Q R S T U V W X Y Z AA AB AC AD AE Cost Weight 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
 0.00
 0.05
 0.10
 0.15
 0.20
 0.25
 0.30
 0.35
 0.40
 0.45
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.50
 0.55
 0.55
 0.55
 0.55
 <td 5 Lifetime 0.00 F F 6 Weight 0.05 F 9 0.20 F F 10 11 0.25 A A A A A A D D D 13 14 15 16 0.40 Α Α Α Α Α A A Α В В B D 0.45 Α Α Α Α Α Α Α В B B B B A A A A A A B B B B 0.50 A B B A B B A A A A Α 0.60 A A Α Α В 18 19 ВВ 0.65 Α A A A Α В Α В 0.70 A A B B 0.75 Α Α В 0.80 Α Α 22 Α В В A В 0.95 В

Figure 19 Detailed Sensitivity Analysis of Direct Weight Assessment

The results in Figure 19 show that all alternatives in this data set are candidates depending on the tradeoffs specified by the decision maker. In general, moving left to right, if more weight is given to cost, a less expensive alternative is chosen.

Summary

This paper considered three methods for assessing tradeoffs in the additive utility function. For each method sensitivity analysis is useful for gaining insight into which tradeoff assumptions are critical. Kirkwood [2] includes Excel VBA methods for sensitivity analysis of individual utility functions in addition to weights.

Sensitivity Analysis Examples References

- [1] Clemen, R.T. Making Hard Decisions: An Introduction to Decision Analysis, 2nd Edition. Duxbury Press, 1996.
- [2] Kirkwood, C.W. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets. Duxbury Press, 1997.
- [3] Hammond, J.S., Keeney, R.L., and Raiffa, H. Smart Choices: A Practical Guide to Making Better Decisions. Harvard Business School Press, 1999.

Screenshots from Excel to Word

To copy Excel displays for the figures in this paper, choose File | Page Setup | Sheet | Gridlines and File | Page Setup | Sheet | Row And Column Headings. Select the cell range, hold down the Shift key, and in Excel's main menu choose Edit | Copy Picture | As Shown When Printed. In Word, position the pointer in an empty paragraph and choose Edit | Paste.

Product Mix Optimization

6.1 LINEAR PROGRAMMING CONCEPTS

Formulation

Decision variables (Excel Solver "Changing Cells")

Objective function ("Target Cell")

Constraints and right-hand-side values ("Constraints")

Non-negativity constraints ("Constraints")

Graphical Solution

Constraints

Feasible region

Corner points (extreme points)

Objective function value at each corner point

Total enumeration vs. simplex algorithm (search)

Optimal solution

Sensitivity Analysis

Post-optimality analysis and interpretation of computer print-outs

Shadow price (a marginal value)

(Excel Solver Sensitivity Report, Constraints section, "Shadow Price")

The shadow price for a particular constraint is the amount of change in the value of the objective function corresponding to a unit change in the right-hand-side value of the constraint.

Range on a right-hand-side (RHS) value

(Excel Solver Sensitivity Report, Constraints section, "Allowable Increase/Decrease")

Range over which the shadow price applies. The optimal values of the decision variables would change depending on the exact RHS value, but the current mix of decision variables remains optimal over the specified range of RHS values.

Range on an objective function coefficient

(Excel Solver Sensitivity Report, Changing Cells section, "Allowable Increase/Decrease")

Range over which an objective function coefficient could change with the current optimal solution remaining optimal (same mix and values of decision variables). The value of the objective function would change depending on the exact value of the objective function coefficient.

Simplex algorithm terminology

Slack, surplus, and artificial variables

Basic variables (variables "in the solution," typically with non-zero values)

Non-basic variables (value equal to zero)

Complementary slackness

6.2 BASIC PRODUCT MIX PROBLEM

Figure 6.1 Display

	Α	В	С	D	E	F	G
1	Small Examp	le 1: Product mi	x problem				
2	Your compan	y manufactures	TVs and ste	ereos, using	a commor	n parts inve	ntory
3	of power supp	limited supp	oly and you	must			
4	determine the	most profitable	mix of prod	ucts to buil	d.		
5							
6			TV set	Stereo		RHS	
7	Nι	mber to Build->	250	100	Used	Available	Slack
8	Part Name	Chassis	1	1	350	450	100
9		Picture Tube	1	0	250	250	0
10		Speaker Cone	2	2	700	800	100
11		Power Supply	1	1	350	450	100
12		Electronics	2	1	600	600	0
13			Profit				
14	Per Unit		\$75	\$50			
15		By Product	\$18,750	\$5,000			
16		Total	\$23,750				

Figure 6.2 Formulas

		_	•		_	_	
	Α	В	С	D	E	F	G
1	Small Examp	le 1: Product mi	x problem				
2	Your compan	y manufactures	TVs and ste	ereos, using	g a common parts inventory		
3	of power supp	olies, speaker co	nes, etc. F	Parts are in	limited supply and you must		
4	determine the						
5							
6			TV set	Stereo		RHS	
7	Nu	mber to Build->	250	100	Used	Available	Slack
8	Part Name	Chassis	1	1	=SUMPRODUCT(\$C\$7:\$D\$7,C8:D8)	450	=F8-E8
9		Picture Tube	1	0	=SUMPRODUCT(\$C\$7:\$D\$7,C9:D9)	250	=F9-E9
10		Speaker Cone	2	2	=SUMPRODUCT(\$C\$7:\$D\$7,C10:D10)	800	=F10-E10
11		Power Supply	1	1	=SUMPRODUCT(\$C\$7:\$D\$7,C11:D11)	450	=F11-E11
12		Electronics	2	1	=SUMPRODUCT(\$C\$7:\$D\$7,C12:D12)	600	=F12-E12
13			Profit				
14		Per Unit	\$75	\$50			
15		By Product =C14*C7 =D14*D7					
16		Total	=SUMPRC	DUCT(C7:	D7,C14:D14)		

Figure 6.3 Graphical Solution

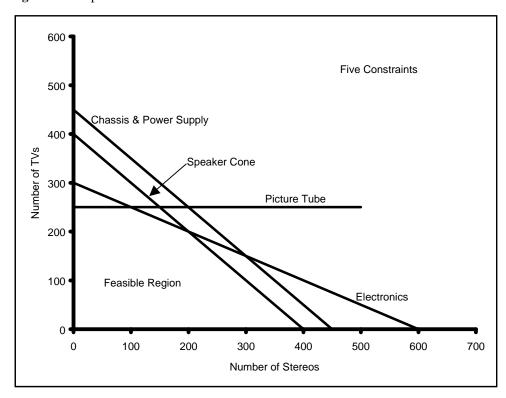


Figure 6.4 Solver Solution

	Α	В	С	D	Е	F	G
6			TV set	Stereo		RHS	
7	Nu	mber to Build->	200	200	Used	Available	Slack
8	Part Name	Chassis	1	1	400	450	50
9		Picture Tube	1	0	200	250	50
10		Speaker Cone	2	2	800	800	0
11		Power Supply	1	1	400	450	50
12		Electronics	2	1	600	600	0
13			Profit				
14		Per Unit	\$75	\$50			
15		By Product	\$15,000	\$10,000			
16		Total	\$25,000				

Figure 6.5 Solver Answer Report

Ta	rget Ce	II (Max)									
1	Cell	Name	Original Value	Final Value	-						
	\$C\$16	Total Profit	\$23,750	\$25,000							
Adjustable Cells											
	Cell	Name	Original Value	Final Value							
	\$C\$7	Number to Build-> TV set	250	200							
	\$D\$7	Number to Build-> Stereo	100	200							
,	\$D\$7	Number to Build-> Stereo	100	200	-						
Co	\$D\$7		100	200							
Co			Cell Value	Formula	Status	Slack					
Co	onstraint	ts	Cell Value		Status Not Binding	Slack 50					
Co	onstraint Cell	ts Name	Cell Value	Formula							
Co	cell \$E\$8 \$E\$9	Name Chassis Used Picture Tube Used	Cell Value 400 200	Formula \$E\$8<=\$F\$8	Not Binding Not Binding	50					
Co	cell \$E\$8 \$E\$9 \$E\$10	Name Chassis Used Picture Tube Used	Cell Value 400 200 800	Formula \$E\$8<=\$F\$8 \$E\$9<=\$F\$9	Not Binding Not Binding Binding	50 50					

Figure 6.6 Solver Sensitivity Report

A	Adjustable Cells											
			Final	Reduced	Objective	Allowable	Allowable					
	Cell	Name	Value	Cost	Coefficient	Increase	Decrease					
	\$C\$7	Number to Build-> TV set	200	\$0.00	\$75.00	\$25.00	\$25.00					
	\$D\$7	Number to Build-> Stereo	200	\$0.00	\$50.00	\$25.00	\$12.50					
Co	Constraints											
•												
			Final	Shadow	Constraint	Allowable	Allowable					
	Cell	Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease					
	Cell \$E\$8	Name Chassis Used										
			Value	Price	R.H. Side	Increase	Decrease					
	\$E\$8 \$E\$9	Chassis Used	Value 400	Price \$0.00	R.H. Side 450	Increase 1E+30	Decrease 50					
	\$E\$8 \$E\$9 \$E\$10	Chassis Used Picture Tube Used	Value 400 200	\$0.00 \$0.00	R.H. Side 450 250	1E+30 1E+30	Decrease 50 50					

Figure 6.7 Solver Limits Report

		Target					
	Cell Name		Value				
	\$C\$16	\$25,000					
'							
		Adjustable		 Lower	Target	Upper	Target
	Cell	Name	Value	Limit	Result	Limit	Result
	\$C\$7	Number to Build-> TV set	200	 0	\$10,000	200	\$25,000
	\$D\$7	Number to Build-> Stereo	200	 0	\$15,000	200	\$25,000

6.3 OUTDOORS PROBLEM

Outdoors, Inc., has lawn furniture as one of its product lines. They currently have three items in that line: a lawn chair, a standard bench, and a table. These products are produced in a two-step manufacturing process involving the tube bending department and the welding department. The hours required by each item in each department is as follows:

		Product		
Department	Chair	Bench	Table	Present Capacity
Bending	1.2	1.7	1.2	1,000 hours
Welding	0.8	0.0	2.3	1,200 hours

The profit contribution that Outdoors receives from manufacture and sale of one unit of each product is \$3 for a chair, \$3 for a bench, and \$5 for a table.

The company is trying to plan its production mix for the current selling season. They feel that they can sell any number they produce, but unfortunately production is further limited by available material because of a prolonged strike. The company currently has on hand 2,000 pounds of tubing. The three products require the following amounts of this tubing: 2 pounds per chair, 3 pounds per bench, and 4.5 pounds per table.

In order to determine the optimal product mix, the production manager has formulated the linear programming problem as shown below.

		Product			
	Chair	Bench	Table		
Contribution	\$3	\$3	\$5		
Constraint	_			Relation	Limit
Bending	1.2	1.7	1.2	<=	1,000
Welding	0.8	0.0	2.3	<=	1,200
Tubing	2.0	3.0	4.5	<=	2,000

- A. The inventory manager suggests that the company produce 200 units of each product. Is the plan to produce 200 units of each product a feasible plan, i.e., does it satisfy all contraints? If not, which constraints are not satisfied?
- B. If the company produces 200 chairs, 200 benches, and 200 tables, how much tubing, if any, will be left over?

Each of the following questions refer to the solution of the original linear programming problem.

- C. A local manufacturing firm has excess capacity in its welding department and has offered to sell 100 hours of welding time to Outdoors for \$3 per hour. This arrangement would cost \$300 and would increase welding capacity from 1,200 hours to 1,300 hours. Should Outdoors purchase the additional welding capacity? Why or why not?
- D. The marketing manager thinks that the original estimate of \$3 profit contribution per chair should be changed to \$2.50 per chair. Should the production manager solve the linear programming problem again using the \$2.50 value, or should Outdoors go ahead with the plan to produce 700 chairs, zero benches, and 133 tables? Why or why not?
- E. A local metal products distributor has offered to sell Outdoors some additional metal tubing for 60 cents per pound. Should Outdoors buy additional tubing at this price? If so, how much would their contribution increase if they bought 500 pounds and used it in an optimal fashion?
- F. The R&D department has been redesigning the bench to make it more profitable. The new design will require 1.1 hours of tube bending time, 2 hours of welding time, and 2.0 pounds of metal tubing. If they can sell one unit of this bench with a unit contribution of \$3, what effect will it have on overall contribution?
- G. Marketing has suggested a new patio awning that would require 1.8 hours of tube bending time, 0.5 hours of welding time, and 1.3 pounds of metal tubing.

What contribution must this new product have to make it attractive to produce this season?

- H. Outdoors, Inc., has a chance to sell some of its capacity in tube bending at a price of \$1.50 per hour. If it sells 200 hours at that price, how will this affect contribution?
- I. If Outdoors, Inc., feels that it must produce benches to round out its production line, what effect will production of benches have on overall contribution?

Adapted from Vatter et al., Quantitative Methods in Management, Irwin, 1978.

Spreadsheet Model

Figure 6.8 Model

	Α	В	С	D	Е	F	G	Н
1	Outdoors,	Inc.						
2			Chair	Bench	Table			
3	Nu	mber to Build->	100	100	100	Used	Available	Slack
4	Resource	Tube Bending	1.2	1.7	1.2	410	1000	590
5		Welding	0.8	0	2.3	310	1200	890
6		Tubing	2	3	4.5	950	2000	1050
7	Profits	Per Unit	\$3	\$3	\$5			
8		By Product	\$300	\$300	\$500			
9		Total	\$1,100					

Figure 6.9 Formulas

	Α	В	С	D	Е	F	G	Н
1	Outdoors, Inc.							
2			Chair	Bench	Table			
3		Number to Build->	100	100	100	Used	Available	Slack
4	Resource	Tube Bending	1.2	1.7	1.2	=SUMPRODUCT(C\$3:E\$3,C4:E4)	1000	=G4-F4
5		Welding	0.8	0	2.3	=SUMPRODUCT(C\$3:E\$3,C5:E5)	1200	=G5-F5
6		Tubing	2	3	4.5	=SUMPRODUCT(C\$3:E\$3,C6:E6)	2000	=G6-F6
7	Profits	Per Unit	3	3	5			
8		By Product	=C7*C3	=D7*D3	=E7*E3			
9		Total	=SUMPRODUCT(C3:E3,C7:E7)					

Figure 6.10 Solution

	Α	В	С	D	Е	F	G	Н
1	Outdoors, Inc.							
2			Chair	Bench	Table			
3	Nu	mber to Build->	700	0	133.33	Used	Available	Slack
4	Resource	Tube Bending	1.2	1.7	1.2	1000	1000	0
5		Welding	0.8	0.0	2.3	866.67	1200	333.33
6		Tubing	2.0	3.0	4.5	2000	2000	0
7	Profits	Per Unit	\$3	\$3	\$5			
8		By Product	\$2,100.00	\$0.00	\$666.67			
9		Total	\$2,766.67					

Solver Reports

Figure 6.11 Answer Report

Target C	ell (Max)									
Cell	Name	Original Value	Final Value	•						
\$C\$9	Total Chair	\$1,100	\$2,767							
Adjustable Cells										
Cell	Name	Original Value	Final Value							
\$C\$3	Number to Build-> Chair	100	700	•						
\$D\$3	Number to Build-> Bench	100	0							
\$E\$3	Number to Build-> Table	100	133.33							
Constrai	nts									
Cell	Name	Cell Value	Formula	Status	Slack					
\$F\$4	Tube Bending Used	1000	\$F\$4<=\$G\$4	Binding	0					
\$F\$5	Welding Used	866.67	\$F\$5<=\$G\$5	Not Binding	333.33					
ψι ψυ										

Figure 6.12 Sensitivity Report

Ad	Adjustable Cells											
			Final	Reduced	Objective	Allowable	Allowable					
	Cell	Name	Value	Cost	Coefficient	Increase	Decrease					
	\$C\$3	Number to Build-> Chair	700	\$0.00	\$3.00	\$2.00	\$0.778					
	\$D\$3	Number to Build-> Bench	0	-\$1.383	\$3.00	\$1.383	1E+30					
	\$E\$3	Number to Build-> Table	133	\$0.00	\$5.00	\$1.75	\$2.00					
Co	onstrair	nts										
			Final	Shadow	Constraint	Allowable	Allowable					
	Cell	Name	Value	Price	R.H. Side	Increase	Decrease					
	\$F\$4	Tube Bending Used	1000	\$1.167	1000	200	466.67					
	\$F\$5	Welding Used	866.67	\$0.00	1200	1E+30	333.33					
	\$F\$6	Tubing Used	2000	\$0.80	2000	555.56	333.33					

Uncertain Quantities

7

7.1 DISCRETE UNCERTAIN QUANTITIES

Discrete UQ: a few, distinct values

Assign probability mass to each value (probability mass function).

Contrast discrete UQs with continuous UQs. Continuous UQs have an infinite number of values or so many distinct values that it is difficult to assign probability to each value. Instead, for a continuous UQ we assign probability only to ranges of values.

7.2 CONTINUOUS UNCERTAIN QUANTITIES

Probability Density Functions and Cumulative Probability for Continuous Uncertain Quantities

The total area under a probability density function equals one.

A portion of the area under a density function is a probability.

The height of a density function is not a probability.

The simplest probability density function is the uniform density function.

Case A: Uniform Density

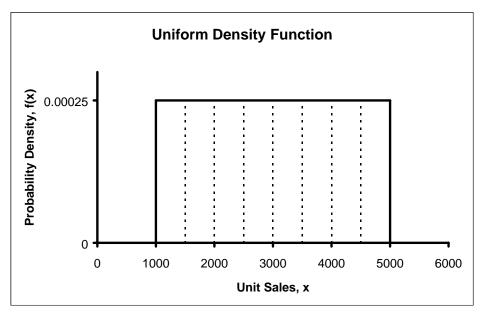
The number of units of a new product that will be sold is an uncertain quantity.

What is the minimum quantity? "1000 units"

What is the maximum quantity? "5000 units"

Are any values in the range between 1000 and 5000 more likely than others? "No"

Represent the uncertainty using a uniform density function.


Technical point: For a continuous UQ, P(X=x) = 0.

For a continuous UQ, probability is non-zero only for a range of values.

For convenience in computation and assessment, we may use a continuous UQ to approximate a discrete UQ, and vice versa.

In Figure 1, the range of values is 5000 - 1000 = 4000, which is the width of the total area under the uniform (rectangular) density function. The area of a rectangle is Width * Height = Area, and the area under the uniform density function in Figure 1 must equal 1. So, Height = Area / Base. Here the Base is 5000 - 1000 = 4000 units. Therefore, Height = 1/4000 = 0.00025.

Figure 7.1 Uniform Density Function

Cumulative Probability for Uniform Density

1.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Unit Sales, x

Figure 7.2 Figure 2

Both probability mass functions (for discrete UQs) and probability density functions (for continuous UQs) have corresponding cumulative probability functions.

It is important to understand the relationship between a density function and its cumulative probability function.

Cumulative probability can be expressed in four ways:

P(X<=x)	probability that UQ X is less than or equal to x	inclusive left -tail
P(X <x)< td=""><td>probability that UQ X is strictly less than x</td><td>exclusive left -tail</td></x)<>	probability that UQ X is strictly less than x	exclusive left -tail
P(X>=x)	probability that UQ X is greater than or equal to x	inclusive right -tail
P(X>x)	probability that UQ X is strictly greater than x	exclusive right -tail

For continuous UQs the cumulative probability is the same for inclusive and exclusive.

 $P(X \le x)$ is the most common type.

Figure 2 is the cumulative probability function corresponding to the uniform density function shown in Figure 1.

What is the probability that sales will be between 3,500 and 4,000 units?

```
P(3500 \le X \le 4000) = 0.125
```

$$P(3500 \le X \le 4000) = P(X \le 4000) - P(X \le 3500) = 0.750 - 0.625 = 0.125$$

Mathematical observation: The uniform density function is a constant; the corresponding cumulative function (the integral of the constant function) is linear.

Case B: Ramp Density

The number of units of a new product that will be sold is an uncertain quantity.

"1000 units" What is the minimum quantity?

"5000 units" What is the maximum quantity?

Are any values in the range between 1000 and 5000 more likely than others?

"Yes, values close to 5000 are much more likely than values close to 1000."

Represent the uncertainty using a ramp density function.

The area of a triangle is Base * Height / 2, and the area under the ramp density function in Figure 3 must equal 1. So, Height = 2 / Base. Here, the Base is 5000 - 1000 = 4000units. Therefore, Height = 2 / 4000 = 0.0005.

Figure 7.3 Figure 3

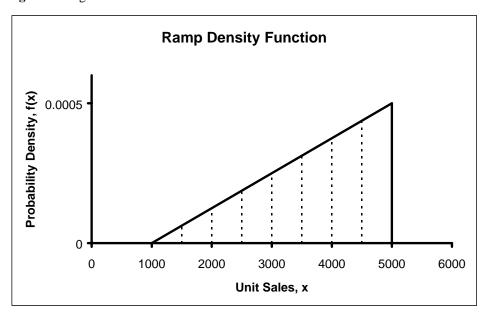
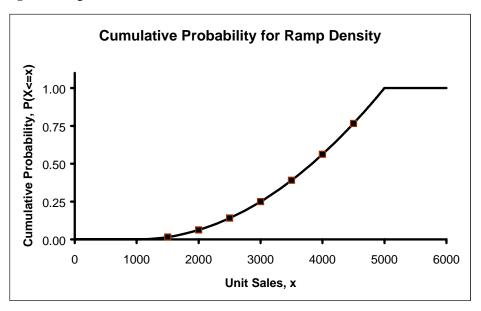



Figure 7.4 Figure 4

An important observation is that flatter portions of a cumulative probability function correspond to ranges with low probability. Steeper portions of a cumulative probability function correspond to ranges with high probability.

What is the probability that sales will be between 3,500 and 4,000 units?

```
P(3500 \le X \le 4000) = 0.171875
```

```
P(3500 \le X \le 4000) = P(X \le 4000) - P(X \le 3500) = 0.562500 - 0.390625 = 0.171875
```

The ramp density may not be appropriate for describing uncertainty in many situations, but it is an important building block for the extremely useful triangular density function.

