
1.0 POTENTIAL FLOW 

 

One of the most important applications of potential flow theory is to aerodynamics and 

marine hydrodynamics. 

 

Key assumption. 

1. Incompressibility – The density and specific weight are to be taken as constant. 

2. Irrotationality – This implies a nonviscous fluid where particles are initially 

moving without rotation. 

3. Steady flow – All properties and flow parameters are independent of time. 

 

Fig. 1.1 Examples of complicated immersed flows: (a) flow near a solid boundary; (b) 

flow around an automobile. 

 

 

In this section we will be concerned with the mathematical description of the motion of 

fluid elements moving in a flow field. A small fluid element in the shape of a cube which 

is initially in one position will move to another position during a short time interval as 

illustrated in Fig.1.1. 
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Fig. 1.2 



1.1 Continuity Equation 

 

 

 

 

 

 

 

 

 

Continuity Equation 

Flow inwards = Flow outwards 
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1.2 Stream Function,   (psi) 
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u = velocity component x direction 

v = velocity component y direction 
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The stream is continuity 
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1.3 Cylindrical Polar Coordinate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stream is continuity 

)()( rurud r    ----------------------(1)  2-D equation 

if   ),(  r  

dr
r

dd
















 ------------------------(2) 

 

compare equation (1) and ( 2) 

  









r
ur

1
    and     

r
u







  

 

 

 

x 

y 

   
u  

  

r  

r  

d  

ru  

  

r 

ru  
u  

P(r, ) 

22

uuV r   

x 

y 

  

  

A 

B 



1.3.1 Continuity Equation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow inwards = Flow outwards 
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1.4 Velocity Potential,   (phi) 

Occur when some vorticity flow are irrotational, 0  

 

Velocity component; 
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1.4.1  Potential Flow 

 

The flow that consist potential flow 
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Occur when some flow are irrotational and consist potential flow. 

 

The relationship between velocity potential and stream function are known as Cauchy-

Rieman Equation. 
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1.4 Summary 

1.4.1 Uniform Flow in 3-D 

 

 

 

 

 

 

 

 

 

 

1.4.2 The relationship between potential flow and stream function 
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1.4.3 Continuity Equation  

1.4.3.1 Cartesian Coordinate. 
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1.4.3.2  Polar Coordinate 
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1.4.4 Stream Function 

1.4.4.1 Cartesian Coordinate 
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1.4.4.2 Polar Coordinate 
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1.4.5 Circulation,   
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1.4.6 Vorticity,   
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1.4.7 The relationship between vorticity with velocity component and stream 

function. 

1.4.7.1 Cartesian Coordinate. 
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1.4.8 Potential Flow,   

1.4.8.1 Cartesian Coordinate 
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1.4.9 The relationship between Stream Function and Potential Flow 

1.4.9.1  Cartesian Coordinate 
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Example 1 

 

Given a flow field )( 22 yxk  . Shows that a flow is irrotational. 
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Examples 2 

 

For a certain two-dimensional flow field the velocity is given by the equation  
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1.1 Source and Sink 

Consider a fluid flowing radially outward and inward from a line through the origin 

perpendicular to the x–y plane as is shown in Fig. 1.3. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

1.1.1 Stream Function,   

 

Let Q   be the volume rate of flow emanating from the line (per unit length), and 

therefore to satisfy conservation of mass 
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If 0 at 0    C=0 

Fig. 1.3 The streamline pattern for a source and a sink 
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1.1.2 Velocity potential,   
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E XAMPLE 1.1 

 

A nonviscous, incompressible fluid flows between wedge-shaped walls into a small 

opening as shown in Fig. E1.1. The velocity potential (in ft
2
/in),which approximately 

describes this flow is 
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Determine the volume rate of flow (per unit length) into the opening. 

 

 

 
 

Solution 

 

The components of velocity are 
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which indicates we have a purely radial flow. The flow rate per unit width, q, crossing the 

arc of length 6/R can thus be obtained by integrating the expression 
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Note that the radius R is arbitrary since the flow rate crossing any curve between the two 

walls must be the same. The negative sign indicates that the flow is toward the opening, 

that is, in the negative radial direction. 

 

 

Fig.E1.1 



1.2 Free Vortex and Forced Vortex 

 

The irrotational vortex is usually called a free vortex. The swirling motion of the water as 

it drains from a bathtub is similar to that of a free vortex, whereas the motion of a liquid 

contained in a tank that is rotated about its axis with angular velocity   corresponds to a 

forced vortex. A combined vortex is one with a forced vortex as a central core and a 

velocity distribution corresponding to that of a free vortex outside the core.  

