1.0 POTENTIAL FLOW

One of the most important applications of potential flow theory is to aerodynamics and

marine hydrodynamics.

Key assumption.
1. Incompressibility — The density and specific weight are to be taken as constant.
2. lrrotationality — This implies a nonviscous fluid where particles are initially
moving without rotation.

3. Steady flow — All properties and flow parameters are independent of time.

O
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Fig. 1.1 Examples of complicated immersed flows: (a) flow near a solid boundary; (b)

flow around an automobile.

In this section we will be concerned with the mathematical description of the motion of
fluid elements moving in a flow field. A small fluid element in the shape of a cube which
is initially in one position will move to another position during a short time interval as
illustrated in Fig.1.1.
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1.1 Continuity Equation
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1.3.1 Continuity Equation
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1.4 Velocity Potential, ¢ (phi)

Occur when some vorticity flow are irrotational, £ =0
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1.4.1 Potential Flow

The flow that consist potential flow



Occur when some flow are irrotational and consist potential flow.

The relationship between velocity potential and stream function are known as Cauchy-
Rieman Equation.
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1.4.2 The relationship between potential flow and stream function
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1.4.3 Continuity Equation
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1.4.4 Stream Function
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1.4.7.2 Polar Coordinate
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1.4.8 Potential Flow, ¢
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1.4.9 The relationship between Stream Function and Potential Flow
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Example 1

Given a flow field y = k(x® — y?). Shows that a flow is irrotational.

Solution

Irrotational is £ =0
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For a certain two-dimensional flow field the velocity is given by the equation
V= 4xyiA+ 2(x* —y?) ]

is this flow irrotational?
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1.1 Source and Sink

Consider a fluid flowing radially outward and inward from a line through the origin

perpendicular to the x—y plane as is shown in Fig. 1.3. y
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Fig. 1.3 The streamline pattern for a source and a sink r

1.1.1 Stream Function, y

Let Q be the volume rate of flow emanating from the line (per unit length), and

therefore to satisfy conservation of mass
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A nonviscous, incompressible fluid flows between wedge-shaped walls into a small
opening as shown in Fig. E1.1. The velocity potential (in ft%/in),which approximately

describes this flow is

¢p=-2Inr
Determine the volume rate of flow (per unit length) into the opening.

Solution Fig.E1.1

The components of velocity are

L0210
or r r oo
which indicates we have a purely radial flow. The flow rate per unit width, g, crossing the

arc of length Rz /6 can thus be obtained by integrating the expression

716 716 3

2
Q= [uRa0=—[ SROO=—-==-1051ts
0 s R V4
Note that the radius R is arbitrary since the flow rate crossing any curve between the two
walls must be the same. The negative sign indicates that the flow is toward the opening,

that is, in the negative radial direction.



1.2 Free Vortex and Forced VVortex

The irrotational vortex is usually called a free vortex. The swirling motion of the water as
it drains from a bathtub is similar to that of a free vortex, whereas the motion of a liquid
contained in a tank that is rotated about its axis with angular velocity @ corresponds to a
forced vortex. A combined vortex is one with a forced vortex as a central core and a

velocity distribution corresponding to that of a free vortex outside the core.
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Fig. 1.4 A vortex represents a flow in which the streamlines are concentric circles.
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du@ and d@is a small components so it can be neglect.

A mathematical concept commonly associated with vortex motion is that of circulation
The circulation, T is defined as the line integral of the tangential component of the

velocity taken around a closed curve in the flow field. In equation form, I" can be

expressed as
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so y for free vortex is shows below
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A liquid drains from a large tank through a small opening as illustrated in Fig.E1.2. A
vortex forms whose velocity distribution away from the tank opening can be
approximated as that of a free vortex having a velocity potential
r
p=—0
Determine an expression relating the surface shape to the strength of the vortex as
specified by the circulation T".
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FigEl1.2
Solution

Since the free vortex represents an irrotational flow field, the Bernoulli equation
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can be written between any two points. If the points are selected at the free surface,

p, + P, =0 so that
ﬁ _7, +V,°
29 29
The velocity is given by the equation
_1lop _ T

U, =——"—=—-
roe 2ar
We note that far from the origin at point (1), V,
Fz
Z, =————
87°r%g

1.3 Doublet

1)

=u, ~ 0 so that Eq.1 becomes

The final, basic potential flow to be considered is one that is formed by combining a

source and sink in a special way. Consider the equal strength, source-sink pair of Fig. 1.5.