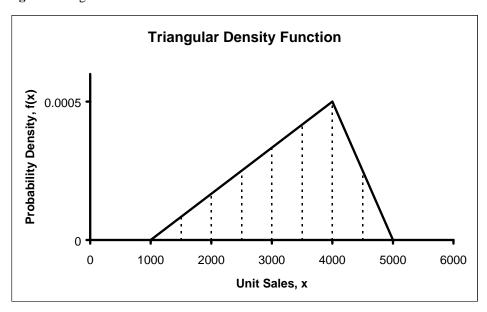
Mathematical observation: The ramp density function is linear; the corresponding cumulative function (the integral of the linear function) is quadratic.

Case C: Triangular Density

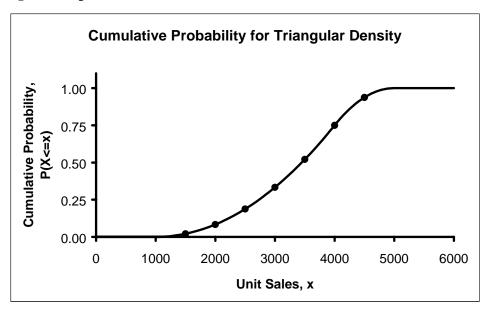
The number of units of a new product that will be sold is an uncertain quantity.

What is the minimum quantity? "1000 units"

What is the maximum quantity? "5000 units"


Are any values in the range between 1000 and 5000 more likely than others?

"Yes, values close to 4000 are more likely."


Represent the uncertainty using a triangular density function.

The area of a triangle is Base * Height / 2, and the area under the triangular density function in Figure 5 must equal 1. So, Height = 2 / Base. Here, the Base is 5000 - 1000 = 4000 units. Thus, Height = 2 / 4000 = 0.0005.

Figure 7.5 Figure 5

Figure 7.6 Figure 6

Again, an important observation is that flatter portions of a cumulative probability function correspond to ranges with low probability (the range close to 1000 and the range close to 5000 in Figure 6). Steeper portions of a cumulative probability function correspond to ranges with high probability (the range close to 4000).

What is the probability that sales will be between 3,500 and 4,000 units?

$$P(3500 \le X \le 4000) = 0.229167$$

$$P(3500 \le X \le 4000) = P(X \le 4000) - P(X \le 3500) = 0.750000 - 0.520833 = 0.229167$$

The triangular density function is extremely useful for describing uncertainty in many situations. It requires only three inputs: minimum, mode (most likely value), and maximum.

Mathematical observation: The triangular density function has two linear segments, i.e., piecewise linear; the corresponding cumulative function (the integral of each linear function) is two quadratic segments, i.e., piecewise quadratic.

Simulation Without Add-Ins

8.1 SIMULATION USING EXCEL FUNCTIONS

Figure 8.1 Display

	Α	В	С	D	Е	F	G	
1	Software Decision A	Analysis						
2			RAND()					
3	Unit Price	\$29						
4	Units Sold	661	0.3502	Normal	Mean = 70	Mean = 700, StDev = 100		
5	Unit Variable Cost	\$10.92	0.9832	Uniform	Min = $$6, N$	Лах = \$11		
6	Fixed Costs	\$12,000	0.7364	Discrete	Value	Probability	Cumulative	
7					\$10,000	0.25	0.25	
8	Net Cash Flow	-\$47			\$12,000	0.50	0.75	
9		·			\$15,000	0.25	1.00	

Figure 8.2 Formulas

	A	В	С	D	E	F	G
1	Software Decision Analysis						
2			RAND()				
3	Unit Price	29					
4	Units Sold	=INT(NORMINV(C4,700,100))	=RAND()	Normal	Mean = 700, StDev = 100		
5	Unit Variable Cost	=6+5*C5	=RAND()	Uniform	Min = \$6, Max = \$11		
6	Fixed Costs	=IF(C6<0.25,10000,IF(C6<0.75,12000,15000))	=RAND()	Discrete	Value	Probability	Cumulative
7					10000	0.25	0.25
8	Net Cash Flow	=B4*(B3-B5)-B6			12000	0.5	0.75
9					15000	0.25	1

This page is intentionally mostly blank.

Multiperiod What-If Modeling

9.1 APARTMENT BUILDING PURCHASE PROBLEM

You are considering the purchase of an apartment building in northern California. The building contains 25 units and is listed for \$2,000,000. You plan to keep the building for three years and then sell it.

You know that the annual taxes on the property are currently \$20,000 and will increase to \$25,000 after closing. You estimate that these taxes will grow at a rate of 2 percent per year. You estimate that it will cost about \$1,000 per unit per year to maintain the apartments, and these maintenance costs are expected to grow at a 15 percent per year rate.

You have not decided on the rent to charge. Currently, the rent is \$875 per unit per month, but there is substantial turnover, and the occupancy is only 75 percent. That is, on average, 75 percent of the units are rented at any time. You estimate that if you lowered the rent to \$675 per unit per month, you would have 100 percent occupancy. You think that intermediate rental charges would produce intermediate occupancy percentages; for example, a \$775 rental charge would have 87.5 percent occupancy.

You will decide on the monthly rental charge for the first year, and you think the rental market is such that you will be able to increase it 7 percent per year for the second and third years. Furthermore, whatever occupancy percentage occurs in the first year will hold for the second and third years. For example, if you decide on the \$675 monthly rental charge for the first year, the occupancy will be 100 percent all three years.

At the end of three years, you will sell the apartment building. The realtors in your area usually estimate the selling price of a rental property as a multiple of its annual rental income (before expenses). You estimate that this multiple will be 9. That is, if the rental income in the third year is \$200,000, then the sale price will be \$1,800,000.

Your objective is to achieve the highest total accumulated cash at the end of the three year period. If rental income exceeds expenses in the first or second years, you will invest the excess in one-year certificates of deposits (CDs) yielding 5 percent. Thus, total

accumulated cash will include net cash flow (income minus expense) in each of the three years, interest from CDs received at the end of the second and third years, and cash from the sale of the property at the end of the third year.

In your initial analysis you have decided to ignore depreciation and other issues related to income taxes.

Instead of purchasing the apartment building, you could invest the entire \$2,000,000 in certificates of deposits yielding 5 percent per year.

Figure 9.1 Base Case Model Display

	А	В	С	D	Е	F
1	Apartment Building Purc	hase			Monthly Rent	Occupancy
2	,				\$675	100
3	Controllable Factors				\$775	87.5
4	Unit monthly rent	\$775			\$875	75
5	Uncertain Factors	·			·	
6	Annual unit maintenance	\$1,000			slope	-0.125
7	Annual maint. increase	15%			intercept	184.375
8	Annual tax increase	2.0%				
9	Gross rent multiplier	9.00				
10	Other Assumptions					
11	First year property taxes	\$25,000				
12	Annual rent increase	7%				
13	CD annual yield	5%				
14	Intermediate variable					
15	Occupancy percentage	87.50%				
16	Performance measure					
17	Final cash value	\$2,610,848				
18						
19		One	Two	Three		
20	Unit monthly rent	\$775	\$829	\$887		
21	Annual rental income	\$203,438	\$217,678	\$232,916		
22						
23	Annual maintenance cost	\$25,000	\$28,750	\$33,063		
	Annual property tax	\$25,000	\$25,500	\$26,010		
25	Total annual expenses	\$50,000	\$54,250	\$59,073		
26						
27	Operating cash flow	\$153,438	\$163,428	\$173,843		
28						
	CD investment		\$153,438	\$324,538		
30	Year-end CD interest		\$7,672	\$16,227		
31						
	Sale receipt			\$2,096,240		
33						
	Final Cash Value			\$2,610,848		
35		•				
	CD investment	\$2,000,000				
	Year-end CD interest	\$100,000	\$105,000	\$110,250		
38	Final Cash Value			\$2,315,250		

Figure 9.2 Base Case Model Formulas

A	В	С	D	E	F
1 Apartment Building Purchase				Monthly Rent	Occupancy
2				675	100
3 Controllable Factors				775	87.5
4 Unit monthly rent	775			875	75
5 Uncertain Factors					
6 Annual unit maintenance	1000			slope	=SLOPE(F2:F4,E2:E4)
7 Annual maint, increase	0.15			intercept	=INTERCEPT(F2:F4,E2:E4
8 Annual tax increase	0.02				
9 Gross rent multiplier	9				
0 Other Assumptions					
11 First year property taxes	25000				
12 Annual rent increase	0.07				
13 CD annual yield	0.05				
4 Intermediate variable					
15 Occupancy percentage	=(F7+F6*B4)/100				
6 Performance measure					
17 Final cash value	=D34				
18					
19	One	Two	Three		
20 Unit monthly rent	=B4	=B20*(1+\$B\$12)	=C20*(1+\$B\$12)		
21 Annual rental income	=B20*25*\$B\$15*12	=C20*25*\$B\$15*12	=D20*25*\$B\$15*12		
22					
23 Annual maintenance cost	=B6*25	=(1+\$B\$7)*B23	=(1+\$B\$7)*C23		
24 Annual property tax	=B11	=(1+\$B\$8)*B24	=(1+\$B\$8)*C24		
25 Total annual expenses	=SUM(B23:B24)	=SUM(C23:C24)	=SUM(D23:D24)		
26					
27 Operating cash flow	=B21-B25	=C21-C25	=D21-D25		
28					
29 CD investment		=B27	=C27+C29+C30		
30 Year-end CD interest		=B13*C29	=B13*D29		
31					
32 Sale receipt			=D21*B9		
33					
			=SUM(D27:D32)		
34 Final Cash Value					
35	2000000	=B36+B37	=C36+C37		
Final Cash Value 55 66 CD investment 77 Year-end CD interest	2000000 =B13*B36	=B36+B37 =B13*C36	=C36+C37 =B13*D36		

Figure 9.3 Ranges based on decision maker's or expert's judgment

Uncertain Factors	Low	Base	High
Annual unit maintenance	\$700	\$1,000	\$2,000
Annual maint. increase	10%	15%	30%
Annual tax increase	2.0%	2.0%	3.0%
Gross rent multiplier	7.00	9.00	10.00

Apartment Building Analysis Notes

Influence Diagram (for single period)

Modeling effect of rent on occupancy rate

Linear fit: algebra (slope and intercept)

XY Scatter chart; Insert Trendline

Quadratic fit: if \$775 yields 82.5% occupancy instead of 87.5%

Base Case model

Use Solver to find optimum rent to maximize final cash value

Use Sensit.xla Plot of final cash value depending on rent; relatively insensitive

Use Sensit.xla Spider

Sensitivity Cases

Ranges based on decision maker's or expert's judgment

Sensit.xla Tornado chart: identify critical variables

Monte Carlo simulation

RiskSim.xla

Triangular distributions for critical variables

What is probability that final cash will be less than \$2,315,250?

9.2 PRODUCT LAUNCH FINANCIAL MODEL

Figure 9.4 Original Model Display

	A B	С	D	E	F	G	Н		J	K	L
1											
2	FINANCE The @RISK D										
3	Product Launch Risk And	alysis 2001-2010)								
4											
5		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
5 6 7	u	=======	======	ATO 00			2440.70	200.10			
/	Price No Entry			\$70.00	\$88.20	\$119.00	\$112.70	\$99.40	\$94.50	\$91.70	\$90.30
8	Price With Entry			\$53.00 3500	\$67.31 4340	\$79.50 6580	\$63.60 5565	\$60.95 5180	\$55.65 5180	\$54.59 4970	\$51.94 4935
10	Volume No Entry			3300	4340 4158	3564	3399	3300	3300	3432	4935 3696
11	Volume With Entry			3300	4158	3004	3399	3300	3300	3432	3090
11	Competitor Entry:	1									
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Design Costs	\$50,000.00									
14	Capital Investment	\$30,000.00	\$100.000.00								
14	Operating Expense Factor	_	\$100,000.00	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
15	Operating Expense Facto	ır		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
17	Sales Price			\$53.00	\$67.31	\$79.50	\$63.60	\$60.95	\$55.65	\$54.59	\$51.94
18	Sales Volume			3300	4158	3564	3399	3300	3300	3432	3696
10	Sales Revenue			\$174.900	\$279.875	\$283.338	\$216.176	\$201.135	\$183.645	\$187.353	\$191.970
20	Unit Production Cost			\$23.33	\$24.26	\$25,23	\$26.24	\$27,29	\$28.38	\$29.52	\$30.70
21	Overhead			\$3,300	\$6.944	\$10.528	\$8.904	\$8,288	\$8,288	\$7.952	\$7.896
22	Cost of Goods Sold			\$80,289	\$107.830	\$100.461	\$98,104	\$98,354	\$101.957	\$109,264	\$121,366
23	Gross Margin			\$94,611	\$172.045	\$182.877	\$118.072	\$102.781	\$81.688	\$78.089	\$70,604
24	Operating Expense			\$12,043	\$16,175	\$15,069	\$14,716	\$14,753	\$15,294	\$16,390	\$18,205
25	Net Before Tax	(\$50,000)	\$0	\$82,568	\$155.870	\$167.808	\$103,357	\$88,028	\$66,395	\$61,699	\$52,400
26	Depreciation	(,,,,,,,,,	\$20,000	\$20,000	\$20,000	\$20,000	\$20,000	,.	,	,	,
	Tax	(\$23,000)	(\$9,200)	\$28,781	\$62,500	\$67,992	\$38,344	\$40,493	\$30,542	\$28,382	\$24,104
28	Taxes Owed	\$0	\$0	\$0	\$59,081	\$67,992	\$38,344	\$40,493	\$30,542	\$28,382	\$24,104
28 29 30 31 32 33	Net After Tax	(\$50,000)	\$0	\$82,568	\$96,789	\$99,816	\$65,013	\$47,535	\$35,853	\$33,317	\$28,296
30		=======	=======			=======	=======	=======	=======	=======	=======
31	Net Cash Flow	(\$50,000)	(\$100,000)	\$82,568	\$96,789	\$99,816	\$65,013	\$47,535	\$35,853	\$33,317	\$28,296
32	NPV 10%	\$164,877									
33											

Figure 9.5 Input Assumptions

	A B	С	D	E	F	G	Н		J	K	L
1											
2	FINANCE The @RISK D		:								
3	Product Launch Risk Anal	ysis 2001-2010									
4											
3 4 5 6		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
7											
	Price No Entry		-	\$70.00	\$88.20	\$119.00	\$112.70	\$99.40	\$94.50	\$91.70	\$90.30
8	Price With Entry		L	\$53.00	\$67.31	\$79.50	\$63.60	\$60.95	\$55.65	\$54.59	\$51.94
9	Volume No Entry		L	3500	4340	6580	5565	5180	5180	4970	4935
10	Volume With Entry		L	3300	4158	3564	3399	3300	3300	3432	3696
11	Competitor Entry:	1									
12 13											
13	Design Costs	\$50,000.00									
14	Capital Investment		\$100,000.00								
15	Operating Expense Fact	or		0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
16 17			-								
17	Sales Price			\$53.00	\$67.31	\$79.50	\$63.60	\$60.95	\$55.65	\$54.59	\$51.94
18	Sales Volume			3300	4158	3564	3399	3300	3300	3432	3696
19	Sales Revenue		_	\$174,900	\$279,875	\$283,338	\$216,176	\$201,135	\$183,645	\$187,353	\$191,970
20	Unit Production Cost			\$23.33	\$24.26	\$25.23	\$26.24	\$27.29	\$28.38	\$29.52	\$30.70
21	Overhead			\$3,300	\$6,944	\$10,528	\$8,904	\$8,288	\$8,288	\$7,952	\$7,896
22 23 24 25 26	Cost of Goods Sold		_	\$80,289	\$107,830	\$100,461	\$98,104	\$98,354	\$101,957	\$109,264	\$121,366
23	Gross Margin			\$94,611	\$172,045	\$182,877	\$118,072	\$102,781	\$81,688	\$78,089	\$70,604
24	Operating Expense			\$12,043	\$16,175	\$15,069	\$14,716	\$14,753	\$15,294	\$16,390	\$18,205
25	Net Before Tax	(\$50,000)	\$0	\$82,568	\$155,870	\$167,808	\$103,357	\$88,028	\$66,395	\$61,699	\$52,400
26	Depreciation		\$20,000	\$20,000	\$20,000	\$20,000	\$20,000				
27	Tax	(\$23,000)	(\$9,200)	\$28,781	\$62,500	\$67,992	\$38,344	\$40,493	\$30,542	\$28,382	\$24,104
28	Taxes Owed	\$0	\$0	\$0	\$59,081	\$67,992	\$38,344	\$40,493	\$30,542	\$28,382	\$24,104
29	Net After Tax	(\$50,000)	\$0	\$82,568	\$96,789	\$99,816	\$65,013	\$47,535	\$35,853	\$33,317	\$28,296
27 28 29 30 31											
31	Net Cash Flow	(\$50,000)	(\$100,000)	\$82,568	\$96,789	\$99,816	\$65,013	\$47,535	\$35,853	\$33,317	\$28,296
32	NPV 10%	\$164,877									
33											

Figure 9.6 Modifications for SensIt Display

1 A	N B	С	D	E	F						L
		Inputs		•	•	G	Н		J	К	
2	Price w/ o Entry	\$70.00									
3	Price w/ Entry	\$53.00									
4	Volume No Entry	3,500									
5	Volume w/ Entry	3,300									
6	Competitor Entry	1									
7	Design Costs	\$50,000									
8	Capital Investment	\$100,000									
9	Operating Expense Factor Unit Production Costs	15.0% 23.33									
10	Overhead Costs	\$3.300									
12	Overnead	\$3,300									
12											
14											
15	FINANCE The @RISK Dem	onstration Model	:								
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	Product Launch Risk Analysis	2001-2010									
17											
18		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
19		======		*******	\$88.20	=======	\$112.70	\$99.40	\$94.50	\$91.70	
20	Price No Entry		ļ.	\$70.00	+	\$119.00		*****			\$90.30
21	Price With Entry		ļ.	\$53.00	\$67.31	\$79.50	\$63.60	\$60.95	\$55.65	\$54.59	\$51.94
22	Volume No Entry		ļ.	3500	4340	6580	5565	5180	5180	4970	4935
23	Volume With Entry		L	3300	4158	3564	3399	3300	3300	3432	3696
24	Competitor Entry:	1									
20	Design Costs	\$50,000.00									
	Capital Investment		\$100,000.00								
20	Operating Expense Factor	L	\$100,000.00	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
20	Operating Expense ractor		L	0.13	0.13	0.13	0.13	0.13	0.13	0.15	0.15
30	Sales Price			\$53.00	\$67.31	\$79.50	\$63.60	\$60.95	\$55.65	\$54.59	\$51.94
31	Sales Volume			3300	4158	3564	3399	3300	3300	3432	3696
32	Sales Revenue			\$174,900	\$279,875	\$283,338	\$216,176	\$201,135	\$183,645	\$187,353	\$191,970
33	Unit Production Cost		Г	\$23.33	\$24.26	\$25.23	\$26.24	\$27.29	\$28.38	\$29.52	\$30.70
34	Overhead		ľ	\$3,300	\$6,944	\$10,528	\$8,904	\$8,288	\$8,288	\$7,952	\$7,896
35	Cost of Goods Sold		-	\$80,289	\$107,830	\$100,461	\$98,104	\$98,354	\$101,957	\$109,264	\$121,366
36	Gross Margin			\$94,611	\$172,045	\$182,877	\$118,072	\$102,781	\$81,688	\$78,089	\$70,604
37	Operating Expense			\$12,043	\$16,175	\$15,069	\$14,716	\$14,753	\$15,294	\$16,390	\$18,205
38	Net Before Tax	(\$50,000)	\$0	\$82,568	\$155,870	\$167,808	\$103,357	\$88,028	\$66,395	\$61,699	\$52,400
39	Depreciation	(000 000)	\$20,000	\$20,000	\$20,000	\$20,000	\$20,000				
40	Tax Taxes Owed	(\$23,000) \$0	(\$9,200) \$0	\$28,781 \$0	\$62,500	\$67,992	\$38,344	\$40,493	\$30,542 \$30,542	\$28,382 \$28,382	\$24,104
41	Net After Tax	(\$50.000)	\$0 \$0	\$0 \$82.568	\$59,081 \$96,789	\$67,992 \$99.816	\$38,344 \$65.013	\$40,493 \$47.535	\$30,542 \$35,853	\$28,382 \$33,317	\$24,104 \$28,296
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Net Aiter Tax	(\$50,000)	\$0	\$82,568	\$96,789	\$99,816	\$65,013	\$47,535	\$35,853	\$33,317	\$28,296
44	Net Cash Flow	(\$50.000)	(\$100.000)	\$82.568	\$96.789	\$99.816	\$65.013	\$47.535	\$35.853	\$33.317	\$28.296
45	NPV 10%	\$164,877	,,,)	+,0	 ,	,0	+,0	¥ ,o	,0	***···	1==,=00
46	***										

Inputs Price w/ Entry Volume No Entry 53 3500 3300 Volume w/ Entry Competitor Entry Design Costs Capital Investment 50000 100000 Operating Expense Factor Unit Production Costs 0.15 23.33 3300 FINANCE The @RISK Demonstratic Product Launch Risk Analysis 2001-20 2003 2001 2002 2004 Price No Entry Price With Entry =1.26*E20 =1.27*E21 Volume No Entry
Volume With Entry =1.24*E22 1.26*E23 Competitor Entry: Design Costs Capital Investment Operating Expense Factor =\$E\$28 Sales Price Sales Volume Sales Revenue Unit Production Cost =IF(\$C\$24=0,E20,E21) =IF(\$C\$24=0,E22,E23) =(E30*E31) =C10 =C11 =IF(\$C\$24=0,F20,F21) =IF(\$C\$24=0,F22,F23) =(F30*F31) =1.04*E33 Overhead Cost of Goods Sold =(F31*F33)+F34

Figure 9.7 Modifications for SensIt Formulas

Figure 9.8 Data for Competitor Entry as Base Case

	АВ	С	D	Е	F	G
1		Inputs		Low	Base	High
2	Price w/ o Entry	\$70.00		\$50.00	\$70.00	\$90.00
3	Price w/ Entry	\$53.00		\$40.00	\$53.00	\$68.00
4	Volume No Entry	3,500		3,100	3,500	3,900
5	Volume w/ Entry	3,300		2,800	3,300	3,800
6	Competitor Entry	0		0	1	1
7	Design Costs	\$50,000		\$37,000	\$50,000	\$63,000
8	Capital Investment	\$100,000		\$60,000	\$100,000	\$140,000
9	Operating Expense Factor	15.0%		6.5%	15.0%	23.0%
10	Unit Production Costs	23.33		15.50	23.33	32.00
11	Overhead	\$3,300		\$2,800	\$3,300	\$4,000