 

 
 

Fig. 1.4 A vortex represents a flow in which the streamlines are concentric circles. 
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A mathematical concept commonly associated with vortex motion is that of circulation  

The circulation,   is defined as the line integral of the tangential component of the 

velocity taken around a closed curve in the flow field. In equation form,   can be 

expressed as  
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so    for free vortex is shows below 
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E XAMPLE 1.2 
 

A liquid drains from a large tank through a small opening as illustrated in Fig.E1.2. A 

vortex forms whose velocity distribution away from the tank opening can be 

approximated as that of a free vortex having a velocity potential 
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
  

Determine an expression relating the surface shape to the strength of the vortex as 

specified by the circulation   . 

 
 

Solution 

 

Since the free vortex represents an irrotational flow field, the Bernoulli equation 

Fig E1.2 
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can be written between any two points. If the points are selected at the free surface, 
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The velocity is given by the equation 
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We note that far from the origin at point (1), 01  uV  so that Eq.1 becomes  
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1.3 Doublet 

The final, basic potential flow to be considered is one that is formed by combining a 

source and sink in a special way. Consider the equal strength, source-sink pair of Fig. 1.5. 

The combined stream function for the pair is  
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For small values of a 
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Fig 1.5 The combination of a source and 

sink of equal strength located along the x 

axis. 
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since the tangent of an angle approaches the value of the angle for small angles. The so-

called doublet is formed by letting the source and sink approach one another a   0 

while increasing the strength so that the product AB   Q remains constant. AB   Q  is 

called the strength of the doublet,   
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1.6 Source in a Uniform Stream —Half-Body 

 

Consider the superposition of a source and a uniform flow as shown in Fig. 1.6. The 

resulting stream function is 

 

 
Fig. 1.6 The flow around a half-body: (a) superposition of a source and a uniform flow;  

(b) replacement of streamline bU  with solid boundary to form half-body. 
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It is clear that at some point along the negative x axis the velocity due to the source will 

just cancel that due to the uniform flow and a stagnation point will be created. For the 

source alone 
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so that the stagnation point will occur at x=-b where 
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Q
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or 
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Q
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The value of the stream function at the stagnation point can be obtained by valuating  at 

r = b and 0 , which yields from Eq.6.97 
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Q
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E XAMPLE 1.3 

A certain body has the shape of a half-body with a thickness of 0.5 m. If this body is to be 

placed in an airstream moving at 20 m/s, what source strength is required to simulate 

flow around the body? 

 

Solution 

U = 20 m/s 



 

The width of half-body = b2  

So that 
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from Eq. 6.99, the distance between the source and the nose of the body is  
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where Q is the source strength, and therefore 
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Fig. 1.6 Four simple potential flows.  

 

 

1.7 Doublet in Uniform Flow (Flow Around a Circular Cylinder) 

 

As was noted in the previous section, when the distance between the source-sink 

pair approaches zero, the shape of the Rankine oval becomes more blunt and in 

fact approaches a circular shape. Since the doublet described in Section 1.3 was 

developed by letting a source-sink pair approach one another, it might be 



expected that a uniform flow in the positive x direction combined with a doublet 

could be used to represent flow around a circular cylinder. This combination gives 

for the stream function. 
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Fig. 1.7 A doublet combined with a uniform flow can be used to represent 

flow around a circular cylinder. 
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Velocity components 
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We observe from this result that the maximum velocity occurs at the top and bottom of 

the Cylinder and has a magnitude of twice the upstream velocity, U  

to find pressure coefficient by using Bernoulli Equation. 
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E XAMPLE 1.4 

 

Fig. E1.4 

Solution 

 

 

 E1.4 

E1.4a) 



 

 

1.8 Flow around a rotating cylinder 

This type of flow field could be approximately created by placing a rotating cylinder in a 

uniform stream. Because of the presence of viscosity in any real fluid, the fluid in contact 

with the rotating cylinder would rotate with the same velocity as the cylinder, and the 

resulting flow field would resemble that developed by the combination of a uniform flow 

past a cylinder and a free vortex. 
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Fig. 1.8 The location of stagnation points on a circular cylinder: (a) without 

circulation; (b), (c) and (d) with circulation. 

 

 

Thus, for the cylinder with circulation, lift is developed equal to the product of the fluid 

density, the upstream velocity, and the circulation. The negative sign means that if U is 

positive (in the positive x direction) and   is positive (a free vortex with 

counterclockwise rotation), the direction of the Fy is downward.  Of course, if the 
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cylinder is rotated in the clockwise direction ( 0 ) the direction of Fy would be upward. 

It is this force acting in a direction perpendicular to the direction of the approach velocity 

that causes baseballs and golf balls to curve when they spin as they are propelled through 

the air. The development of lift on rotating bodies is called the Magnus effect. 

 

 

Fig. 1.9 The notation for determining lift and drag on a circular cylinder. 
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The generalized equation relating lift to the fluid density, velocity, and circulation is 

called the Kutta–Joukowski Theorem. 
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