The combined stream function for the pair is
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since the tangent of an angle approaches the value of the angle for small angles. The so-
called doublet is formed by letting the source and sink approach one another a — 0
while increasing the strength so that the product AB x Q remains constant. AB x Q is
called the strength of the doublet, x

uo .
VY boublet = gsm 0

Y7,

@ =———C0Sd
Doublet 27zr

1.6 Source in a Uniform Stream —Half-Body

Consider the superposition of a source and a uniform flow as shown in Fig. 1.6. The

resulting stream function is

w=xhll

Stagnation point

Stagnation
point

ERNERENE

I

{al ()

Fig. 1.6 The flow around a half-body: (a) superposition of a source and a uniform flow;

(b) replacement of streamline y = zbU with solid boundary to form half-body.
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and the corresponding velocity potential is
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It is clear that at some point along the negative x axis the velocity due to the source will
just cancel that due to the uniform flow and a stagnation point will be created. For the

source alone
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so that the stagnation point will occur at x=-b where
u=-2
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The value of the stream function at the stagnation point can be obtained by valuating - at

r=band =0, which yields from Eq.6.97
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A certain body has the shape of a half-body with a thickness of 0.5 m. If this body is to be
placed in an airstream moving at 20 m/s, what source strength is required to simulate

flow around the body?
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The width of half-body =2b

So that
b (0.5m)
2
from Eq. 6.99, the distance between the source and the nose of the body is
b= 9
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where Q is the source strength, and therefore
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Fig. 1.6 Four simple potential flows.

1.7 Doublet in Uniform Flow (Flow Around a Circular Cylinder)

As was noted in the previous section, when the distance between the source-sink
pair approaches zero, the shape of the Rankine oval becomes more blunt and in
fact approaches a circular shape. Since the doublet described in Section 1.3 was
developed by letting a source-sink pair approach one another, it might be



expected that a uniform flow in the positive x direction combined with a doublet
could be used to represent flow around a circular cylinder. This combination gives

for the stream function.

X 2,2
=X +y2
Fig. 1.7 A doublet combined with a uniform flow can be used to represent

flow around a circular cylinder.
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We observe from this result that the maximum velocity occurs at the top and bottom of
the Cylinder and has a magnitude of twice the upstream velocity, U
to find pressure coefficient by using Bernoulli Equation.



2

PN

p, + 2 p2+7
2
pl+—pL2J =p2+%p4UZSin29
pdU%sin?g  pU?
— 2 + 2 :pZ_pl

2

’DLZJ (1—4sin2¢9): P, — P




When a circular cylinder is placed in a uniform stream, a stagnation point is created on the
cylinder as is shown in Fig. E1.4 [f a small hole is located at this point, the stagnation pres-
sure, p,... can be measured and used to determine the approach velocity, U. (a) Show how
Pise and [/ are related. (b) If the cylinder is misaligned by an angle « (Fig.E1.4a) but the
measured pressure still interpreted as the stagnation pressure, determine an expression for
the ratio of the true velocity, U, to the predicted velocity, [, Plot this ratio as a function of
o Tor the range =207 = o = 20°,
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Solution

{a) The velocity at the stagnation peint is zero so the Bernoulli equation written between
a point on the stagnation streamline upstream from the cylinder and the stagnation point
aives
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ib) If the direction of the fluid approaching the cylinder is not known precisely, it is pos-
sible that the cylinder is misaligned by some angle, «. In this instance the pressure ac-
tually measured. p,. will be different from the stagnation pressure. but if the misalign-
ment is not recognized the predicted approach velocity, U7, would still be calculated as
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The velocity on the surface of the cylinder, #;, where r = a, is obtained from Eq. 6.115
as

v, = =207 sin fl

It we now write the Bernoulli equation between a point upstream of the cylinder and
the point on the cylinder where r = a, # = «, it follows that
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[7{true)
U'(predicted)

Since p,

Alag

= (1 = 4sina) "7

1.8 Flow around a rotating cylinder

This type of flow field could be approximately created by placing a rotating cylinder in a
uniform stream. Because of the presence of viscosity in any real fluid, the fluid in contact
with the rotating cylinder would rotate with the same velocity as the cylinder, and the
resulting flow field would resemble that developed by the combination of a uniform flow

past a cylinder and a free vortex.
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Fig. 1.8 The location of stagnation points on a circular cylinder: (a) without

circulation; (b), (c) and (d) with circulation.

Thus, for the cylinder with circulation, lift is developed equal to the product of the fluid
density, the upstream velocity, and the circulation. The negative sign means that if U is
positive (in the positive x direction) and T" is positive (a free vortex with

counterclockwise rotation), the direction of the Fy is downward. Of course, if the



cylinder is rotated in the clockwise direction (IT°(0) the direction of Fy would be upward.

It is this force acting in a direction perpendicular to the direction of the approach velocity

that causes baseballs and golf balls to curve when they spin as they are propelled through

the air. The development of lift on rotating bodies is called the Magnus effect.
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Lift Force, F
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The generalized equation relating lift to the fluid density, velocity, and circulation is
called the Kutta—Joukowski Theorem.