Sensit - Sensitivity Analysis - Tornado Competitor Entry Price w/ Entry\$40.00 Unit Production Costs Volume w/ Entry 3,800 \$60,000 Capital Investment \$140,000 Operating Expense Factor Design Costs \$63,000 \$37,000 \$4,000 \$2,800 Overhead Price w/o Entry \$90.00 Volume No Entry 3,900 \$100,000 \$400,000 \$500,000 \$600,000 \$700,000 \$200,000 \$300,000 \$0 **NPV 10%**

Figure 9.9 Tornado Chart for Competitor Entry as Base Case

Figure 9.10 Data for No Competitor Entry as Base Case

	АВ	С	D	E	F	G
1		Inputs		Low	Base	High
2	Price w/ o Entry	\$70.00		\$50.00	\$70.00	\$90.00
3	Price w/ Entry	\$53.00		\$40.00	\$53.00	\$68.00
4	Volume No Entry	3,500		3,100	3,500	3,900
5	Volume w/ Entry	3,300		2,800	3,300	3,800
6	Competitor Entry	0		0	0	1
7	Design Costs	\$50,000		\$37,000	\$50,000	\$63,000
8	Capital Investment	\$100,000		\$60,000	\$100,000	\$140,000
9	Operating Expense Factor	15.0%		6.5%	15.0%	23.0%
10	Unit Production Costs	23.33		15.50	23.33	32.00
11	Overhead	\$3,300		\$2,800	\$3,300	\$4,000

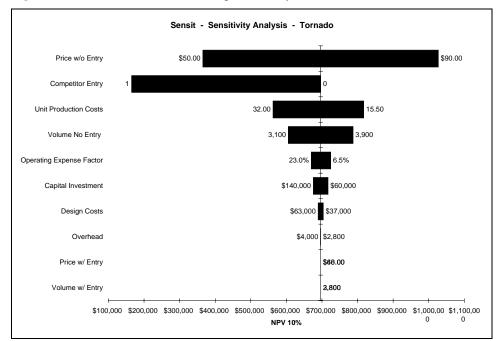


Figure 9.11 Tornado Chart for No Competitor Entry as Base Case

9.3 MACHINE SIMULATION MODEL

Clemen's AJS Problem

Figure 9.12 Process 1 Display and Formulas

Figu	re 9.12 Process	1 Display a	nd Formulas	3			
	Α	В	С	D	Е	F	G
1	Process 1						
2		Ze	ro	Or	ne	Two	
3	Demand	D	P(D)	D	P(D)	D	P(D)
4		11,000	0.2	8,000	0.2	4,000	0.1
5		16,000	0.6	19,000	0.4	21,000	0.5
6		21,000	0.2	27,000	0.4	37,000	0.4
7							
8	Var Cost	Mean	StDev				
9	Normal	\$4.00	\$0.40				
10							
11	Machine	Mean					
12	Failure	4					
13	Poisson						
14							
	Equipment	\$0					
	Unit Price	\$8					
	Failure Cost	\$8,000					
	Fixed Cost	\$12,000					
	Discount Rate	10%					
20							
21	Year	Initial	Zero	One	Two		
22			16,000	19,000	21,000		Mode
	Var Cost		\$4.00	\$4.00	\$4.00		Mean
	Failures		4	4	4		Mean
25	Cash Flow	\$0	\$20,000	\$32,000	\$40,000		
26							
	NPV	\$74,681					
28		_					
	Formula in B25:	: =-B15					
30							
	Formula in C25		6-C23)-C24	*\$B17-\$B1	8		
32	Copy to D25:E2	25					
33							
34	Formula in B27:	: =B25+NPV	/(B19,C25:E	25)			

Figure 0 13 Process 2 Display

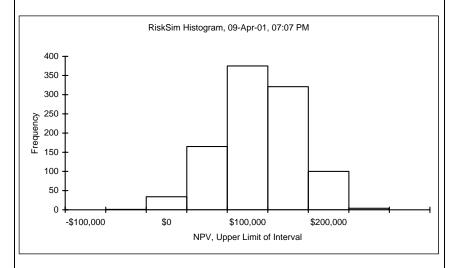

Figu	re 9.13 Process	2 Display						
	Α	В	С	D	Е	F	G	
1	Process 2							
2		Zero		Or	ne	Two		
3	Demand	D	P(D)	D	P(D)	D	P(D)	
4		14,000	0.3	12,000	0.36	9,000	0.4	
5		19,000	0.4	23,000	0.36	26,000	0.1	
6		24,000	0.3	31,000	0.28	42,000	0.5	
7								
8	Var Cost	Mean	StDev					
9	Normal	\$3.50	\$1.00					
10								
11	Machine	Mean						
12	Failure	3						
13	Poisson							
14								
15	Equipment	\$60,000						
16	Unit Price	\$8						
17	Failure Cost	\$6,000						
18	Fixed Cost	\$12,000						
19	Discount Rate	10%						
20								
21	Year	Initial	Zero	One	Two			
22	Demand		19,000	23,000	26,000		Mode	
23	Var Cost		\$3.50	\$3.50	\$3.50		Mean	
24	Failures		3	3	3		Mean	
25	Cash Flow	-\$60,000	\$55,500	\$73,500	\$87,000			
26								
27	NPV	\$116,563						

Figure 9.14 RiskSim Functions for Process 1 and Process 2

	5410 > 11	· residential residen	Tons for Frocess Fun	a 1100055 2	
	Α	В	В С		E
20					
21	Year	Initial	Zero	One	Two
22	Demand		=randdiscrete(B4:C6)	=randdiscrete(D4:E6)	=randdiscrete(F4:G6)
23	Var Cost		=randnormal(\$B\$9,\$C\$9)	=randnormal(\$B\$9,\$C\$9)	=randnormal(\$B\$9,\$C\$9)
24	Failures		=randpoisson(\$B\$12)	=randpoisson(\$B\$12)	=randpoisson(\$B\$12)
25	Cash Flow	=-B15	=C22*(\$B16-C23)-C24*\$B17-\$B18	=D22*(\$B16-D23)-D24*\$B17-\$B18	=E22*(\$B16-E23)-E24*\$B17-\$B18
26					
27	NPV	=B25+NPV(B19,C25:E25)			

Figure 9.15 RiskSim Output for Process 1

	1		
RiskSim - On	e Output - Summary	Mean	\$90,526
Date	9-Apr-01	St. Dev.	\$47,290
Time	7:07 PM	Mean St. Error	\$1,495
Workbook	AJS_WhatIf.xls	Minimum	-\$59,664
Worksheet	Process 1 Probability	First Quartile	\$58,050
Output Cell	\$B\$27	Median	\$91,460
Output Label	NPV	Third Quartile	\$124,435
Seed	0.5	Maximum	\$234,703
Trials	1,000	Skewness	-0.1034

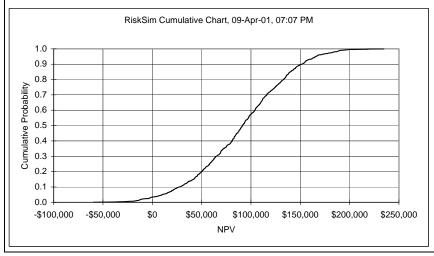
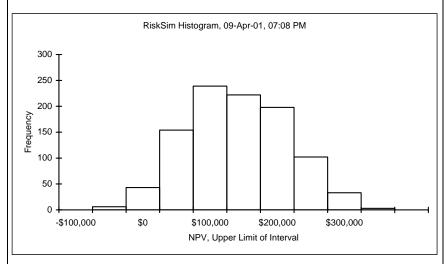
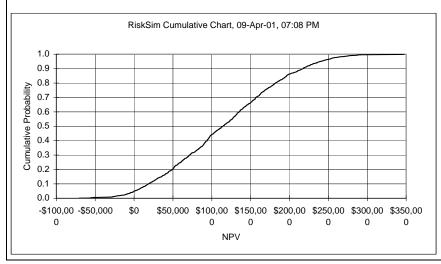




Figure 9.16 RiskSim Output for Process 2

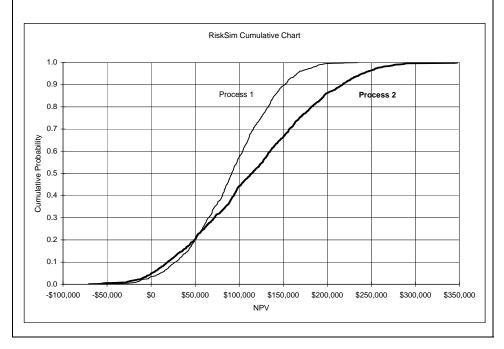
	1		
RiskSim - On	e Output - Summary	Mean	\$116,159
Date	9-Apr-01	St. Dev.	\$73,675
Time	7:08 PM	Mean St. Error	\$2,330
Workbook	AJS_WhatIf.xls	Minimum	-\$70,685
Worksheet	Process 2 Probability	First Quartile	\$60,199
Output Cell	\$B\$27	Median	\$114,335
Output Label	NPV	Third Quartile	\$168,191
Seed	0.5	Maximum	\$347,514
Trials	1,000	Skewness	0.1390

Follow these instructions to show two or more risk profiles on the same chart.

Use RiskSim to obtain the sorted values, cumulative probabilities, and XY charts for strategy A and strategy B.

To add the data for strategy B to the existing plot for strategy A, select the sorted values and cumulative probabilities for strategy B (without including the text labels in row 1), and choose Edit | Copy.

Click just inside the outer border of the strategy A chart to select it. From the main menu, choose Edit | Paste Special. In the Paste Special dialog box, select "Add cells as New series," select "Values (Y) in Columns," check the box for "Categories (X Values) in First Column," and click OK.


Use the same method to add data for other strategies to the strategy A chart.

To change the lines and markers of a data series, click a data point on the chart to select the data series, and choose Format | Selected Data Series | Patterns.

If the X values are quite different for the various strategies, it may be necessary to adjust the minimum and maximum values on the Scale tab of the Format Axis dialog box.

Figure 9.17 Comparison of Process 1 and Process 2

Process 1		Process 2		
Mean	\$90,526	Mean	\$116,159	
St. Dev.	\$47,290	St. Dev.	\$73,675	
Mean St. Error	\$1,495	Mean St. Error	\$2,330	
Minimum	-\$59,664	Minimum	-\$70,685	
First Quartile	\$58,050	First Quartile	\$60,199	
Median	\$91,460	Median	\$114,335	
Third Quartile	\$124,435	Third Quartile	\$168,191	
Maximum	\$234,703	Maximum	\$347,514	
Skewness	-0.1034	Skewness	0.1390	

154

This page is intentionally mostly blank.

10.1 QUEUE SIMULATION

A warehouse has one dock used to unload railroad freight cars. Incoming freight cars are delivered to the warehouse during the night. It takes exactly half a day to unload a car. If more than two cars are waiting to be unloaded on a given day, the unloading of some of the cars is postponed until the following day. The cost is \$100 per day for each car delayed.

Past experience has indicated that the number of cars arriving during the night have the frequencies shown in the table below. Furthermore, there is no apparent pattern, so that the number arriving on any night is independent of the number arriving on any other night.

Figure 10.1 Arrival Frequency

Number of cars	Relative
arriving	frequency
0	0.23
1	0.30
2	0.30
3	0.10
4	0.05
5	0.02
6 or more	0.00
	1.00

Concepts for Queuing (waiting-line) Models

Arrival pattern

Service time

Number of servers

Queue discipline

Performance measures

Equilibrium

Average waiting time

Average number of customers in line

System utilization, rho = mean arrival rate / mean service rate

Stable system: rho < 1

Figure 10.2 Influence Chart for Simulation Model

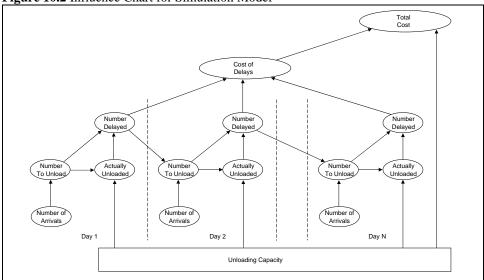


Figure 10.3 Simulation Model Spreadsheet Model Display

	Α	В	С	D	E	F	G	Н		I
1	Unloading (Capacity	2				Daily	Delay Cost	\$	100
2										
3		Random	Number of	Number	Actually	Number	Annual	Delay Cost	\$	16,500
4	Day	Number	Arrivals	To Unload	Unloaded	Delayed				
5	1	0.812	3	3	2	1				
6	2	0.524	2	3	2	1				
7	3	0.671	2	3	2	1				
8	4	0.250	1	2	2	0				
9	5	0.940	3	3	2	1				
10	6	0.771	2	3	2	1				
11	7	0.026	0	1	1	0				
12	8	0.178	0	0	0	0				
13	9	0.683	2	2	2	0				
14	10	0.727	2	2	2	0				
44	40	0.082	0	0	0	0				
45	41	0.425	1	1	1	0				
46	42	0.826	3	3	2	1				
47	43	0.855	3	4	2	2				
48	44	0.971	3	5	2	3				
49	45	0.429	1	4	2	2				
50	46	0.592	2	4	2	2				
51	47	0.085	0	2	2	0				
52	48	0.018	0	0	0	0				
53	49	0.678		2	2	0				
54	50	0.510	2	2	2	0				
55										
56	Total		86			33				
57										
58	Daily Avera	ge	1.72			0.66				

Figure 10.4 Simulation Model Spreadsheet Model Formulas

	A	В	С	D	E	F	G	Н	1
1	Unloading Capacity		2					Daily Delay Cost	100
2									
3		Random	Number of	Number	Actually	Number		Annual Delay Cost	=250*F58*I1
4	Day	Number	Arrivals	To Unload	Unloaded	Delayed			
5	1	=RAND()	=IF(B5<0.2,0,IF(B5<0.5,1,IF(B5<0.8,2,3)))	=C5	=MIN(D5,\$C\$1)	=D5-E5			
6	2	=RAND()	=IF(B6<0.2,0,IF(B6<0.5,1,IF(B6<0.8,2,3)))	=F5+C6	=MIN(D6,\$C\$1)	=D6-E6			
7		=RAND()	=IF(B7<0.2,0,IF(B7<0.5,1,IF(B7<0.8,2,3)))	=F6+C7	=MIN(D7,\$C\$1)	=D7-E7			
8		=RAND()	=IF(B8<0.2,0,IF(B8<0.5,1,IF(B8<0.8,2,3)))	=F7+C8	=MIN(D8,\$C\$1)	=D8-E8			
9	5		=IF(B9<0.2,0,IF(B9<0.5,1,IF(B9<0.8,2,3)))	=F8+C9	=MIN(D9,\$C\$1)	=D9-E9			
10			=IF(B10<0.2,0,IF(B10<0.5,1,IF(B10<0.8,2,3)))	=F9+C10	=MIN(D10,\$C\$1)	=D10-E10			
11		=RAND()	=IF(B11<0.2,0,IF(B11<0.5,1,IF(B11<0.8,2,3)))	=F10+C11	=MIN(D11,\$C\$1)	=D11-E11			
12	8	=RAND()	=IF(B12<0.2,0,IF(B12<0.5,1,IF(B12<0.8,2,3)))	=F11+C12	=MIN(D12,\$C\$1)	=D12-E12			
13		=RAND()	=IF(B13<0.2,0,IF(B13<0.5,1,IF(B13<0.8,2,3)))	=F12+C13	=MIN(D13,\$C\$1)	=D13-E13			
14			=IF(B14<0.2,0,IF(B14<0.5,1,IF(B14<0.8,2,3)))	=F13+C14	=MIN(D14,\$C\$1)	=D14-E14			
44		=RAND()	=IF(B44<0.2,0,IF(B44<0.5,1,IF(B44<0.8,2,3)))	=F43+C44	=MIN(D44,\$C\$1)	=D44-E44			
45		=RAND()	=IF(B45<0.2,0,IF(B45<0.5,1,IF(B45<0.8,2,3)))	=F44+C45	=MIN(D45,\$C\$1)	=D45-E45			
46			=IF(B46<0.2,0,IF(B46<0.5,1,IF(B46<0.8,2,3)))	=F45+C46		=D46-E46			
47			=IF(B47<0.2,0,IF(B47<0.5,1,IF(B47<0.8,2,3)))	=F46+C47	=MIN(D47,\$C\$1)	=D47-E47			
48		=RAND()	=IF(B48<0.2,0,IF(B48<0.5,1,IF(B48<0.8,2,3)))	=F47+C48	=MIN(D48,\$C\$1)	=D48-E48			
	45	=RAND()	=IF(B49<0.2,0,IF(B49<0.5,1,IF(B49<0.8,2,3)))	=F48+C49	=MIN(D49,\$C\$1)	=D49-E49			
50	46		=IF(B50<0.2,0,IF(B50<0.5,1,IF(B50<0.8,2,3)))	=F49+C50	=MIN(D50,\$C\$1)	=D50-E50			
51			=IF(B51<0.2,0,IF(B51<0.5,1,IF(B51<0.8,2,3)))	=F50+C51	=MIN(D51,\$C\$1)	=D51-E51			
52			=IF(B52<0.2,0,IF(B52<0.5,1,IF(B52<0.8,2,3)))	=F51+C52	=MIN(D52,\$C\$1)	=D52-E52			
53			=IF(B53<0.2,0,IF(B53<0.5,1,IF(B53<0.8,2,3)))	=F52+C53	=MIN(D53,\$C\$1)	=D53-E53			
54	50	=RAND()	=IF(B54<0.2,0,IF(B54<0.5,1,IF(B54<0.8,2,3)))	=F53+C54	=MIN(D54,\$C\$1)	=D54-E54			
55									
56 57	Total		=SUM(C5:C54)			=SUM(F5:F54)			
58	Daily Average		=C56/50			=F56/50			

Figure 10.5 Simulation Model Dynamic Histogram Display

	K	L	M	N	0	Р	Q	R	S	Т	ΙU	V
1		0-Day Trial	\$ 17,000	IN	Minimum	\$ 1,500		nterval Max				· ·
2		1	\$ 12,500		Maximum	\$ 58,000		5000	11			1
3		2	\$ 28,000		IVIGATITICITI	Ψ 00,000		10000	39			
4		3	\$ 2,500		Mean	\$ 12,845		15000	24			
5		4	\$ 16,000		IVICALI	Ψ 12,040		20000	10			1
6		5	\$ 6,000		StDev	\$ 9,016		25000	8			
7		6	\$ 9,500			V 0,010		30000	3			
8		7	\$ 10,500					35000	2			
9		8	\$ 13,500					40000	2			
10		9	\$ 7,000					45000	0			
11		10	\$ 15,500					50000	0			
12		11	\$ 21,500					55000	0			
13		12	\$ 16,000					60000	1			
14		13	\$ 9,000					65000	0			
15		14	\$ 4,500					70000	0			
16		15	\$ 8,500					75000	0			
17		16	\$ 8,500					80000	0			
18		17	\$ 15,000					85000	0			
19		18	\$ 9,000					90000	0			
20		19	\$ 2,000					95000	0			
21		20	\$ 10,500					100000	0			
22		21	\$ 16,500					More	0			
23		22	\$ 18,500									
24		23	\$ 8,500									
25		24	\$ 5,500					Simul	ation			
26		25	\$ 13,500					Oiiiiui	ation			
27		26	\$ 5,000		Ш							
28		27	\$ 23,500		Ц	45						
29		28	\$ 58,000		Н .	40						
30		29	\$ 11,500		Н.	35						
31		30	\$ 7,000		∐ 8 ″							
32		31	\$ 7,000			30						
33		32 33	\$ 6,000		Frequency of 100 50-Day Trials	25	_					
35		33	\$ 7,500 \$ 9,500		ا عقره	20						
36		35	\$ 9,500 \$ 7,500		⊢ 꽃은	15						
37		36	\$ 12,500		— <u>թ</u> ռ							
38		36	\$ 12,500		⊢ "	10						
39		38	\$ 14,000		H	5 -						
40		38	\$ 7,000		H	0						
41		40	\$ 7,000		H		20000	25000 5	0000 05	000 000	000 050	, T H
41		40	\$ 22,000		H	5000	20000		0000 650		000 950	JU
43		42	\$ 40,000		Н			Annua	I Cost of De	elays		<u> </u>
44		43	\$ 10,500		\vdash		1					
45		43	\$ 8,500								1	1
40		44	φ 0,500				l	l			1	

Figure 10.6 Simulation Model Dynamic Histogram Formulas

	L	M	N	0	P	Q	R	S
1	50-Day Trial	=I3		Minimum	=MIN(M2:M101)		Interval Max	Frequency
2	1	=TABLE(,K1)		Maximum	=MAX(M2:M101)		5000	=FREQUENCY(M2:M101,R2:R21)
3	2	=TABLE(,K1)					10000	=FREQUENCY(M2:M101,R2:R21)
4	3	=TABLE(,K1)		Mean	=AVERAGE(M2:M101)		15000	=FREQUENCY(M2:M101,R2:R21)
5	4	=TABLE(,K1)					20000	=FREQUENCY(M2:M101,R2:R21)
		=TABLE(,K1)		StDev	=STDEV(M2:M101)		25000	=FREQUENCY(M2:M101,R2:R21)
7	6	=TABLE(,K1)					30000	=FREQUENCY(M2:M101,R2:R21)
8	7	=TABLE(,K1)					35000	=FREQUENCY(M2:M101,R2:R21)
9	8	=TABLE(,K1)					40000	=FREQUENCY(M2:M101,R2:R21)
10	9	=TABLE(,K1)					45000	=FREQUENCY(M2:M101,R2:R21)
11	10	=TABLE(,K1)					50000	=FREQUENCY(M2:M101,R2:R21)
12	11	=TABLE(,K1)					55000	=FREQUENCY(M2:M101,R2:R21)
13	12	=TABLE(,K1)					60000	=FREQUENCY(M2:M101,R2:R21)
14	13	=TABLE(,K1)					65000	=FREQUENCY(M2:M101,R2:R21)
15	14	=TABLE(,K1)					70000	=FREQUENCY(M2:M101,R2:R21)
16	15	=TABLE(,K1)					75000	=FREQUENCY(M2:M101,R2:R21)
17	16	=TABLE(,K1)					80000	=FREQUENCY(M2:M101,R2:R21)
18	17	=TABLE(,K1)					85000	=FREQUENCY(M2:M101,R2:R21)
19	18	=TABLE(,K1)					90000	=FREQUENCY(M2:M101,R2:R21)
20	19	=TABLE(,K1)					95000	=FREQUENCY(M2:M101,R2:R21)
		=TABLE(,K1)					100000	=FREQUENCY(M2:M101,R2:R21)
22	21	=TABLE(,K1)					More	=FREQUENCY(M2:M101,R2:R21)
23	22	=TABLE(,K1)						
24	23	=TABLE(,K1)						
		=TABLE(,K1)						
26	25	=TABLE(,K1)						

This page is intentionally mostly blank.

Introduction to Data Analysis

11

object of analysis: person, thing, business entity, etc.
characteristic of interest: weight, hair color, diameter, sales, etc.
measurement of the characteristic: pounds, blond/brunette/red/etc., inches, dollars, etc.

11.1 LEVELS OF MEASUREMENT

called measurement scales by some authors
important distinctions because analysis and summary methods are very different
two general levels of measurement, each with two specific levels

Categorical Measure

also called qualitative measure
assign a category level to each object of analysis

Nominal Measure: simple classification, "assign a name"

Ordinal Measure: ranked categories, "assign an ordered classification"

Numerical Measure

also called quantitative measure assign a numerical value to each object of analysis

 $\label{lem:interval Measure:} \textbf{Interval Measure:}, rankings \ and \ numerical \ differences \ are \ meaningful$

Ratio Measure: natural zero and numerical ratios are meaningful

11.2 DESCRIBING CATEGORICAL DATA

List each categorical level with frequencies (counts) or relative frequencies (percentages).

Use an Excel pivot table to obtain frequencies.

Use an Excel bar chart, column chart, or pie chart.

To display the relationship between two categorical measures, use a two-way classification table.

For nominal data, the appropriate summary measure is the mode (most frequently occurring level)

For ordinal data, the appropriate summary measures are the mode and median (the middle-ranked category level with approximately 50% of the counts below and approximately 50% above).

Do not assign meaningless numerical values to the categorical levels.

Do not use the mean and standard deviation.

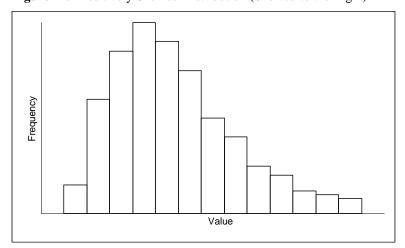
11.3 DESCRIBING NUMERICAL DATA

Frequency Distribution and Histogram

Determine the range (maximum minus minimum), generally use between 5 and 15 equally-spaced intervals, and pick "nice" numbers for the upper limit of each interval (Excel "bins").

Use Excel's Histogram analysis tool, or use Excel's FREQUENCY array-entered worksheet function with an Excel Column chart (vertical bars).

Numerical Summary Measures


Appropriate summary measures for central tendency ("What's a typical value?") include mean (average, most appropriate for mound-shaped data), median, and mode.

Appropriate summary measures for dispersion ("How typical is the typical value?") include range, standard deviation (most appropriate for mound-shaped distributions), and fractiles (first quartile, or 25th percentile, is a value with approximately 25% of the values below it and approximately 75% of the values above).

Appropriate summary measures for shape are Excel's SKEW worksheet function and Pearson's coefficient of skewness.

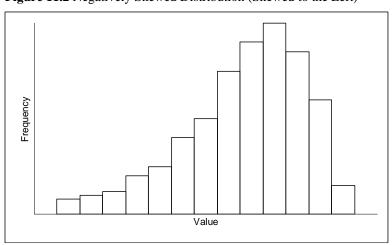

Distribution Shapes

Figure 11.1 Positively Skewed Distribution (Skewed to the Right)

In a distribution with positive skew, the mean is greater than the median.

Figure 11.2 Negatively Skewed Distribution (Skewed to the Left)

In a distribution with negative skew, the mean is less than the median.

Liedneucy Value

Figure 11.3 Mound-Shaped Distribution (Symmetric)

In a symmetric distribution, the mean and median are equal.

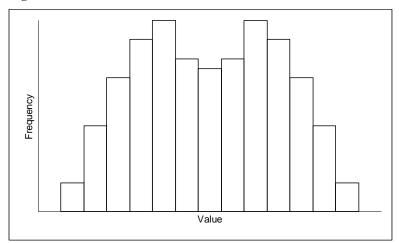


Figure 11.4 Bimodal Distribution

In a bimodal distribution, there is often a distinguishing characteristic for the two groups of data that have been combined into a single distribution.

Regression Models for Cross-Sectional Data

12.1 CROSS-SECTIONAL REGRESSION CHECKLIST

Plot Y versus each X

- 1 Verify that the relationship agrees with your prior judgment, e.g., positive vs negative relationship, linear vs nonlinear, strong vs weak
- 2 Identify outliers or unusual observations and decide whether to exclude
- 3 Determine whether the relationship is linear; if not, consider using a nonlinear form, e.g., quadratic (include X and X^2 in the model)

Examine the correlation matrix

4 Identify potential multicollinearity problems, i.e., high correlation between a pair of X variables; if so, consider using only one X of the pair in the model

Calculate the regression model with diagnostics

- 5 Verify that the sign of each regression coefficient agrees with your prior judgment, i.e., positive vs negative relationship; otherwise, consider excluding that X and rerun the regression
- 6 Examine each plot of residuals vs X; if there is a non-random pattern (e.g., U-shape or upside-down-U-shape), use a nonlinear form for that X in a new model
- 7 Identify key X variables by comparing standardized regression coefficients, usually computed by multiplying an X coefficient by the standard deviation of that X and dividing by the standard deviation of Y. This dimensionless standardized regression coefficient measures how much Y (in standard deviation units) is affected by a change in X (in standard deviation units).

- 8 If a goal is to find a model with small standard error of estimate (approx. standard deviation of residuals), use the t-stat screening method. Disregard the t-stat for the intercept. If there are X variables with a t-stat between -1 and +1, remove the single X variable whose t-stat is closest to zero, and rerun the regression. Remove only one X variable at a time.
- Before using the final model, examine each plot of residuals vs X to verify that the random scatter is the same for all values of X. If there is more scatter for higher values of X, consider using a log transformation of X in the model (instead of using X itself). If the scatter is not uniform with respect to X, the standard error of estimate may not be a useful measure of uncertainty because it overstates the uncertainty for some values of X and understates the uncertainty for other values of X.

Use the model

- 10 If the purpose is to identify unusual observations, examine the residuals directly for large negative or large positive values, or examine the standardized residuals (each residual divided by the standard deviation of residuals) for values more extreme than +2 or -2 or for values more extreme than +3 or -3.
- If the purpose is to make predictions, use the X values for a new observation to compute a predicted Y. Use the standard error of estimate to provide an interval estimate, e.g., an approximate 95% prediction interval that ranges from two standard errors below to two standard errors above the predicted Y. Avoid extrapolation, i.e., do not make predictions using X values outside the range of the original data.

Time Series Data and Forecasts

13.1 TIME SERIES PATTERNS

Meandering time series pattern: Small changes from period to period, possible larger changes over a longer period of time

Use an autoregressive model

Figure 13.1 Typical Meandering Time Series Pattern

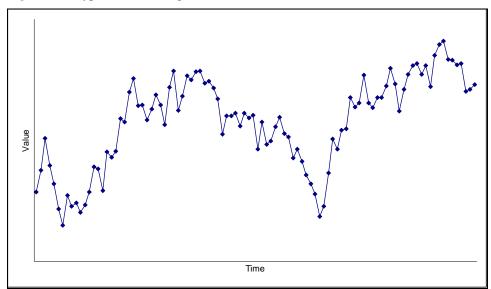


Figure 13.2 Typical Long-Term Trend Time Series Patterns

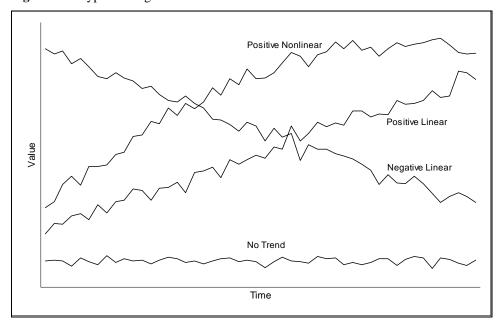
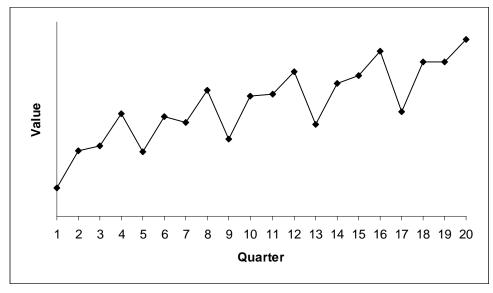



Figure 13.3 Typical Quarterly Seasonal Time Series with Linear Trend

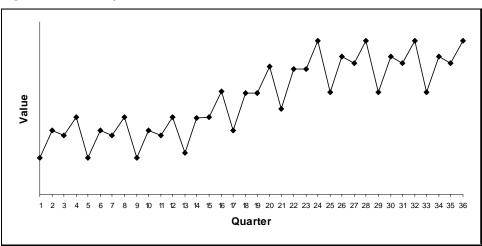


Figure 13.4 Quarterly Seasonal Pattern with Nonlinear Trend

Strong seasonal pattern, no trend during first 12 quarters, positive trend during middle 12 quarters, no trend during last 12 quarters

This page is intentionally mostly blank.

Regression Models for Time Series Data

14.1 TIME SERIES REGRESSION CHECKLIST

Relevant explanatory variables (X) for time series data related to business activity (Y), e.g., sales over time, include several general types:

- a Internal business activity, like advertising, promotion, research and development
- b Competitor business activity, like competitor sales and competitor advertising
- c Industry activity, like number of competitors and market size
- d General economic activity, like personal disposable income

Plot Y versus time

1 Identify any systematic pattern to help determine an appropriate model

Plot Y versus each X

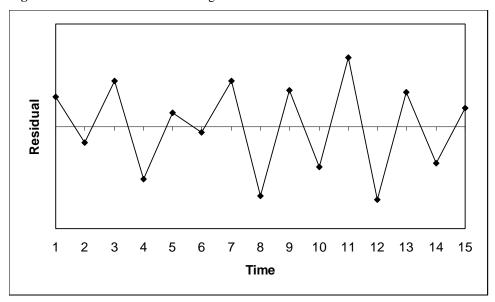
- Verify that the relationship agrees with your prior judgment, e.g., positive vs negative relationship, linear vs nonlinear, strong vs weak
- 3 Identify outliers or unusual observations and decide whether to exclude
- 4 Determine whether the relationship is linear; if not, consider using a nonlinear form, e.g., quadratic (include X and X^2 in the model)

Examine the correlation matrix

- 5 Include a time period variable in the correlation matrix. For example, if there are n equally-spaced time periods, include a variable in your data set with values 1,2,...,n.
- 6 Identify potential multicollinearity problems, i.e., high correlation between a pair of X variables; if so, consider using only one X of the pair in the model

Calculate the regression model with diagnostics

- Verify that the sign of each regression coefficient agrees with your prior judgment, i.e., positive vs negative relationship; otherwise, consider excluding that X and rerun the regression
- Examine each plot of residuals vs X; if there is a non-random pattern (e.g., Ushape or upside-down-U-shape), use a nonlinear form for that X in a new model
- In addition to the residual plots generated automatically by Excel's Regression tool, prepare and examine a plot of residuals vs time. If there is a snake-like pattern of residuals, consider adding lag Y as an explanatory variable. Optionally, compute the Durbin-Watson statistic to detect autocorrelation of residuals.
- 10 Identify key X variables by comparing standardized regression coefficients, usually computed by multiplying an X coefficient by the standard deviation of that X and dividing by the standard deviation of Y. This dimensionless standardized regression coefficient measures how much Y (in standard deviation units) is affected by a change in X (in standard deviation units).
- If a goal is to find a model with small standard error of estimate (approx. standard deviation of residuals), use the t-stat screening method. Disregard the tstat for the intercept. If there are X variables with a t-stat between -1 and +1, remove the single X variable whose t-stat is closest to zero, and rerun the regression. Remove only one X variable at a time.
- Before using the final model, examine each plot of residuals vs X to verify that the random scatter is the same for all values of X. If there is more scatter for higher values of X, consider using a log transformation of X in the model (instead of using X itself). If the scatter is not uniform with respect to X, the standard error of estimate may not be a useful measure of uncertainty because it overstates the uncertainty for some values of X and understates the uncertainty for other values of X.


Use the model

- If the purpose is to identify unusual observations, examine the residuals directly for large negative or large positive values, or examine the standardized residuals (each residual divided by the standard deviation of residuals) for values more extreme than +2 or -2 or for values more extreme than +3 or -3.
- If the purpose is to make predictions, use the X values for a new observation to compute a predicted Y. Use the standard error of estimate to provide an interval estimate, e.g., an approximate 95% prediction interval that ranges from two standard errors below to two standard errors above the predicted Y. Note that a

time series forecast usually extrapolates beyond the original range of data, so the standard error of estimate is a minimum indication of the uncertainty surrounding a forecast.

14.2 AUTOCORRELATION OF RESIDUALS

Figure 14.1 Undesirable Extreme Negative Autocorrelation

174

Figure 14.2 Undesirable Extreme Positive Autocorrelation

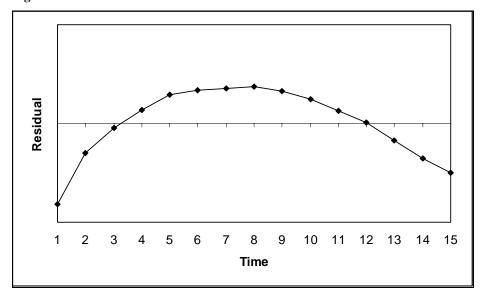
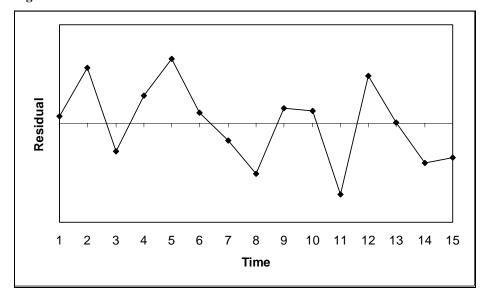
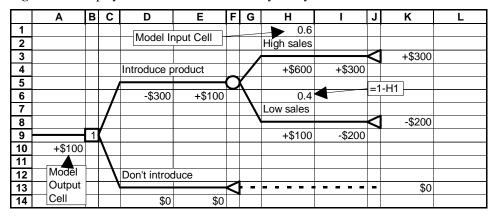



Figure 14.3 Desirable Zero Autocorrelation


Sensitivity Analysis for Decision Trees

15.1 ONE-VARIABLE SENSITIVITY ANALYSIS

One-Variable Sensitivity Analysis using an Excel data table

- 1. Construct a decision tree model or financial planning model.
- 2. Identify the model input cell (H1) and model output cell (A10).
- 3. Modify the model so that probabilities will always sum to one. (That is, enter the formula =1-H1 in cell H6.)

Figure 15.1 Display for One-Variable Sensitivity Analysis

- 4. Enter a list of input values in a column (N3:N13).
- 5. Enter a formula for determining output values at the top of an empty column on the right of the input values (=A10 in cell O2).
- 6. Select the data table range (N2:O13).

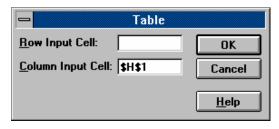

7. From the Data menu choose the Table command.

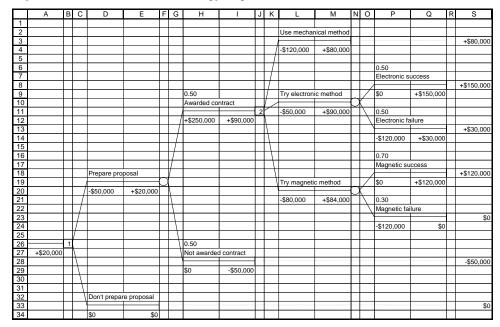
Figure 15.2

	М	N	0	Р
1				
2			+\$100	=A10
3		0.00		
4		0.10		
5		0.20		
6		0.30		
7		0.40		
8		0.50		
9		0.60		
10		0.70		
11		0.80		
12		0.90		
13		1.00		
14				

8. In the Data Table dialog box, select the Column Input Cell edit box. Type the model input cell (H1), or point to the model input cell (in which case the edit box displays \$H\$1). Click OK.

Figure 15.3

- 9. The Data Table command substitutes each input value into the model input cell, recalculates the worksheet, and displays the corresponding model output value in the table.
- 10. Optional: Change the formula in cell O2 to =CHOOSE(B9,"Introduce","Don't").


Figure 15.4

	М	N	0	Р
1	P(l	ligh Sales)	Exp. Value	
2				
3		0.00	0	
4		0.10	0	
5		0.20	0	
6		0.30	0	
7		0.40	0	
8		0.50	50	
9		0.60	100	
10		0.70	150	
11		0.80	200	
12		0.90	250	
13		1.00	300	
14				

15.2 TWO-VARIABLE SENSITIVITY ANALYSIS

Two-Variable Sensitivity Analysis using an Excel data table

Figure 15.5 Decision Tree for Strategy Region Table

Optional: Activate the Base Case worksheet. From the Edit menu, choose Move Or Copy Sheet. In the Move Or Copy dialog box, check the box for Create A Copy, and click OK. Double-click the new worksheet tab and enter Strategy Region Table.

Setup for Data Table

Select cell P11, and enter the formula =1–P6. Select cell P21, and enter the formula =1–P16.

In cell U3 enter P(Elec OK). In cell V3 enter 1, and in cell V4 enter 0.9. Select cells V3:V4. In the lower right corner of cell V4, click the fill handle and drag down to cell V13. With cells V3:V13 still selected, click the Increase Decimal button once so that all values are displayed with one decimal place.

Select columns V:AG. (Select column V. Click and drag the horizontal scroll bar until column AG is visible. Hold down the Shift key and click column AG.) From the Format menu choose Column | Width. In the Column Width edit box type 5 and click OK.

In cell W1 enter P(Mag OK). In cell W2 enter 0 (zero), and in cell X2 enter 0.1. Select cells W2:X2. In the lower right corner of cell X2, click the fill handle and drag right to cell AG2. With cells W2: AG2 still selected, click the Increase Decimal button once so that all values are displayed with one decimal place.

Select cell V2 and enter the formula =CHOOSE(J11,"Mech","Elec","Mag"). With the base case assumptions the formula shows Elec.

W Х Z AA AB AC AD ΑE AF AG (Mag OK) 2 Elec 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 3 P(Elec OK) 1.0 0.9 5 8.0 6 0.7 0.6 8 0.5 9 0.4 10 0.3 11 0.2 12 0.1

Figure 15.6

Obtaining Results Using Data Table Command

Select the entire data table, cells V2:AG13.

From the Data menu, choose Table. In the Table dialog box, type P16 in the Row Input Cell edit box, type P6 in the Column Input Cell edit box, and click OK.

With cells V2:AG13 still selected, click the Align Right button.

Figure 15.7

	U	V	W	Χ	Υ	Z	AA	AB	AC	AD	ΑE	AF	AG
1			P(Mag	OK)									
2		Elec	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
3	P(Elec OK)	1.0	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
4		0.9	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
5		0.8	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
6		0.7	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag
7		0.6	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag	Mag
8		0.5	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag	Mag	Mag
9		0.4	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
10		0.3	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
11		0.2	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
12		0.1	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag		Mag	
13		0.0	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag		Mag	Mag

Embellishments

Select cells U1:AG13, and click the Copy button. Select cell AI1, right-click, and from the shortcut menu choose Paste Special. In the Paste Special dialog box, click the Values option button, and click OK. Right-click again, choose Paste Special, click the Formats option button, and click OK.

Select columns AJ:AU. Choose Format | Cells | Width, type 5, and click OK.

Select cell AJ2, right-click, and from the shortcut menu choose Clear Contents. Select cells AK2:AU2, move the cursor near the border of the selection until it becomes an arrow, click and drag the selection down to cells AK14:AU14. Similarly, select cell AK1 and move its contents down to cell AP15. Also, move the contents of cell AI3 to cell AI8. Select cell AN1, and enter Strategy Region Table.

Figure 15.8

	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	ΑT	AU
1						Strate	y Regi	on Tabl	е				
2													
3		1.0	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
4		0.9	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
5		0.8	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
6		0.7	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag
7		0.6	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag	Mag
8	P(Elec OK)	0.5	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag	Mag	Mag
9		0.4	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
10		0.3	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
11		0.2	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
12		0.1	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
13		0.0	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	
14			0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15								P(Mag	OK)				

Apply borders to appropriate ranges and cells to show the strategy regions. Apply shading to cell AR8 to show the base case strategy.

Figure 15.9

	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	ΑT	AU
1						Strategy Region Table							
2													
3		1.0	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
4		0.9	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
5		0.8	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec
6		0.7	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag
7		0.6	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag	Mag
8	P(Elec OK)	0.5	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Elec	Mag	Mag	Mag
9		0.4	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
10		0.3	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
11		0.2	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
12		0.1	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag	Mag	Mag	Mag
13		0.0	Mech	Mech	Mech	Mech	Mech	Mech	Mech	Mag			
14			0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15								P(Mag	OK)				

15.3 MULTIPLE-OUTCOME SENSITIVITY ANALYSIS

Sensitivity Analysis for Multiple-Outcome Event Probabilities

Choose one of the outcome probabilities that will be explicitly changed.

For example, focus on P(Low Sales).

Keep same relative likelihood (base case) for the other probabilities.

Figure 15.10

	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
1								0.2						P(Low Sales)	OptStrat
2								High Sales							
3											+\$1,500			1.00	Don't
4								+\$2,500	+\$1,500					0.90	Don't
5														0.80	Don't
6								0.5						0.70	Don't
7				Intro		L	/	Medium Sa	les					0.60	Intro
8						\bigcirc					+\$500			0.50	Intro
9			/	-\$1,000	+\$400		\	+\$1,500	+\$500					0.40	Intro
10			\bot				\Box						Base ->	0.30	Intro
11								0.3						0.20	Intro
12							_\	Low Sales						0.10	Intro
13		_1									-\$500			0.00	Intro
14	+\$400		\					+\$500	-\$500						
15															
16			_\												
17			_\	Don't											
18											\$0	-			
19				\$0	\$0							-			

Figure 15.11

	Α	В	С	D	Е	Е	G	Н	Т		K	-	М	N	0
1	_ A	В	U			F	9	=(0.2/(0.2+0.5))*(1-H11)	-	J	K	┢		P(Low Sales)	OptStrat
2		П				H		High Sales	Н	Н					=CHOOSE(B13,"Intro","Don't")
3		П				l		/ Ingir Galoo	Н	П				1.00	
4		П				Ī	\Box		П					0.90	
5							1							0.80	
6							17	=(0.5/(0.2+0.5))*(1-H11)						0.70	
7				Intro			/	Medium Sales						0.60	
8						\circ								0.50	
9							\							0.40	
10													Base ->	0.30	
11								0.3						0.20	
12								Low Sales						0.10	
13		Ш						\						0.00	
14			\												
15			_												
16		Ш	_\												
17		Ш	_\	Don't		L									
18		Ш		Y		┖									
19															

15.4 ROBIN PINELLI'S SENSITIVITY ANALYSIS

Figure 15.12 Decision Tree and Multi-Attribute Utility (Robin Pinelli)

т	Α	В	С	D	Е	F	G	Н		Л	K	L	М	Ν	0	Р	Q	R	S	Т	U	V
1					, pp. 150-15					Ŭ	·`					Ė		ndividual U		Ė	Weight Ratio	Input
2	T	Ť		, 0.00	, рр. 100 10	Ĥ				Н				Н	Overall			I I I I I I I I I I I I I I I I I I I			Mag/Snow	1.50
	Non	-Tre	ρPI	an Formula	IS.	Н				Н	\vdash			Н	Utility		Income	Snowfall	Magazine	Н	Mag/Income	3.00
	V6				Ĭ	Н				Н		0.15		Н	Ottilly	Н		Onowian	Magazino	Н	wagmioomo	0.00
	V7					Н				Н	_	Snowfall 1	00 cm	Н						H	Weights	
				2+1/V3+1)		Н				Н				Н	48.83		75	25	56	Н	Income	0.167
7	06	-\$1	/\$61	06+\$\/\$7*	R6+\$V\$8*S	6				Н	-			Н						Н	Snowfall	0.333
8	Sele	-wv)6·C	010; click a	nd drag	ĭ				Н	+			Н						\vdash	Magazine	0.500
				O51.	I	Н		0.60		Н	⊬	0.70		Н						Н	magazino	0.000
10		1		, 001.		Н		Disp. Incon	ne \$1500	Н	/	Snowfall 2	00 cm	Н		Н				Н	+	
11	_	$^{+}$				Н	_	Diop. moon	10 \$1000		/=	Onomai E		Н	57.17		75	50	56	Н	†	
12	_	+				Н	-/			\vdash	١			Н		Н				Н	+	
13		$^{+}$				Н	-			Н	 			Н							1	
14	_	$^{+}$				Н	-			Н	\vdash	0.15		Н						Н		
15	-1	+				H	+			Н	\vdash	Snowfall 4	00 cm	H		Н				Н	t	
16		+				Н	1			Н	Н,			П	73.83	Н	75	100	56	H	1	
17	\neg	+		Madison P	ublishina	Н				H				Н	0.00	Н				H	1	
18	_	1				d				Н				H		Н				Т	1	
19		_			55.08	\preceq	1					0.15									t	
20	\neg	7	-1			П	1			П		Snowfall 1	00 cm	Н		П				T	†	
21	\dashv	1	-1			П	1			П				П	40.50	П	25	25	56	Г	1	
22			7			П	1							П						Г		
23		#	1			H	7				1			П								
24		_	+			Н	-	0.40			1	0.70		Н						Н		
25		\top	+			Н		Disp. Incon	ne \$1300	П	/	Snowfall 2	00 cm	Н						Н		
26		_	$^{+}$			Н	_				Ϊ=			Н	48.83		25	50	56	Н		
27		#	Т			Н				\sim	١			Н								
28		$^{+}$	Н			Н								Н								
29		#	H			Н						0.15		П								
30						П					\vdash	Snowfall 4	00 cm	П							t	
31		- 11				П					Г,			П	65.50		25	100	56			
32		- 1				П								П								
33		7				П				П				П								
34	=	1				П		0.15														
35		1				П		Snowfall 15	50 cm					П								
36		- (1)				П					H			П	29.17	П	100	37.5	0	Г		
37		١					-/															
38	П	T	M				7							П						Γ		
39		\Box	П				L	0.70														
40	П	Т	1	MPR Manu	ufacturing		$^{\prime}$	Snowfall 23	30 cm					П						Γ		
41			Γ												35.83		100	57.5	0			
42	┚	I			35.96	П	$\overline{}$															
43		┚	Γ			\Box	7													Ľ		
44 45		T	Γ					0.15														
45	\Box	╝	\Box			Ш		Snowfall 32	20 cm		L									L		
46		T	T			╚									43.33		100	80	0			
47			_			Ш														L		
48	I					LŢ					∟_			பி		L]				L		
49						Ш																
50	I		_	Pandemon	ium Pizza	Ц								Ш		Ц				L		
51						ιĪ				Ш					50.00		0	0	100			
52	I				50.00	Ш					\Box			Ш		\Box				L		

Figure 15.13 Sensitivity Analysis of Weight-Ratio Input Assumptions

	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH
1	Sensitivity Ar	nalvsis	_	7.0.	7.0	7.0	7.0	71.	7.0	7.0	7
2		,	Mag/Incom	e Weight R	atio						
3			1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
4	Mag/Snow	1.00	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison
5	Weight	1.25	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison
6	Ratio	1.50	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Madison
7		1.75	Madison	Madison	Madison	Madison	Madison	Madison	Madison	Pizza	Pizza
8		2.00	Madison	Madison	Madison	Madison	Madison	Pizza	Pizza	Pizza	Pizza
9		2.25	Madison	Madison	Madison	Madison	Pizza	Pizza	Pizza	Pizza	Pizza
10		2.50	Madison	Madison	Madison	Pizza	Pizza	Pizza	Pizza	Pizza	Pizza
11		2.75	Madison	Madison	Madison	Pizza	Pizza	Pizza	Pizza	Pizza	Pizza
12		3.00	Madison	Madison	Madison	Pizza	Pizza	Pizza	Pizza	Pizza	Pizza
13											
14											
15											
16			Mag/Incom	e Weight R							
17			0.25	0.50	0.75	1.00	1.50	2.00	2.50	3.00	3.50
18	Mag/Snow		MPR		MPR	MPR	Madison	Madison	Madison	Madison	Madison
19	Weight		MPR			Madison	Madison	Madison	Madison	Madison	Madison
20	Ratio		MPR		MPR	Madison		Madison		Madison	Madison
21			MPR	MPR	MPR	Madison	Madison	Madison	Madison	Madison	Madison
22			MPR	MPR	MPR	Madison	Madison	Madison	Madison	Madison	Madison
23		1.50	MPR	MPR	MPR	Madison	Madison	Madison	Madison	Madison	Madison
24		1.75	MPR	MPR	MPR	Madison	Madison	Madison	Madison	Madison	Madison
25		2.00	MPR	MPR	MPR	Madison	Madison	Madison	Madison	Madison	Pizza
26		2.25	MPR	MPR	MPR	Madison	Madison	Madison	Madison	Pizza	Pizza
27											
28											
29	Formulas										
30	Y3		(B34,"Madis								
31	Y17	=CHOOSE	(B34,"Madis	son","MPR"	, "Pizza")						
32											
33	Data Tables	-	-	6							
34	V3										
35	V2	Column Inp	out Cell								

184

This page is intentionally mostly blank.

Value of Information in Decision Trees

16.1 VALUE OF INFORMATION

Useful concept for

Evaluation potential information-gathering activities

Comparing importance of multiple uncertainties

16.2 EXPECTED VALUE OF PERFECT INFORMATION

Several computational methods

Flipping tree, moving an event set of branches, appropriate for any decision tree

Payoff table, most appropriate only for single-stage tree (one set of uncertain outcomes with no subsequent decisions)

Expected improvement

All three methods start by determining Expected Value Under Uncertainty, EVUU, which is the expected value of the optimal strategy without any additional information.

High Sales Introduce Product Low Sales Success Prediction Don't Introduce High Sales Introduce Product Low Sales Market Survey Inconclusive Don't Introduce High Sales Introduce Product Low Sales Failure Prediction Don't Introduce High Sales Introduce Product Low Sales Don't Survey Don't Introduce

Figure 16.1 Basic Probability Decision Tree

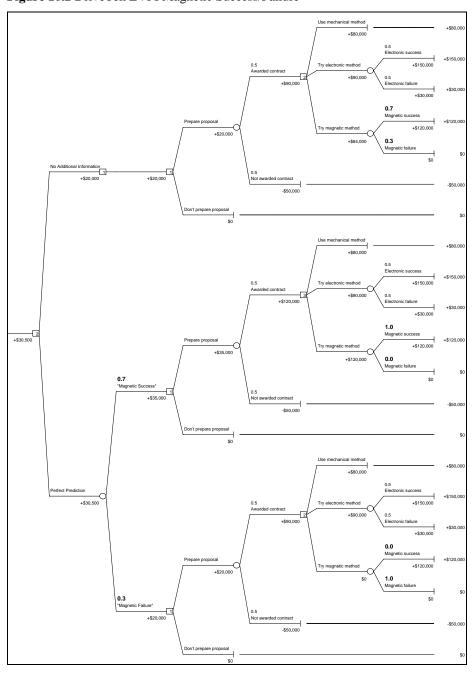


Figure 16.2 DriveTek EVPI Magnetic Success/Failure

16.3 DRIVETEK POST-CONTRACT-AWARD PROBLEM

DriveTek decided to prepare the proposal, and it turned out that they were awarded the contract. The \$50,000 cost and \$250,000 up-front payment are in the past. The current decision is to determine which method to use to satisfy the contract.

The following decision trees show costs as negative cash flows, so the decision criterion is to maximize expected cash flow. An alternative formulation (not shown here) would show all costs as positive values and would minimize expected cost.

Figure 16.3 EVUU

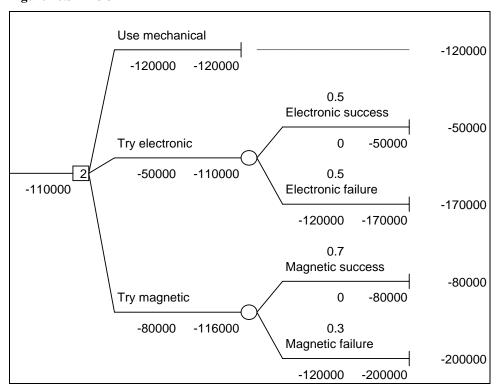


Figure 16.4 EVPP Elec

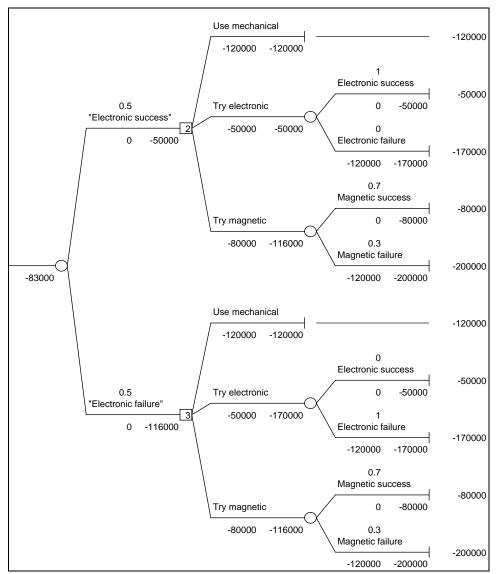


Figure 16.5 EVPP Mag

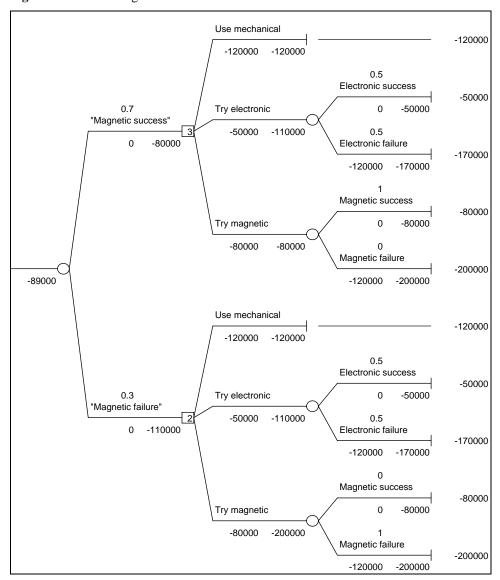
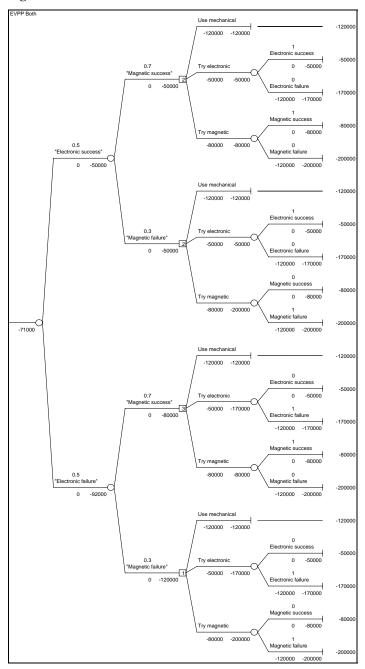



Figure 16.6 EVPP Both

16.4 SENSITIVITY ANALYSIS VS EVPI

Working Paper Title: Do Sensitivity Analyses Really Capture Problem Sensitivity? An Empirical Analysis Based on Information Value

Authors: James C. Felli, Naval Postgraduate School and Gordon B. Hazen, Northwestern University

Date: March 1998

The most common methods of sensitivity analysis (SA) in decision-analytic modeling are based either on proximity in parameter-space to decision thresholds or on the range of payoffs that accompany parameter variation. As an alternative, we propose the use of the expected value of perfect information (EVPI) as a sensitivity measure and argue from first principles that it is the proper measure of decision sensitivity. EVPI has significant advantages over conventional SA, especially in the multiparametric case, where graphical SA breaks down. In realistically sized problems, simple one- and two-way SAs may not fully capture parameter interactions, raising the disturbing possibility that many published decision analyses might be overconfident in their policy recommendations. To investigate the extent of this potential problem, we re-examined 25 decision analyses drawn from the published literature and calculated EVPI values for parameters on which sensitivity analyses had been performed, as well as the entire set of problem parameters. While we expected EVPI values to indicate greater problem sensitivity than conventional SA due to revealed parameter interaction, we in fact found the opposite: compared to EVPI, the one- and two-parameter SAs accompanying these problems dramatically overestimated problem sensitivity to input parameters. This phenomenon can be explained by invoking the flat maxima principle enunciated by von Winterfeldt and Edwards.

http://www.mccombs.utexas.edu/faculty/jim.dyer/DA_WP/WP980019.pdf

Value of Imperfect Information

17.1 TECHNOMETRICS PROBLEM

Prior Problem

Technometrics, Inc., a large producer of electronic components, is having some problems with the manufacturing process for a particular component. Under its current production process, 25 percent of the units are defective. The profit contribution of this component is \$40 per unit. Under the contract the company has with its customers, Technometrics refunds \$60 for each component that the customer finds to be defective; the customers then repair the component to make it usable in their applications. Before shipping the components to customers, Technometrics could spend an additional \$30 per component to rework any components thought to be defective (regardless of whether the part is really defective). The reworked components can be sold at the regular price and will definitely not be defective in the customers' applications. Unfortunately, Technometrics cannot tell ahead of time which components will fail to work in their customers' applications. The following payoff table shows Technometrics' net cash flow per component.

Figure 17.1 Payoff Table

Component	Technome	trics' Choice
Condition	Ship as is	Rework first
Good	+\$40	+\$10
Defective	-\$20	+\$10

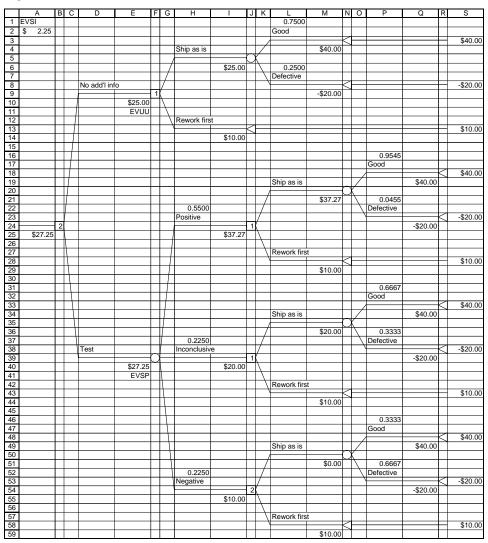
What should Technometrics do?

How much should Technometrics be willing to pay for a test that could evaluate the condition of the component before making the decision to ship as is or rework first?

Imperfect Information

An engineer at Technometrics has developed a simple test device to evaluate the component before shipping. For each component, the test device registers positive, inconclusive, or negative. The test is not perfect, but it is consistent for a particular component; that is, the test yields the same result for a given component regardless of how many times it is tested. To calibrate the test device, it was run on a batch of known good components and on a batch of know defective components. The results in the table below, based on relative frequencies, show the probability of a test device result, conditional on the true condition of the component.

Figure 17.2 Likelihoods


	Componer	it Condition
Test Result	Good	Defective
Positive	0.70	0.10
Inconclusive	0.20	0.30
Negative	0.10	0.60

For example, of the known defective components tested, sixty percent had a negative test result.

An analyst at Technometrics suggested using Bayesian revision of probabilities to combine the assessments about the reliability of the test device (shown above) with the original assessment of the components' condition (25 percent defectives).

Technometrics uses expected monetary value for making decisions under uncertainty. What is the maximum (per component) the company should be willing to pay for using the test device?

Figure 17.3 Decision Tree Model

Revision of Probability

Figure 17.4 Display

	U	٧	W	Χ	Υ
1	Prior	0.75	0.25	= P(Main)	
2	Likelihood	Good	Bad		
3	Positive	0.7	0.1	= P(Info I	Main)
4	Inconclusive	0.2	0.3		
5	Negative	0.1	0.6		
6					
7	Joint	Good	Bad	Preposterio	or
8	Positive	0.525	0.025	0.550	= P(Info)
9	Inconclusive	0.150	0.075	0.225	
10	Negative	0.075	0.150	0.225	
11					
12	Posterior	Good	Bad		
13	Positive	0.9545	0.0455	= P(Main	Info)
14	Inconclusive	0.6667	0.3333		
15	Negative	0.3333	0.6667		

Figure 17.5 Formulas

	U	٧	W	Х	Υ
1	Prior	0.75	0.25	= P(Main)	
2	Likelihood	Good	Bad		
3	Positive	0.7	0.1	= P(Info Main)	
4	Inconclusive	0.2	0.3		
5	Negative	0.1	0.6		
6					
7	Joint	Good	Bad	Preposterior	
8	Positive	=V\$1*V3	=W\$1*W3	=SUM(V8:W8)	= P(Info)
9	Inconclusive	=V\$1*V4	=W\$1*W4	=SUM(V9:W9)	
10	Negative	=V\$1*V5	=W\$1*W5	=SUM(V10:W10)	
11					
12	Posterior	Good	Bad		
13	Positive	=V8/\$X8	=W8/\$X8	= P(Main Info)	
14	Inconclusive	=V9/\$X9	=W9/\$X9		
15	Negative	=V10/\$X10	=W10/\$X10		

Modeling Attitude Toward Risk

18.1 RISK UTILITY FUNCTION

A certainty equivalent is a certain payoff value which is equivalent, for the decision maker, to a particular payoff distribution. If the decision maker can determine his or her certainty equivalent for the payoff distribution of each strategy in a decision problem, then the optimal strategy is the one with the highest certainty equivalent.

The certainty equivalent, i.e., the minimum selling price for a payoff distribution, depends on the decision maker's personal attitude toward risk. A decision maker may be risk preferring, risk neutral, or risk avoiding.

If the terminal values are not regarded as extreme relative to the decision maker's total assets, if the decision maker will encounter other decision problems with similar payoffs, and if the decision maker has the attitude that he or she will "win some and lose some," then the decision maker's attitude toward risk may be described as risk neutral.

If the decision maker is risk neutral, the certainty equivalent of a payoff distribution is equal to its expected value. The expected value of a payoff distribution is calculated by multiplying each terminal value by its probability and summing the products.

If the terminal values in a decision situation are extreme or if the situation is "one-of-a-kind" so that the outcome has major implications for the decision maker, an expected value analysis may not be appropriate. Such situations may require explicit consideration of risk.

Unfortunately, it can be difficult to determine one's certainty equivalent for a complex payoff distribution. We can aid the decision maker by first determining his or her certainty equivalent for a simple payoff distribution and then using that information to infer the certainty equivalent for more complex payoff distributions.

A utility function, U(x), can be used to represent a decision maker's attitude toward risk. The values or certainty equivalents, x, are plotted on the horizontal axis; utilities or expected utilities, u or U(x), are on the vertical axis. You can use the plot of the function

by finding a value on the horizontal axis, scanning up to the plotted curve, and looking left to the vertical axis to determine the utility.

A typical risk utility function might have the general shape shown below if you draw a smooth curve approximately through the points.

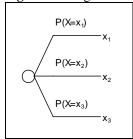


Figure 18.1 Typical Risk Utility Function

Since more value generally means more utility, the utility function is monotonically non-decreasing, and its inverse is well-defined. On the plot of the utility function, you locate a utility on the vertical axis, scan right to the plotted curve, and look down to read the corresponding value.

The concept of a payoff distribution, risk profile, gamble, or lottery is important for discussing utility functions. A payoff distribution is a set of payoffs, e.g., x_1 , x_2 , and x_3 , with corresponding probabilities, $P(X=x_1)$, $P(X=x_2)$, and $P(X=x_3)$. For example, a payoff distribution may be represented in decision tree form as shown below.

Figure 18.2 Figure 2 Payoff Distribution Probability Tree

The fundamental property of a utility function is that the utility of the certainty equivalent CE of a payoff distribution is equal to the expected utility of the payoffs, i.e,

$$U(CE) \ = \ P(X=x_1)*U(x_1) + P(X=x_2)*U(x_2) + P(X=x_3)*U(x_3).$$

It follows that if you compute the expected utility (EU) of a lottery,

$$EU = P(X=x_1)*U(x_1) + P(X=x_2)*U(x_2) + P(X=x_3)*U(x_3),$$

the certainty equivalent of the payoff distribution can be determined using the inverse of the utility function. That is, you locate the expected utility on the vertical axis, scan right to the plotted curve, and look down to read the corresponding certainty equivalent.

If a utility function has been determined, you can use this fundamental property to determine the certainty equivalent of any payoff distribution. Calculations for the Magnetic strategy in the DriveTek problem are shown below. First, using a plot of the utility function, locate each payoff x on the horizontal axis and determine the corresponding utility U(x) on the vertical axis. Second, compute the expected utility EU of the lottery by multiplying each utility by its probability and summing the products. Third, locate the expected utility on the vertical axis and determine the corresponding certainty equivalent CE on the horizontal axis.

Figure 18.3 Calculations Using Risk Utility Function

P(X=x)	х	U(x)	P(X=x)*U(x)	
0.50	-\$50,000	0.00	0.0000	
0.15	\$0	0.45	0.0675	
0.35	\$120,000	0.95	0.3325	
			0.4000	EU
			-\$8,000	CE

18.2 EXPONENTIAL RISK UTILITY

Instead of using a plot of a utility function, an exponential function may be used to represent risk attitude. The general form of the exponential utility function is

$$U(x) = A - B*EXP(-x/RT).$$

The risk tolerance parameter RT determines the curvature of the utility function reflecting the decision maker's attitude toward risk. Subsequent sections cover three methods for determining RT.

EXP is Excel's standard exponential function, i.e., EXP(z) represents the value e raised to the power of z, where e is the base of the natural logarithms.

The parameters A and B determine scaling. After RT is determined, if you want to plot a utility function so that U(High) = 1.0 and U(Low) = 0.0, you can use the following formulas to determine the scaling parameters A and B.

$$A \ = \ EXP\left(-Low/RT\right)/\left[EXP\left(-Low/RT\right)-EXP\left(-High/RT\right)\right]$$

$$B = 1 / [EXP (-Low/RT) - EXP (-High/RT)]$$

The inverse function for finding the certainty equivalent CE corresponding to an expected utility EU is

$$CE = -RT*LN[(A-EU)/B],$$

where LN(y) represents the natural logarithm of y.

After the parameters A, B, and RT have been determined, the exponential utility function and its inverse can be used to determine the certainty equivalent for any lottery.

Calculations for the Magnetic strategy in the DriveTek problem are shown in Figure 4.

В **Exponential Utility Inputs** 3 4 RT \$100,000 -\$50,000 Low \$150,000 High 5 Computed 6 1.1565 Α 7 В 0.7015 8 Payoff Distribution 9 P(X=x) $U(x) P(X=x)^*U(x)$ 10 0.50 -\$50,000 0.0000 0.0000 11 0.15 \$0 0.4551 0.0683 12 0.35 0.3308 \$120,000 0.9452 13 0.3991 EU 14 CE 15 -\$7,676

Figure 18.4 Exponential Risk Utility Results

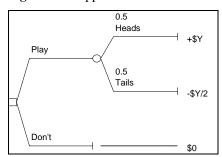
Computed values are displayed with four decimal places, but Excel's 15-digit precision is used in all calculations. For a decision maker with a risk tolerance parameter of \$100,000, the payoff distribution for the Magnetic strategy has a certainty equivalent of -\$7,676. That is, if the decision maker is facing the payoff distribution shown in A9:B12 in Figure 4, he or she would be willing to pay \$7,676 to be relieved of the obligation.

Formulas are shown in Figure 5. To construct the worksheet, enter the text in column A and the monetary values in column B. To define names, select A2:B4, and choose Insert | Name | Create. Similarly, select A6:B7, and choose Insert | Name | Create. Then enter the formulas in B6:B7. Enter formulas in C10 and D10, and copy down. Finally, enter the EU formula in D13 and the CE formula in D15. The defined names are absolute references by default.

Figure 18.5 Exponential Risk Utility Formulas

	А	В	С	D	Е
1	Exponent	ial Utility Inp	outs		
2	RT	\$100,000			
3	Low	-\$50,000			
4	High	\$150,000			
5	Computed	d			
6	A	=EXP(-Low/F	RT)/(EXP(-Low/RT)-EX	P(-High/RT))	
7	В	=1/(EXP(-Lo	w/RT)-EXP(-High/RT))		
8	Payoff Dis	stribution			
9	P(X=x)	х	U(x)	P(X=x)*U(x)	
10	0.50	-\$50,000	=A-B*EXP(-B10/RT)	=A10*C10	
11	0.15	\$0	=A-B*EXP(-B11/RT)	=A11*C11	
12	0.35	\$120,000	=A-B*EXP(-B12/RT)	=A12*C12	
13			,	=SUM(D10:D12)	EU
14				, ,	
15				=-RT*LN((A-D13)/B)	CE

Figure 6 shows results for the same payoff distribution using a simplified form of the exponential risk utility function with A=1 and B=1. This function could be represented as U(x)=1–EXP(-x/RT) with inverse CE=-RT*LN(1–EU). The utility and expected utility calculations are different, but the certainty equivalent is the same.

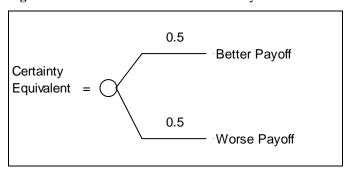

Figure 18.6 Simplified Exponential Risk Utility Results

	А	В	С	D	E
1	Exponenti	al Utility In	puts		
2	RT	\$100,000			
3	Low	-\$50,000			
4	High	\$150,000			
5	Computed				
6	Д	1			
7	В	1			
8	Payoff Dis	tribution			
9	P(X=x)	X	U(x)	P(X=x)*U(x)	
10	0.50	-\$50,000	-0.6487	-0.3244	
11	0.15	\$0	0.0000	0.0000	
12	0.35	\$120,000	0.6988	0.2446	
13				-0.0798	EU
14					
15				-\$7,676	CE

18.3 APPROXIMATE RISK TOLERANCE

The value of the risk tolerance parameter RT is approximately equal to the maximum value of Y for which the decision maker is willing to accept a payoff distribution with equally-likely payoffs of \$Y and -\$Y/2 instead of accepting \$0 for certain.

Figure 18.7 Approximate Risk Tolerance


For example, in a personal decision, you may be willing to play the game shown in Figure 7 with equally-likely payoffs of \$100 and -\$50, but you might not play with payoffs of \$100,000 and -\$50,000. As the better payoff increases from \$100 to \$100,000 (and the corresponding worse payoff increases from -\$50 to -\$50,000), you reach a value where you are indifferent between playing the game and receiving \$0 for certain. At that point, the value of the better payoff is an approximation of RT for an exponential risk utility function describing your risk attitude.

In a business decision for a small company, the company may be willing to play the game with payoffs of \$200,000 and -\$100,000 but not with payoffs of \$20,000,000 and -\$10,000,000. Somewhere between a better payoff of \$200,000 and \$20,000,000, the company would be indifferent between playing the game and not playing, thereby determining the approximate RT for their business decision.

18.4 EXACT RISK TOLERANCE USING EXCEL

A simple payoff distribution, called a risk attitude assessment lottery, may be used to determine the decision maker's attitude toward risk. This lottery has equal probability of obtaining each of the two payoffs. It is good practice to use a better payoff at least as large as the highest payoff in the decision problem and a worse payoff as small as or smaller than the lowest payoff. In any case, the payoffs should be far enough apart that the decision maker perceives a definite difference in the two outcomes. Three values must be specified for the fifty-fifty lottery: the Better payoff, the Worse payoff, and the Certainty Equivalent, as shown in Figure 8.

Figure 18.8 Risk Attitude Assessment Lottery

According to the fundamental property of a risk utility function, the utility of the certainty equivalent equals the expected utility of the lottery, so the three values are related as follows.

$$U(CertEquiv) = 0.5*U(BetterPayoff) + 0.5*U(WorsePayoff)$$

If you use the general form for an exponential utility function with parameters A, B, and RT, and if you simplify terms, it follows that RT must satisfy the following equation.

$$Exp(-CertEquiv/RT) = 0.5*Exp(-BetterPayoff/RT) + 0.5*Exp(-WorsePayoff/RT)$$

Given the values for CE, Better, and Worse, you could use trial-and-error to find the value of RT that exactly satisfies the equation. In Excel you can use Goal Seek or Solver by creating a worksheet like Figure 9.

Enter the text in column A. Enter the assessment lottery values in B2:B4. Enter a tentative RT value in B6. Select A2:B4, and use Insert | Name | Create; repeat for A6:B6 and A8:B9. Note that the parentheses symbol is not allowed in a defined name, so Excel changes U(CE) to U_CE and EU(Lottery) to EU_Lottery.

Figure 18.9 Formulas for Risk Tolerance Search

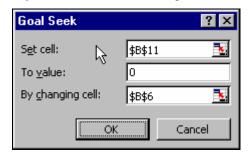

	Α	В	С	D	Е	F	G
1	Assessment Inputs						
2	WorsePayoff	-\$50,000					
3	CertEquiv	\$30,000					
4	BetterPayoff	\$150,000					
5	Changing Cell						
6	RT	\$200,000					
7	Computed Values						
8	U(CE)	=EXP(-Cer	tEquiv/RT)				
9	EU(Lottery)	=0.5*EXP(-	-BetterPayo	off/RT)+0.5*	EXP(-Wors	ePayoff/RT)
10	Target Cell						
11	Difference	=U_CE-EU	_Lottery				
12							

Figure 18.10 Tentative Values for Risk Tolerance Search

	А	В
1	Assessment Inputs	
2	WorsePayoff	-\$50,000
3	CertEquiv	\$30,000
4	BetterPayoff	\$150,000
5	Changing Cell	
6	RT	\$200,000
7	Computed Values	
8	U(CE)	0.860708
9	EU(Lottery)	0.878196
10	Target Cell	
11	Difference	-0.01749

Figure 10 shows tentative values for the search. From the Tools menu, choose Goal Seek. In the Goal Seek dialog box, enter B11, 0, and B6. If you point to cells, the reference appears in the edit box as an absolute reference, as shown in Figure 11. Click OK.

Figure 18.11 Goal Seek Dialog Box

The Goal Seek Status dialog box shows that a solution has been found. Click OK. The worksheet appears as shown in Figure 12.

Figure 18.12 Results of Goal Seek Search

	Α	В
1	Assessment Inputs	
2	WorsePayoff	-\$50,000
3	CertEquiv	\$30,000
4	BetterPayoff	\$150,000
5	Changing Cell	
6	RT	\$242,357
7	Computed Values	
8	U(CE)	0.88357
9	EU(Lottery)	0.883828
10	Target Cell	
11	Difference	-0.00026

The difference between U(CE) and EU(Lottery) is not exactly zero. If you start at \$250,000, the Goal Seek converges to a difference of -6.2E-05 or 0.000062, which is closer to zero, resulting in a RT of \$243,041.

If extra precision is needed, use Solver. With Solver's default settings, the difference is 2.39E–08 with RT equal to \$243,261. If you change the precision from 0.000001 to 0.00000001 or an even smaller value in Solver's Options, the difference will be even closer to zero.

18.5 EXACT RISK TOLERANCE USING RISKTOL, XLA

The Goal Seek and Solver methods for determining the risk tolerance parameter RT yield static results. For a dynamic result, use the risktol.xla add-in function. A major advantage of risktol.xla is that it facilitates sensitivity analysis. Whenever an input to the function changes, the result is recalculated. The function syntax is

RISKTOL(WorsePayoff, CertEquiv, BetterPayoff, BetterProb).

When you open the risktol.xla file, the function is added to the Math & Trig function category list.

The function returns a very precise value of the risk tolerance parameter for an exponential utility function. The result is consistent with CertEquiv as the decision maker's certainty equivalent for a two-payoff assessment lottery with payoffs WorsePayoff and BetterPayoff, with probability BetterProb of obtaining BetterPayoff and probability 1 – BetterProb of obtaining WorsePayoff.

In case of an error, the RISKTOL function returns:

#N/A if there are too few or too many arguments. The first three arguments (WorsePayoff, CertEquiv, and BetterPayoff) are required; the fourth argument (BetterProb) is optional, with default value 0.5.

#VALUE! if WorsePayoff >= CertEquiv, or CertEquiv >= Better Payoff, or BetterProb (if specified) <= 0 or >= 1.

#NUM! if the search procedure fails to converge.

In Figure 13, the text in cells A2:A4 has been used as defined names for cells B2:B4, and the text in cell A6 is the defined name for cell B6, as shown in the name box. After opening the risktol.xla file, enter the function name and arguments, as shown in the formula bar. If one of the three inputs change, the result in cell B6 is recalculated.

	RT ▼	£ =RISK1	ΓOL(Betterf	⊃ayoff,CertE	Equiv,Wors	ePayoff)
	Α	В	С	D	Е	F
1	Assessment Inputs					
2	WorsePayoff	\$150,000				
3	CertEquiv	\$30,000				
4	BetterPayoff	-\$50,000				
5	Risk Tolerance					
6	RT	\$243,261				
7			•			

Figure 18.13 Exact Risk Tolerance Using RiskTol.xla

18.6 EXPONENTIAL UTILITY AND TREEPLAN

TreePlan's default is to rollback the tree using expected values. If you choose to use exponential utilities in TreePlan's Options dialog box, TreePlan will redraw the decision tree diagram with formulas for computing the utility and certainty equivalent at each node. For the Maximize option, the rollback formulas are U = A - B*EXP(-X/RT) and CE = -LN((A-EU)/B)*RT, where X and EU are cell references. For the Minimize option, the formulas are U = A - B*EXP(X/RT) and CE = LN((A-EU)/B)*RT.

To plot the utility curve, enter a list of X values in a column on the left, and enter the formula =A-B*EXP(-X/RT) in a column on the right, where X is a reference to the corresponding cell on the left. Select the values in both columns, and use the ChartWizard to develop an XY (Scatter) chart.

If RT is specified using approximate risk tolerance values, you can perform sensitivity analysis by (1) using the defined name RT for a cell, (2) constructing a data table with a list of possible RT values and an appropriate output formula (usually a choice indicator at a decision node or a certainty equivalent), and (3) specifying the RT cell as the input cell in the Data Table dialog box.

18.7 EXPONENTIAL UTILITY AND RISKSIM

After using RiskSim to obtain model output results, select the column containing the Sorted Data, copy to the clipboard, select a new sheet, and paste. Alternatively, you can use the unsorted values, and you can also do the following calculations on the original sheet containing the model results. This example uses only ten iterations; 500 or 1,000 iterations are more appropriate.

Use one of the methods described previously to specify values of RT, A, and B. Since the model output values shown in Figures 14 and 15 range from approximately \$14,000 to \$176,000, the utility function is defined for a range from worse payoff \$0 to better payoff \$200,000. RT was determined using risktol.xla with a risk-seeking certainty equivalent of \$110,000.

To obtain the utility of each model output value in cells A2:A11, select cell B2, and enter the formula =A-B*EXP(-A2/RT). Select cell B2, click the fill handle in the lower right corner of the cell and drag down to cell B11. Enter the formulas in cells A13:C13 and the labels in row 14.

Figure 18.14 Risk Utility Formulas for RiskSim

	Α	В	С
1	Sorted Data	Utility	
2	14229.56	=A-B*EXP(-A2/RT)	
3	32091.92	=A-B*EXP(-A3/RT)	
4	51091.48	=A-B*EXP(-A4/RT)	
5	66383.79	=A-B*EXP(-A5/RT)	
6	69433.32	=A-B*EXP(-A6/RT)	
7	87322.23	=A-B*EXP(-A7/RT)	
8	95920.93	=A-B*EXP(-A8/RT)	
9	135730.71	=A-B*EXP(-A9/RT)	
10	154089.36	=A-B*EXP(-A10/RT)	
11	175708.87	=A-B*EXP(-A11/RT)	
12			
13	=AVERAGE(A2:A11)	=AVERAGE(B2:B11)	=-LN((A-B13)/B)*RT
14	Exp. Value	Exp.Util.	CE

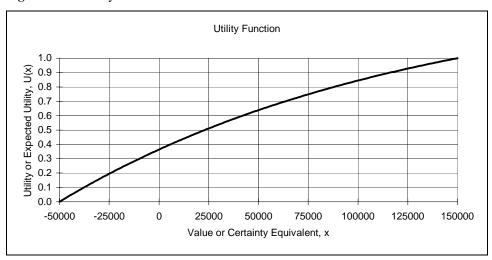
Figure 18.15 Risk Utility Results for RiskSim

_				
		Α	В	С
1	So	rted Data	Utility	
2	\$	14,230	0.05862	
3	\$	32,092	0.13462	
4	\$	51,091	0.21851	
5	\$	66,384	0.28841	
6	\$	69,433	0.30260	
7	\$	87,322	0.38767	
8	\$	95,921	0.42966	
9	\$	135,731	0.63382	
10	\$	154,089	0.73363	
11	\$	175,709	0.85600	
12				
13	\$	88,200	0.40435	\$ 90,757
14	Е	xp. Value	Exp.Util.	CE

18.8 RISK SENSITIVITY FOR MACHINE PROBLEM

Figure 18.16

	Α	В	С	D	Е	F	G	Н		J	K	L
1	Process 1	NPV	Utility		Process 2	NPV	Utility		RT		AJS, Cleme	en2
2		\$107,733	0.102133			\$86,161	0.082554		\$1,000,000		pp. 428-43	0
3		\$39,389	0.038623			\$58,417	0.056744					
4		\$125,210	0.117689			\$171,058	0.157228			Process 1	Process 2	
5		\$66,032	0.063899			\$263,843	0.231906					
6		\$32,504	0.031982			\$37,180	0.036498		ExpUtility	0.085527	0.107258	
7		\$138,132	0.129016			\$254,027	0.224329					
8		\$83,000	0.079649			\$118,988	0.112181		CertEquiv	\$89,407	\$113,458	
9		\$48,178	0.047036			\$133,862	0.125289					
10		\$20,130	0.019928			\$26,597	0.026247		ExpValue	\$90,526	\$116,159	
11		\$31,445	0.030956			\$187,063	0.170608					
12		\$19,739	0.019546			\$88,060	0.084294					
13		\$4,641	0.00463			\$114,837	0.108489					
14		\$92,368	0.08823			\$130,638	0.122465		Goal Seek			
15		\$102,585	0.097498			\$138,882	0.12967					
16		\$106,411	0.100945			\$226,909	0.203006		CE2 - CE1	\$24,050		
17		\$110,528	0.104639			\$156,102	0.144528					
18		\$171,524	0.15762			\$193,209	0.17569					
19		\$87,698	0.083963			\$92,004	0.087898					
20		\$123,907	0.116538			\$163,780	0.151071		NPV values	from RiskSi	m Summary	,
21		\$69,783	0.067404			\$22,176	0.021932		Cell I2 has d	efined name	e RT	
22		\$144,052	0.134157			\$135,190	0.12645		Formulas			
23		\$131,461	0.123187			\$61,013	0.059189		C2	=1-EXP(-B	2/RT)	
24		\$34,938	0.034335			\$184,907	0.168819		Copy down t			
25		\$75,551	0.072768			\$70,967	0.068507		G2	=1-EXP(-F	2/RT)	
26		\$32,144	0.031633			-\$10,251	-0.010304		Copy down t	o G1001		
27		\$61,719	0.059853			\$89,645	0.085744		J6	=AVERAG	E(C2:C1001	1)
28		\$139,568	0.130266			\$119,405	0.112551		K6		E(G2:G100	1)
29		\$89,107	0.085252			\$96,670	0.092144		J8	=-RT*LN(1		
30		\$94,158	0.089861	1		\$114,124	0.107853		K8	=-RT*LN(1	-K6)	
31		\$81,459	0.07823			\$208,778	0.188425		J10		E(B2:B1001	
32		\$139,258	0.129997			\$24,580	0.02428		K10		E(F2:F1001)
33		\$58,190	0.056529			\$155,958	0.144405		J16	=K8-J8		
34		-\$13,104	-0.01319			\$198,519	0.180056					
35		\$36,529	0.035869			\$167,568	0.154281					
36		\$91,239	0.0872			\$36,676	0.036011					
37		\$147,155	0.13684			\$225,777	0.202104					
38		\$154,168	0.142872			\$195,738	0.177773					
39		\$180,770	0.165372			\$53,467	0.052063					
40		\$112,313	0.106235			\$213,920	0.192587					


Figure 18.17

18.9 RISK UTILITY SUMMARY

Concepts

Strategy, Payoff Distribution, Certainty Equivalent

Figure 18.18 Utility Function

Fundamental Property of Utility Function

The utility of the CE of a lottery equals the expected utility of the lottery's payoffs.

$$U(CE) = EU = p1*U(x1) + p2*U(x2) + p3*U(x3)$$

Using a Utility Function To Find the CE of a Lottery

- U(x): Locate each payoff on the horizontal axis and determine the corresponding utility on the vertical axis.
- EU: Compute the expected utility of the lottery by multiplying each utility by its probability and summing the products.
- CE: Locate the expected utility on the vertical axis and determine the corresponding certainty equivalent on the horizontal axis.

Exponential Utility Function

General form: U(x) = A - B*EXP(-x/RT)

Parameters A and B affect scaling.

Parameter RT (RiskTolerance) depends on risk attitude and affects curvature.

Inverse: CE = -RT*LN[(A-EU)/B]

TreePlan's Simple Form of Exponential Utility

Set A and B equal to 1.

$$U(x) = 1 - EXP(-x/RT)$$

$$CE = -RT*LN(1-EU)$$

Approximate Assessment of RiskTolerance

Refer to the Clemen textbook, Figure 13.12, on page 478.

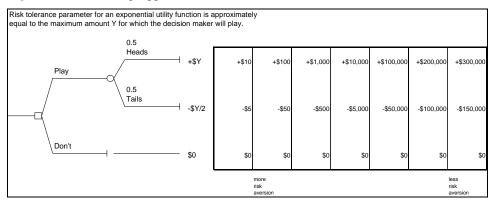


Figure 18.19 Assessing ApproximateRisk Tolerance

Exact Assessment of RiskTolerance

The RISKTOL.XLA Excel add-in file adds the following function to the Math & Trig function category list:

RISKTOL(WorsePayoff,CertEquiv,BetterPayoff,BetterProb)

The first three arguments are required, and the last argument is optional with default value 0.5. WorsePayoff and BetterPayoff are payoffs of an assessment lottery, and CertEquiv is the decision maker's certainty equivalent for the lottery.

RISKTOL returns #N/A if there are too few or too many arguments, #VALUE! if WorsePayoff >= CertEquiv, or CertEquiv >= Better Payoff, or BetterProb (if specified) <= 0 or >= 1, and #NUM! if the search procedure fails to converge.

For example, consider a 50-50 lottery with payoffs of \$100,000 and \$0. A decision maker has decided that the certainty equivalent is \$43,000. If you open the RISKTOL.XLA file and type =RISKTOL(0,43000,100000) in a cell, the result is 176226. Thus, the value of the RiskTolerance parameter in an exponential utility function for this decision maker should be 176226.

Using Exponential Utility for TreePlan Rollback Values

- 1. Select a cell, and enter a value for the RiskTolerance parameter.
- 2. With the cell selected, choose Insert Name | Define, and enter RT.
- 3. From TreePlan's Options dialog box, select Use Exponential Utility. The new decision tree diagram includes the EXP and LN functions for determining U(x) and the inverse.

Using Exponential Utility for a Payoff Distribution

Enter the exponential utility function directly, using the appropriate value for RiskTolerance. If the payoff values are equally-likely, use the AVERAGE function to determine the expected utility; otherwise, use SUMPRODUCT. Enter the inverse function directly to obtain the certainty equivalent.

Modeling Marketing Decisions

19.1 ALLOCATING ADVERTISING EXPENDITURES

Figure 19.1 Quick Tour

	Α	В	С	D	Е	F	G	Н	ı
1	Quick Tour of Microsoft Excel Solver								
2	Month	Q1	Q2	Q3	Q4	Total			
3	Seasonality	0.9	1.1	0.8	1.2				
4									
5	Units Sold	3,592	4,390	3,192	4,789	15,962			
6	Sales Revenue	\$143,662	\$175,587	\$127,700	\$191,549	\$638,498			
7	Cost of Sales	89,789	109,742	79,812	119,718	399,061			
8	Gross Margin	53,873	65,845	47,887	71,831	239,437			
9									
10	Salesforce	8,000	8,000	9,000	9,000	34,000			
11	Advertising	10,000	10,000	10,000	10,000	40,000			
12	Corp Overhead	21,549	26,338	19,155	28,732	95,775			
13	Total Costs	39,549	44,338	38,155	47,732	169,775			
14									
15	Prod. Profit	\$14,324	\$21,507	\$9,732	\$24,099	\$69,662			
16	Profit Margin	10%	12%	8%	13%	11%			
17									
18	Product Price	\$40.00							
19	Product Cost	\$25.00							
20									
21	The following exar	mples show y	ou how to worl	k with the mo	del above to	solve for one	value	or se	everal
22	values to maximiz	e or minimiz	e another value	e, enter and o	change const	raints, and sa	ave a p	roble	em model.
23									

23			
24	Row	Contains	Explanation
25	3	Fixed values	Seasonality factor: sales are higher in quarters 2 and 4,
26			and lower in quarters 1 and 3.
27			
28	5	=35*B3*(B11+3000)^0.5 Forecast for units sold each quarter: row 3 contains
29			the seasonality factor; row 11 contains the cost of
30			advertising.
31			
32	6	=B5*\$B\$18	Sales revenue: forecast for units sold (row 5) times
33			price (cell B18).
34			
35	7	=B5*\$B\$19	Cost of sales: forecast for units sold (row 5) times
36			product cost (cell B19).
37			
38	8	=B6-B7	Gross margin: sales revenues (row 6) minus cost of
39			sales (row 7).
40			
41	10	Fixed values	Sales personnel expenses.
42			
43	11	Fixed values	Advertising budget (about 6.3% of sales).
44			
45	12	=0.15*B6	Corporate overhead expenses: sales revenues (row 6)
46			times 15%.
47			

	А	В	С	D	E	F	G	Н		ı
48	13	=SUM(B10:E	312)	Total costs:	sales persor	nel expenses	s (row	10) p	lus	
49				advertising ((row 11) plus	overhead (ro	w 12).			
50										
51	15	=B8-B13		Product pro	fit: gross ma	rgin (row 8)	minus	total	costs	
52				(row 13).						
53										
54	16	=B15/B6		Profit margi	n: profit (rov	15) divided	by sale	es rev	/enue	
55				(row 6).						
56										
57	18	Fixed values		Product price	e.					
58										
59	19	Fixed values		Product cos	t.					
60										
61	This is a typical n									8
62	personnel) along			_						
63	\$5,000 of adverti		elds about 1,09	32 increment	al units sold,	but the next	\$5,00	0 yiel	ds onl	у
64	about 775 units r	nore.								
65	V C-l			 						
66 67	You can use Solve should be allocate								ng	
68	snould be anocal		over time to ta	ake auvantag	e or the chan	ging seasona	iiity iac	tor.		
69	Solving for a	Value to M	aximize An	∟ other Valu	<u> </u>					
70	One way you can					ll by changi	na anoi	ther c	ا الم	he
71	two cells must be						•			
72	one cell will not c		_		TROHOUT. II TH	by are not, o	langin	9 1110	Value	
73										
74	For example, in the	ne sample wo	rksheet, you w	ant to know	how much yo	u need to sp	end on	adve	rtisino	l
75	to generate the m									
76	advertising expen	ditures.								
77										
78	•	On the Tools	s menu, click S	Solver. In the	Set target c	ell box, type	b15 or	r		
79		select cell B	15 (first-quarte	er profits) on	the workshee	et. Select the	e Max o	ption	١.	
80		In the By ch	anging cells be	ox, type b11	or select cell	B11 (first-qu	arter a	dvert	ising)	
81		on the works	heet. Click So	olve.						
82										
83	You will see mess						•			
84	moment, you'll se	ee a message	that Solver ha	s found a sol	ution. Solver	finds that Q	1 adve	rtisin	g of	
85	\$17,093 yields th	e maximum	profit \$15,093							
86										
87			amine the resu				click C	OK to		
88		discard the	results and ret	urn cell B11	to its former	value.				
89	Posetting the	Salvar On	tions							
90	Resetting the	Joiver Op	HOUS							
91	Marian in the state of						-1			
92	1				s dialog box t	o their origin	iai setti	ings s	so that	
93	you can start a ne	ew problem, y	/ou can click R	eset All.						
94										

	А	В	С	D	Е	F	G	Н	1		
95	Solving for a	Value by C	hanging Se	veral Valu	es						
96	_										
97	You can also use	Solver to solv	e for several v	alues at once	to maximize	or minimize	anoth	er val	ue. For		
98	example, you can	solve for the	advertising bu	dget for each	n quarter tha	t will result in	the b	est pi	rofits for		
99	the entire year. B	Because the s	easonality fact	or in row 3 e	nters into the	calculation	of unit	sales	in row 5		
100	as a multiplier, it	seems logica	ıl that you sho	uld spend mo	ore of your ad	lvertising bud	lget in	Q4 w	hen the		
101	sales response is	highest, and	less in Q3 whe	en the sales r	esponse is lo	west. Use So	olver to	dete	ermine		
102	the best quarterly	allocation.									
103											
104	•	On the Tools	menu, click S	olver. In the	Set target c	ell box, type	f15 or	selec	et		
105		cell F15 (total	al profits for th	e year) on th	e worksheet.	Make sure t	he Ma	x opti	on is		
106	selected. In the By changing cells box, type b11:e11 or select cells B11:E11										
107	(the advertising budget for each of the four quarters) on the worksheet. Click \$										
108											
109	•	After you exa	amine the resu	lts, click Res	tore original	values and o	lick O	K to			
110		discard the	results and ret	urn all cells t	o their forme	r values.					
111											
112	You've just asked	Solver to sol	ve a moderatel	y complex no	onlinear optin	nization prob	lem; t	nat is	, to find		
113	values for the four	r unknowns ii	n cells B11 thr	ough E11 tha	at will maxim	ize profits. (This is	a nor	nlinear		
114	problem because	of the expon	entiation that o	occurs in the	formulas in r	ow 5). The r	esults	of thi	S		
115	unconstrained op	timization sh	ow that you ca	n increase pi	ofits for the	year to \$79,7	'06 if y	ou sp	end		
116	\$89,706 in advert	tising for the	full year.								
117											
118	However, most re	alistic model	ing problems h	nave limiting	factors that y	ou will want	to app	ly to	certain		
	values. These cor			the target ce	II, the chang	ing cells, or a	ny oth	er va	lue that		
	is related to the fo	ormulas in th	ese cells.								
121	A 1 1' O										
-	Adding a Cons	straint									
123											
	So far, the budget										
	point of diminishi										
	advertising will be				reased spen	ding levels), i	t does	n't se	em		
	prudent to allow ι	unrestricted s	spending on ad	vertising.							
128	0										
	Suppose you wan						e cons I	traint	to the		
	problem that limit	ts the sum of	advertising du	iring the four	quarters to	\$40,000.					
131		0. 11				Th	L				
132			menu, click S								
133			ppears. In the						140.000		
134 135		, ,	total) on the w								
136			ship in the Con								
		i e	ve to change it	. In the box	next to the re	eiationsnip, ty	/pe 40 	UUU.	CIICK		
137 138		UK, and the	n click Solve .								
	-	After		lto oliala Dara	toro orinin-i	values and t	hor -''	ak 2:			
139 140	•	·	amine the resu				nen cli	CK OF	`		
140		to discard th	ne results and	eturn the ce	is to their for	mer values.					
141							I	l	I		

	Α	В	С	D	Е	F	G	Н	ı
142	The solution foun	d by Solver a	llocates amour	nts ranging fr	om \$5.117 ii	n Q3 to \$15.2	263 in	Q4.	Total
	Profit has increas								
	advertising budge							Ī	
145									
	Changing a Co	onstraint							
147	J								
	When you use Mid	crosoft Excel	Solver vou car	n experiment	with slightly	different nar	amete	rs to i	decide
	the best solution								
	are better or wors								
	dollars to \$50,00				, try onangm	1110 00110114			tioning
152	ασιιαίο το ψου,σο	0 10 000 11110	That does to t	otal promo.					
153		On the Tool	s menu, click S	l Solver The c	onstraint \$F	\$11<=4000	n shou	ıld	
154			elected in the						
155			nt box, change						
156			solver solution						
157			the worksheet		The Control Moop	- tillo robalito i		Ĭ	
158		u.op.ayou o.	The workshoot						
_	Solver finds an op	timal solutio	n that vields a	total profit o	f \$74.817 T	hat's an imn	rovem	ent of	\$3.370
	over the last figur								
	\$10,000 that yiel								
	results in profits								
163		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			, ,				
	Saving a Prob	lem Mode	ı						
165									
166	When you click Sa	ave on the Fi	l e menu, the la	st selections	you made in	the Solver P	arame	ters	
167	dialog box are att	ached to the	worksheet and	retained wh	en you save t	he workbook	. How	ever,	you
168	can define more t	han one prob	lem for a work	sheet by sav	ing them indi	vidually usin	g Save	Mod	el in
169	the Solver Option	s dialog box	Each problem	n model cons	ists of cells a	and constrain	ts that	you	
170	entered in the So	lver Paramet	ers dialog box.						
171									
172	When you click Sa	ave Model, th	e Save Model	dialog box ap	pears with a	default selec	ction, b	ased	
173	on the active cell,	as the area	for saving the r	nodel. The s	uggested ran	ige includes a	a cell f	or ead	ch
174	constraint plus th	ree additiona	al cells. Make	sure that this	cell range is	an empty ra	inge or	the	
175	worksheet.								
176									
177	•	On the Tool :	s menu, click S	olver, and th	en click Opti	ons. Click S	ave Mo	del.	
178		In the Selec	t model area b	ox, type h15	:h18 or selec	t cells H15:H	118 on	the	
179		worksheet.	Click OK .						
180									
181	Note You can als	o enter a ref	erence to a sing	gle cell in the	Select mode	el area box.	Solver	will u	se
182	this reference as	the upper-lef	corner of the	range into wh	nich it will co	py the proble	m spe	cifica	tions.
183									
184									
185	To load these pro	blem specific	cations later, cl	ick Load Mo	del on the So	lver Options	dialog	box,	
186	type h15:h18 in t	he Model are	a box or select	t cells H15:H	18 on the sai	mple worksh	eet, an	d the	n
187	click OK . Solver	displays a m	essage asking i	f you want to	reset the cu	rrent Solver	option	settin	gs with
188	the settings for th	e model you	are loading. C	lick OK to pr	oceed.				

SolvSamp.xls Quick Tour (Row number for each variable) Profit Margin 16 Prod. Profit 15 Gross Margin 8 Corporate Overhead 12 Total Costs 13 Cost of Sales 7 Sales Revenue 6 Units Sold 5 Salesforce 10 Product Cost 19 Advertising 11 Product Price 18 Overhead Rate (15%) Seasonality 3

Figure 19.2 Quick Tour Influence Chart

Nonlinear Product Mix Optimization

20.1 DIMINISHING PROFIT MARGIN

Figure 20.1 Product Mix Problem

	Α	В	С	D	Е	F	G	Н	
1	Example 1:	Product m	ix problem	with dimi	nishing pr	ofit margir	١.		
2	Your company r	nanufactures	TVs, stereos	and speakers	, using a com	mon parts in	ventory		
3	of power supplie	es, speaker co	nes, etc. Pa	rts are in limi	ted supply an	d you must d	etermin	Э	
4	the most profita	ble mix of pro	ducts to buil	d. But your p	rofit per unit	ouilt decrease	es with		
5	volume because	extra price in	ncentives are	needed to loa	d the distribu	ition channel.			
6									
7									
8				TV set	Stereo	Speaker			
9		Numi	ber to Build->	100	100	100			
10	Part Name	Inventory	No. Used						
11	Chassis	450	200	1	1	0			
12	Picture Tube	250	100	1	0	0		Diminishing	
13	Speaker Cone	800	500	2	2	1		Returns	
14	Power Supply	450	200	1	1	0		Exponent:	
15	Electronics	600	400	2	1	1		0.9	
16				Profits:					
17			By Product	\$4,732	\$3,155	\$2,208			
18			Total	\$10,095					
19									
20	This model prov	fferent p	rofit margin						
21	per unit. Parts	roduct t	build from t	he					
22	inventory on har								
23									

23									
24	Problem Specifi	ications							
25									
26	Target Cell		D18		Goal is to ma	aximize profit			
27									
28	Changing cells		D9:F9		Units of each	product to b	uild.		
29									
30	Constraints		C11:C15<=E	311:B15	Number of p	arts used mu	st be les	s than or	
31					equal to the	number of pa	rts in inv	ventory.	
32									
33			D9:F9>=0		Number to b	uild value mu	ist be gr	eater than or	
34					equal to 0.				
35									
36	The formulas for	r profit per p	roduct in cells	D17:F17 inc	lude the facto	or ^H15 to sh	ow that	profit per unit	
37	diminishes with volume. H15 contains 0.9, which makes the problem n					n nonlinear.	If you ch	ange H15 to	
38	1.0 to indicate that profit per unit remains constant with volume, and then click Solve again, the							in, the	
39	optimal solution	will change.	This change	also makes t	he problem li	near.			

Integer-Valued Optimization Models

21.1 TRANSPORTATION PROBLEM

Figure 21.1 Transportation Problem

	A B C D E F G H I Example 2: Transportation Problem.												
1	Example 2:	Transpo	rtation Pr	oblem.									
2	Minimize the o	costs of ship	ping goods fr	rom producti	on plants to	warehouses	near metrop	olitan deman	d				
3	centers, while	not exceedir	ng the supply	/ available fr	om each plar	nt and meeti	ng the dema	nd from each					
4	metropolitan a	area.											
5													
6			Number to si	hip from plant	x to warehou	se y (at inters	section):						
7	Plants:	Total	San Fran	San Fran Denver Chicago Dallas New York									
8	S. Carolina	5	1	1	1	1	1						
9	Tennessee	5	1	1	1	1	1						
10	Arizona	5	1	1	1	1	1						
11													
12	Totals:		3	3 3 3 3									
13													
14	Demands	by Whse>	180	80	200	160	220						
15	Plants:	Supply	Shipping cos	sts from plant	x to warehous	se y (at inters	ection):						
16	S. Carolina	310	10	8	6	5	4						
17	Tennessee	260	6	5	4	3	6						
18	Arizona	280	3	4	5	5	9						
19													
20	Shipping:	\$83	\$19	\$17	\$15	\$13	\$19						
21													
22	The problem p	resented in	this model ir	nvolves the s	hipment of g	oods from th	ree plants to	o five regional					
23	warehouses. Goods can be shipped from any plant to any warehouse, but it obviously costs more to												
24	ship goods over long distances than over short distances. The problem is to determine the amounts												
25	to ship from e	ach plant to	each wareho	use at minin	num shippin	g cost in ord	er to meet th	ne regional					
26	demand, while not exceeding the plant supplies.												
27													

27		1								
28	Problem Specifi	ications								
29										
30	Target cell	B20		Goal is to m	inimize total	shipping co	st.			
31										
32	Changing cells	C8:G	10	Amount to s	ship from eac	ch plant to ea	ach			
33				warehouse.	warehouse.					
34										
35	Constraints	B8:B	10<=B16:B18	Total shippe	Total shipped must be less than or eq					
36				supply at pl	supply at plant.					
37										
38		C12:0	G12>=C14:G1	4 Totals shipp	ed to wareh	ouses must b	oe greater			
39				than or equa	al to demand	l at warehous	ses.			
40										
41		C8:G	10>=0	Number to	ship must be	greater than	or equal			
42				to 0.						
43										
44	You can solve th	is problem faste	er by selecting	the Assume linea	ar model che	ck box in the	Solver			
45	Options dialog b	ox before clicking	ng Solve . A pi	roblem of this type	e has an opti	mum solutic	n at which			
46	amounts to ship	are integers, if	all of the supp	ly and demand co	onstraints are	e integers.				

21.2 MODIFIED TRANSPORTATION PROBLEM

Figure 21.2 Display

	Α	В	С	D	Е	F	G	Н	I
1	Modified Ex	ample 2: T	ransportation	n Problem.					
2									
3	Minimize th	e costs of sh	nipping good	s from prod	uction plants	to warehou	ses near me	tropolitan de	emand
4	centers, whi	ile not excee	eding the sup	oply availab	le from each	plant and n	neeting the o	demand from	each
5	metropolitar	n area.							
6									
7			Number to	ship from pla	ant to wareh				
8					Warehouse			Shipped	Plant
9	Plant		San Fran	Denver	Chicago	Dallas	New York	from plant	supply
10	S. Carolina		1	1	1	1	1	5	310
11	Tennessee		1	1	1	1	1	5	260
12	Arizona		1	1	1	1	1	5	280
13	Shipped to	warehouse	3	3	3	3	3		
14	Warehouse	demand	180	80	200	160	220		
15									
16			Shipping co	st from plan	t to warehou	ıse			
17					Warehouse				
18	Plant		San Fran	Denver	Chicago	Dallas	New York		
19	S. Carolina		\$10	\$8	\$6	\$5	\$4		
20	Tennessee		\$6	\$5	\$4	\$3	\$6		
21	Arizona		\$3	\$4	\$5	\$5	\$9		
22									
23	Total shippi	ng cost	\$83						

Figure 21.3 Formulas

	Α	В	С	D	E	F	G	Н	1
1	Modified Ex	cample 2: T	ransportation Prob	lem.					
2									
3	Minimize th	e costs of sl	nipping goods from	production plants	to warehouses ne	ar metropolitan de	emand		
4	centers, wh	ile not exce	eding the supply a	vailable from each	plant and meeting	the demand from	each		
5	metropolita	n area.							
6									
7	Number to ship from plant to warehouse								
8					Warehouse			Shipped	Plant
9	Plant		San Fran	Denver	Chicago	Dallas	New York	from plant	supply
10	S. Carolina		1	1	1	1	1	=SUM(C10:G10)	310
11	Tennessee		1	1	1	1		=SUM(C11:G11)	260
	Arizona		1	1	1	1		=SUM(C12:G12)	280
	Shipped to		=SUM(C10:C12)	=SUM(D10:D12)	=SUM(E10:E12)	=SUM(F10:F12)	=SUM(G10:G12)		
14	Warehouse	demand	180	80	200	160	220		
15									
16			Shipping cost from	n plant to warehou	se				
17					Warehouse				
18	Plant		San Fran	Denver	Chicago	Dallas	New York		
19	S. Carolina		\$10	\$8 \$5	\$6		\$4		
20	Tennessee				\$4	\$3	\$6		
21	Arizona \$3		\$4	\$5	\$5	\$9			
22									
23	Total shippi	ng cost	=SUMPRODUCT	(C10:G12,C19:G2	1)				

21.3 SCHEDULING PROBLEM

Figure 21.4 Personnel Scheduling

_	Λ .	В	С	D	Е	F		ш			K	-	N 4
1	Evample		_	duling for a			G	H Park	'	J	N.	┢	М
2				itive days with					l dule that	meets	demar	nd.	
3				izing payroll c			1, 11110 ti	10 30110		mooto	Cinai		
4													
5													
6	Sch.	Days off		Employees		Sun	Mon	Tue	Wed	Thu	Fri	Sat	
7	Α	Sunday, Mond	day	0		0	0	1	1	1	1	1	
8	В	Monday, Tues	sday	8		1	0	0	1	1	1	1	
9	С	Tuesday, Wed	l.	0		1	1	0	0	1	1	1	
10	D	Wed., Thursda	ay	10		1	1	1	0	0	1	1	
11	E	Thursday, Frid	day	0		1	1	1	1	0	0	1	
12	F	Friday, Saturo	lay	7		1	1	1	1	1	0	1	
13	G	Saturday, Sun	day	0		0	1	1	1	1	1	0	
14		Caba	dula Tatala	25		25	47	47	4.5	4.5	40	25	
15 16		Scrie	dule Totals	25		25	17	17	15	15	18	25	
17		Tot	tal Demand:			22	17	13	14	15	18	24	
18		700	ai Demana.				17	13	14	13	10	24	
19		Pay/Emplo	vee/Dav.	\$40									
20		Payroll/We		\$1,000									
21		.,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
22	The goal fo	or this model	is to schedu	ile employees	so th	nat you	have su	fficient	staff at th	ne lowes	st cost	. In	
				d at the same									g
24	each day,	you also mini	mize costs.	Each employe	ee w	orks five	e consec	utive da	ays, follo	wed by	two da	ays	
25	off.												
26													
27	Problem S	Specifications	1										
28													
	Target cell		D20		Goa	aliston	ninimize	payroll	cost.				
30	01	11-	D7: D40		F	-1			.1			—	
31 32	Changing	cells	D7:D13		EIII	pioyees	on each	Scheat	ne.			-	
33	Constraint	e	D7:D13>=0)	Nur	nher of	em nlov	000 mile	t be gre	ater tha	n or e	nual	
34	Constraint		B7.B107=0	,	to C		Ciripioy		be give	ator tria		1001	
35													
36			D7:D13=In	teger	Nur	nber of	employ	ees mus	t be an i	nteger.			
37							, , ,						
38			F15:L15>=	F17:L17	Em	ployees	working	each d	ay must	be grea	ter tha	an or	
39					equ	al to th	e demar	nd.					
40													
41	Possible s	chedules	Rows 7-13		1 m	eans er	nployee	on that	schedul	e works	that	lay.	
42												<u> </u>	
				constraint so		_						bers o	f
44				cting the Assu					in the S	olver O	otions		
45	dialog box	before you cl	iick Solve w	ill greatly spee	d up	the sol	ution pr	ocess.					

Figure 21.5 Personnel Scheduling with Corrections

	Α	В	С	D	E	F	G	Н	1 1		K		М
1				duling for a					(with c	orrect			10.
2				itive days with					•				
3				izing payroll c			ĺ						
4													
5													
6	Sch.	Daysoff		Employees		Sun	Mon	Tue	Wed	Thu	Fri	Sat	
7	Α	Sunday, Mond	day	0		0	0	1	1	1	1	1	
8	В	Monday, Tues	sday	8		1	0	0	1	1	1	1	
9	С	Tuesday, Wed		0		1	1	0	0	1	1	1	
10	D	Wed., Thursda	-	10		1	1	1	0	0	1	1	
11	E	Thursday, Frid	•	0		1	1	1	1	0	0	1	
12	F	Friday, Saturo		7		1	1	1	1	1	0	0	
13	G	Saturday, Sun	day	0		0	1	1	1	1	1	0	
14 15		Coho	dula Tatala	O.F.		25	17	17	15	15	10	10	\vdash
16		Scrie	dule Totals:	25		25	17	17	15	15	18	18	
17		Tot	al Demand:			22	17	13	14	15	18	24	\vdash
18		70.	ar Demana.				17	10	17	10	10	27	
19		Pay/Emplo	vee/Dav:	\$40									
20		Payroll/We		\$5,000									
21		.,		, , , , , , ,									
22	The goal fo	or this model	is to schedu	ile employees	so t	hat you	have su	fficient	staff at th	he lowes	st cost	. In	
23	this examp	ole, all emplo	yees are pai	d at the same	rate	, so by	minimiz	ing the	number	of empl	oyees	workin	g
24	each day,	you also mini	mize costs.	Each employe	ee w	orks five	e consec	utive da	ays, follo	wed by	two da	ays	
25	off.												
26													
27	Problem S	pecifications											
28					_								_
29	Target cell		D20		Goa	alistor	ninimize	payroll	cost.				
30	Chanain a	!!-	D7:D40		Г	-1			-1-				-
31	Changing	cens	D7:D13		Ern	proyees	on each	scheat	iie.				_
33	Constraint	\$	D7:D13>=0)	Niii	nher of	employe	es mus	st be gre	ater the	n or e	nual	-
34	Constraint		27.210/-0	•	to (Simpley	Joo mus	. 50 gr 6		51 6	1441	\vdash
35													
36			D7:D13=In	teger	Nui	mber of	employe	ees mus	st be an i	integer.			
37													
38			F15:L15>=	F17:L17	Em	ployees	working	each d	ay must	be grea	ter th	an or	
39					_		e demar						
40													
41	Possible s	chedules	Rows 7-13		1 m	eans er	mployee	on that	schedul	e works	that	lay.	
42													
43				constraint so								bers o	f
44	employees on each schedule. Selecting the Assume linear model check box in the Solver Options												
45	dialog box	before you cl	ick Solve wi	II greatly spee	ed up	the so	lution pr	ocess.					

228

This page is intentionally mostly blank.

Optimization Models for Finance Decisions

22.1 WORKING CAPITAL MANAGEMENT PROBLEM

Figure 22.1 Working Capital Management

	Α	В	С	D	Е	F	G	Н	I	J
1	Example 4:	Working C	apital Man	agement.						
2	Determine how	to invest exce	ess cash in 1-r	month, 3-mor	th and 6-mon	th CDs so as	to			
3	maximize intere	est income wh	ile meeting c	ompany cash	requirements	(plus safety r	margin).			
4										
5		Yield	Term		Purchase CDs	s in months:				İ
6	1-mo CDs:	1.0%	1		1, 2, 3, 4, 5	and 6		Interest		
7	3-mo CDs:		Earned:							
8	6-mo CDs:	9.0%	6		1		Total	\$7,700		
9										
10	Month:	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	End		
11	Init Cash:	\$400,000	\$205,000	\$216,000	\$237,000	\$158,400	\$109,400	\$125,400		
12	Matur CDs:		100,000	100,000	110,000	100,000	100,000	120,000		
13	Interest:		1,000	1,000	1,400	1,000	1,000	2,300		
14	1-mo CDs:	100,000	100,000	100,000	100,000	100,000	100,000			
15	3-mo CDs:	10,000			10,000					
16	6-mo CDs:	10,000								
17	Cash Uses:	75,000	(10,000)	(20,000)	80,000	50,000	(15,000)	60,000		
18	End Cash:	\$205,000	\$216,000	\$237,000	\$158,400	\$109,400	\$125,400	\$187,700		
19										
20		-290000								
21										
22	If you're a finan	cial officer or	a manager, o	ne of your tas	ks is to mana	ge cash and s	short-term inv	estments in a		
23	way that maxim	izes interest i	income, while	keeping fund	s available to	meet expend	itures. You m	ust trade off		
24	the higher inter	est rates avail	able from Ion	ger-term inve	stments agair	nst the flexibil	ity provided b	y keeping fun	ds	
25	in short-term in	vestments.								
26										
27	This model calc	ulates ending	cash based of	on initial cash	(from the pre	evious month)	, inflows from	maturing		
28	This model calculates ending cash based on initial cash (from the previous month), inflows from certificates of deposit (CDs), outflows for new CDs, and cash needed for company operations for							each month.		
29										
30	You have a tota	l of nine decis	sions to make	: the amount	s to invest in	one-month CE	s in months 1	through 6;		
31	the amounts to	invest in thre	e-month CDs	in months 1 a	and 4; and the	amount to in	vest in six-mo	onth CDs in		
32	month 1.									
33										i

	Α	В	С	D	Е	F	G	Н	ı	J		
34	Problem Specif	ications										
35												
36	Target cell		H8		Goal is to ma	ximize intere	st earned.					
37												
38	Changing cells		B14:G14		Dollars inves	ted in each ty	pe of CD.					
39			B15, E15, B	16								
40												
41	Constraints		B14:G14>=0		Investment in	each type of	CD must be	greater than				
42			B15:B16>=0		or equal to 0							
43			E15>=0									
44												
45			B18:H18>=1	00000	Ending cash	must be grea	ter than or eq	ual to				
46					\$100,000.							
47												
48	The optimal sol	ution determ	ined by Solver	earns a total	interest incor	ne of \$16,53	1 by investing	as much as				
49	possible in six-r	nonth and th	ree-month CD	s, and then to	ırns to one-m	onth CDs. Th	is solution sat	tisfies all of th	е			
50	constraints.											
51												
52	2 Suppose, however, that you want to guarantee that you have enough cash in month 5 for an equipment											
53	payment. Add	a constraint t	hat the averag	ge maturity of	the investme	nts held in me	onth 1 should	not be more				
54	than four month	ns.										
55												
56	The formula in	cell B20 com	putes a total o	of the amount	s invested in I	month 1 (B14	, B15, and B1	16), weighted				
57	by the maturitie	es (1, 3, and (6 months), an	d then it subt	racts from thi	s amount the	total investm	ent, weighted	by			
58	4. If this quant	ity is zero or	less, the avera	age maturity v	will not exceed	four months	. To add this	constraint,				
59	restore the orig	inal values ar	nd then click S	olver on the	Tools menu.	Click Add . Ty	pe b20 in the	Cell				
60	Reference box,	type 0 in the	Constraint bo	x, and then o	lick OK . To s	olve the probl	lem, click Sol	ve.				
61												
62	To satisfy the fo	ur-month ma	aturity constra	int, Solver sh	ifts funds fron	n six-month C	Ds to three-m	onth CDs. Th	ne			
63	shifted funds no	w mature in	month 4 and,	according to	the present p	lan, are reinv	ested in new t	hree-month				
64	CDs. If you nee	d the funds,	however, you	can keep the	cash instead o	of reinvesting.	The \$56,89	6 turning				
65	over in month 4	is more than	n sufficient for	the equipme	nt payment in	month 5. Yo	u've traded al	bout \$460 in				
66	interest income	to gain this f	flexibility.									

22.2 WORK CAP ALTERNATE FORMULATIONS

Figure 22.2 Working Capital Management Horizontal Time

	A	В	0	D	E	F	G	H		J
1	Data in B4:85, 0	30, and C32	32							
2										
3		Yield	Term		Purchase	CDs in mor	the.			
4	1-mo CDs:	0.01	1		1, 2, 3, 4,	5 and 6				
5	3-ma CDs:	0.04	. 3		1 and 4					
8	6-ma CDs:	0.09	- 6		1					
7	2.5 (0.2) (0.0)	1 - 1.17	10000000							
8			Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	End	
9	4	1maCD1	-1.00	1.01	13.50	-1000000110	WOOR	-725775778	227	
10		1maCD2	10000	-1.00	1.01	1,1994				
11		1maCD3			+1.00	1.01				
12		1maCD4				-1.00	1.01			
13		1maCD5	7			1000	-1.00	1.01		
14		1maC06						+1.00	1.01	
15		3maCD1	-1.00			1.04				
16		3moCD4				-1.00			1.04	
17		EmoCD1	-1.00						1.09	
18										
19			Cash flows	from inves	tments					
20	Amount Invested		Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	End	
21	\$100,000	1 maCD1	-\$100,000	\$101,000	\$0	\$0	\$0	\$0	\$0	
22	\$100,000	1maCD2	\$0	-\$100,000	\$101,000	90	\$0	\$0	90	
23	\$100,000	1 ma CO3	\$0	\$0	-\$100,000	\$101,000	\$0	\$0	\$0	
24	\$100,000	1maCD4	\$0	\$0	50	-\$100,000	\$101,000	\$0	50	
25	\$100,000	1 ma C 0 5	\$0	\$0	.\$0	\$0	-\$100,000	\$101,000	\$0	
26	\$100,000	1 ma CD5	\$0	\$0	\$0	50	\$0	-\$100,000	\$101,000	
27	\$10,000	3maCD1	-\$10,000	\$0	\$0	\$10,400	\$0	\$0	\$0	
28	\$10,000	3mgCD4	\$0	. \$0	\$0	-\$10,000	\$0	\$0	\$10,400	
29	\$10,000	6maCD1	-\$10,000							
30		Start Cash	\$400,000	\$205,000	\$216,000	\$237,000	\$158,400	\$109,400	\$125,400	Total Interest
31		Cash Flow	-\$120,000						\$122,300	
32		Cash Uses	\$75,000	-\$10,000	-\$20,000	\$80,000	\$50,000	-\$15,000	\$60,000	
33		End Cash	\$205,000	\$216,000	\$237,000	\$158,400	\$109,400	\$125,400	\$187,700	
34		Required	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	

Figure 22.3 Working Capital Management Vertical Time

	ď	æ	0	a	3		9	I	_	٦	Ж	7	2	z	0
	Data in B4 86, K23, and M23/M29	23, and M23	W29.												
C4															
		Yiald	Term		Purchasa C	urchasa CDs in months:	384								
	1-ma cDs:	0.01	-		1, 2, 3, 4, 5 and 6	and 6									
	3-ma CDs:	0.04	m		1 and 4										
	6-ma CDs:	0.00	9		·										
,-															
90															
OP.															
10		1mocD1	1moCD2	1mpcD3	1meCD4	1mac05	1mgCD8	3mecD1	3moCD1 3moCD4	6moCD1					
=	Month 1	-1.00						-1.00		-1.00					
Ţ,	Month 2	1.01	-1.00												
P	Month 3		1,01	-1.00											
7	Month 4			1.01	-1.00			1.04	1.00						
2	Month 5				101	-1.00									
9	Month 6					101	-1.00								
-	End						101		1.04	1.09					
5	Amount Invester \$100,000 \$100,000 \$100,000 \$100,000 \$100,000 \$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$100,000	\$10,000	\$10,000	\$10,000					
8															
74	Cash flows from Investments	Investment										Investment			Reguland
S		1moCD1	1moCD2	1mpcD3	1meCD4	1macD5	1macD6	3moCD1 3moCD4	3moCD4		Start Cash	$\overline{}$	Cash Uses End Cash	End Cash	Balance
R	Month 1	\$100,000	80	0\$			03	-\$10,000	0\$	-\$10,000	\$400,000	-\$120,000	\$75,000	\$205,000	\$100,000
	Worth 2	\$101,000		80	20	30	0.8	0\$	2	08	\$205,000		-\$10,000		
20	Month 3	Q.	\$101,000	-\$100,000	98	90	2		8	04	\$216,000	\$1,000	-\$20,000	\$237,000	\$100,000
R	Month 4	0\$		\$101,000	-\$100,000	0\$	20	\$10,400	-\$10,000	0\$	\$237,000		\$00,000	\$158,400	\$100,000
23	Month 5	08		80	\$101,000	-\$100,000	80	\$0		08	\$158,400		\$50,000		
Ŋ	Month 6	9	80	80	90	E	-\$100,000	80	8	04	\$109,400		-\$15,000	\$125,400	\$100,000
R	End	80		20	0\$	0\$	\$101,000	80	\$10,400	\$10,900	\$125,400	\$122,300	\$60,000	\$197,700	\$100,000
8															
in											Total Interest	\$7,700			

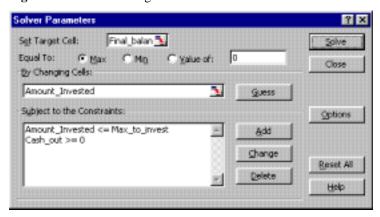
22.3 STOCK PORTFOLIO PROBLEM

Figure 22.4 Efficient Stock Portfolio

	Α	В	С	D	Е	F	G	Н	П	J	K
1			ient stoc			•			Ė		- 11
2				•		at maximizes	the portfoli	io rate of			
3						Sharpe singl	•				
4		•				ice terms ava					
5											
6	Risk-free ra	te	6.0%		Market vari	ance	3.0%				
7	Market rate		15.0%		Maximum v	veight	100.0%				
8											
9		Beta	ResVar		Weight	*Beta	*Var.				
10	Stock A	0.80	0.04		20.0%	0.160	0.002				
11	Stock B	1.00	0.20		20.0%	0.200	0.008				
12	Stock C	1.80	0.12		20.0%	0.360	0.005				
13	Stock D	2.20	0.40		20.0%	0.440	0.016				
14	T-bills	0.00	0.00		20.0%	0.000	0.000				
15	Total				400.007	4 400	0.000				
16 17	Total				100.0%	1.160	0.030 Variance				
18			Portfolio T	otala	Return 16.4%		7.1%				
19			PORTIONO I	otais.	10.4 %		7.170				
20	Maximize I	Return: A2	1 · Δ29	Minimize F	Risk: D21:0	129					
21	0.1644	totaiii. 742	1.7.2.0	0.07077	tion. DET.E						
22	5			5							
23	TRUE			TRUE							
24	TRUE			TRUE							
25	TRUE			TRUE							
26	TRUE			TRUE							
27	TRUE			TRUE							
28	TRUE			TRUE							
29	TRUE			TRUE							
30											
31						is diversificat					
32						epresents the	•		s fro	m the	
33	individual s	stocks, whil	ie reducing	your risk th	at any one	stock will per	Torm poorl	y. 			
34	Heina this	model ver	Can Han Sa	lvor to find	the alleast	ion of funds t	o stocks th	at minimi-	20 +6	nortfolia	
35 36						e of return fo			55 tile	5 POLUDIO	
37	iion iui a y	iven rate of	return, of	ınat maxilli	ızcə iile i di	o or return 10	a giveii le	VOI UI IISK.			
38	This works	heet contai	ns figures f	or beta (ma	rket-relate	d risk) and re	sidual varia	nce for fou	r sto	cks In	
39				,		y bills (T-bills					
40						20 percent of					
41	security.			7 . 1	(,		,			
42	.,										
43	Use Solver	to try diffe	rent allocat	ions of fund	ls to stocks	and T-bills to	either ma	ximize the	portf	olio rate of	
44	return for a	aspecified	level of risk	or minimiz	e the risk fo	or a given rate	e of return.	With the ii	nitial	allocation	
45	of 20 perce	ent across t	he board, t	he portfolio	return is 1	6.4 percent a	and the vari	ance is 7.1	perc	ent.	
46											

	Α	В	С	D	Е	F	G	Н	I	J	K
47	Problem S	pecification	ns								
48											
49	Target cell			E18		Goal is to ma	aximize por	tfolio returi	٦.		
50											
51	Changing of	ells		E10:E14		Weight of ea	ch stock.				
52											
53	Constraint	S		E10:E14>=	=0	Weights mus	st be greate	r than or e	qual	to 0.	
54											
55				E16=1		Weights mus	t equal 1.				
56											
57				G18<=0.0	71	Variance mu	st be less t	han or equa	al to	0.071.	
58											
59	Beta for ea	ch stock		B10:B13							
60											
61	Variance for	or each stoo	k	C10:C13							
62											
63											
64	percent. T	o load thes	e problem	specificatio	ns into Sol	ver, click Solv	er on the T	ools menu	, clic	k	
65	Options, C	ick Load M	odel, selec	t cells D21:	D29 on the	worksheet, a	ind then cli	ck OK until	the		
66			_			a. As you can		r finds port	folio		
67	allocations	in both ca	ses that su	rpass the ru	le of 20 pe	rcent across	the board.				
68											
69		•				the same risk	•	n reduce yo	ur ris	sk without	
70	giving up a	ny return.	These two	allocations	both repres	sent efficient	portfolios.				
71											
72						reload this pr					
73	menu, clic	K Options,	click Load	Model, sele	ct cells A21	:A29 on the v	worksheet,	and then cl	ick O	K.	
74									<u> </u>		
75			_			he current So	Iver option	settings wi	th the	e settings	
76	for the mo	del you are	loading. C	lick OK to p	proceed.						

22.4 MONEYCO PROBLEM


Figure 22.5 Display

	A	В	С	D	Е	F	G	Н	I	J	К	L	М
1		Return on	investment	ts									
2	CD rate =	0.06											
3		Α	В	С	D	Е	CD1	CD2	CD3				
4	Time 1	-1.00	-1.00	-1.00			-1.00						
5	Time 2		1.15			-1.00	1.06	-1.00					
6	Time 3			1.28	-1.00			1.06	-1.00				
7	Time 4	1.40			1.15	1.32			1.06				
8													
9	Max to invest	\$500	\$500	\$500	\$500	\$500	\$1,000,000	\$1,000,000	\$1,000,000				
10													
11	Amount Invested	\$100	\$100	\$100	\$100	\$100	\$100	\$100	\$100		Feasible		
12													
13		Cash flows	from inve	stments						Cash in	Cash out		
14	Time 1	-\$100	-\$100	-\$100	\$0	\$0	-\$100	\$0	\$0	\$1,000	\$600		
	Time 2	\$0	\$115	\$0	\$0	-\$100	\$106	-\$100	\$0	\$0	\$21		
	Time 3	\$0	\$0	\$128	-\$100		\$0	\$106	-\$100	\$0			
$\overline{}$	Time 4	\$140	\$0	\$0	\$115	\$132	\$0	\$0	\$106		\$493	Final balance	:e
18													
19													
	Legend												
21									5 % 151				
22	data cells			input assur	nptions, und	controllable,	constraints		Amount Inve		144.01044		
_	ahanaina aalla			decision ve	riobles see	trolloble			Cash out =				
24 25	changing cells			decision va	riables, con	trollable			Final balance		17		
_											l No.		
_	computed cells	\vdash		intermediat	e and outpu	ıt variables,	target		Max_to_inve	est = \$B\$9:\$	51\$9 T		
27													

Figure 22.6 Formulas

	Α	В	С	D	E	F	G	н	1	.I	К	ı
1		Return on			_				·			_
2	CD rate =	0.06										
3		Α	В	С	D	Е	CD1	CD2	CD3			
4	Time 1	-1.00	-1.00	-1.00			-1.00					
5	Time 2		1.15			-1.00	=1+\$B\$2	-1.00				
6	Time 3			1.28	-1.00			=1+\$B\$2	-1.00			
7	Time 4	1.40			1.15	1.32			=1+\$B\$2			
8												
9	Max to invest	\$500	\$500	\$500	\$500	\$500	\$1,000,000	\$1,000,000	\$1,000,000			
10												
11	Amount Invested	\$100	\$100	\$100	\$100	\$100	\$100	\$100	\$100		=IF(AND(Amoun	t_Invested<
12												
13		Cash flows	s from inve	stments						Cash in	Cash out	
14	Time 1	=B4*B\$11	=C4*C\$11	=D4*D\$11	=E4*E\$11	=F4*F\$11	=G4*G\$11	=H4*H\$11	=I4*I\$11	\$1,000	=SUM(B14:J14)	
15	Time 2	=B5*B\$11	=C5*C\$11	=D5*D\$11	=E5*E\$11	=F5*F\$11	=G5*G\$11	=H5*H\$11	=I5*I\$11	\$0	=SUM(B15:J15)	
	Time 3	=B6*B\$11	=C6*C\$11	=D6*D\$11	=E6*E\$11	=F6*F\$11	=G6*G\$11	=H6*H\$11	=16*1\$11	\$0	=SUM(B16:J16)	
17	Time 4	=B7*B\$11	=C7*C\$11	=D7*D\$11	=E7*E\$11	=F7*F\$11	=G7*G\$11	=H7*H\$11	=I7*I\$11		=SUM(B17:J17)	Final balan
18												
19	Array-entered (Con	trol+Shift+E	nter) formul	a in K11: =II	F(AND(Amo	unt_Investe	d<=Max_to_	invest,Cash_	out>=0),"Fea	asible","Not	Feasible")	
	Enter =B4*B\$11 in o											
21	Enter =SUM(B14:J1	14) in cell K1	14 and copy	to K14:K17	,							

Figure 22.7 Solver Dialog Box

