
2.0 BOUNDARY LAYER THEORY 

 

2.1  Introduction 

 

Introduced by Prandtl in 1904. In 1908, H. Blasius (1883–1970), one of Prandtl’s 

students, was able to solve these simplified equations for the boundary layer flow past a 

flat plate parallel to the flow. 

 

The boundary layer is needed to allow for the no-slip boundary condition that requires the 

fluid to cling to any solid surface that it flows past. Outside of the boundary layer the 

velocity gradients normal to the flow are relatively small, and the fluid acts as if it were 

inviscid, even though the viscosity is not zero. A necessary condition for this structure of 

the flow is that the Reynolds number be large. Large Reynolds number flow fields may 

be divided into viscous and inviscid regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section we consider the simplest situation, one in which the boundary layer is 

formed on an infinitely long flat plate along which flows a viscous, incompressible fluid 

as is shown in Fig. 2.2. If the surface were curved (i.e., a circular cylinder or an airfoil), 

the boundary layer structure would be more complex. If the Reynolds number is 

sufficiently large, only the fluid in a relatively thin boundary layer on the plate will feel 

the effect of the plate. That is, except in the region next to the plate the flow velocity will 

 

Fig. 2.1 Boundary layer with transition. 



be essentially iUV ˆ the upstream velocity. For the infinitely long flat plate extending 

from x = 0 to x =  , it is not obvious how to define the Reynolds number because there 

is no characteristic length. The plate has no thickness and is not of finite length! 

 

 

 

 

 
 

 

 

2.2 Thickness of Boundary Layer. 

 

The purpose of the boundary layer on the plate is to allow the fluid to change its velocity 

from the upstream value of U to zero on the plate. Thus, V = 0 at y = 0 and iUV ˆ  at 

y with the velocity profile, ),( yxuu  bridging the boundary layer thickness. In 

actuality (both mathematically and physically), there is no sharp “edge” to the boundary 

layer. That is, Uu  as we get farther from the plate; it is not precisely u = U at y . 

We define the boundary layer thickness,  as that distance from the plate at which the 

fluid velocity is within some arbitrary value of the upstream velocity. Typically, as 

indicated in Fig. 2.3, 

  = y where u = 0.99 U 

 

Fig. 2.2 Distortion of a fluid particle as it flows within the boundary layer. 

 



 
 

 

 

2.3 Boundary Layer Displacement Thickness, 
  

 

The displacement thickness represents the amount that the thickness of the body must 

be increased so that the fictitious uniform inviscid flow has the same mass flow rate 

properties as the actual viscous flow. It represents the outward displacement of the 

streamlines caused by the viscous effects on the plate. This idea allows us to simulate the 

presence that the boundary layer has on the flow outside of the boundary layer by adding 

the displacement thickness to the actual wall and treating the flow over the thickened 

body as an inviscid flow. The displacement thickness concept is illustrated in Fig. 2.4 
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Fig. 2.3 Boundary layer thickness 
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Fig. 2.4 Boundary layer displacement thickness 

 

 















 


0

dy
U

uU
  

 

 

 

 

 

 

 

2.4 Boundary Layer Momentum Thickness,   

 

Boundary Layer Momentum Thickness,   is often used when determining the drag on an 

object. The velocity deficit, U – u, in the boundary layer, the momentum flux across 

section b–b in Fig. 2.5 is less than that across section a–a. This deficit in momentum flux 

for the actual boundary layer flow is given by 
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Fig. 2.5 Boundary layer displacement thickness 
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2.5 Integral Momentum Equation 

 

One of the important aspects of boundary layer theory is the determination of the drag 

caused by shear forces on a body. 

 

It was introduced by T. von Karman (1881–1963), a Hungarian/German aerodynamicist.  

 

Note that this equation is valid for laminar or turbulent flows. 

 

We consider the uniform flow past a flat plate and the fixed control volume as shown 

in Fig. 2.6. One element of flow volume with length dx, width in one unit and high )(x . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newton’s Second Law: 

time rate of change of the linear momentum of the system = sum of external forces acting 

on the system 

 

If we apply the x component of the momentum to the steady flow of fluid within this 

control volume we obtain 
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Wall shear stress 

Fig. 2.6 Uniform flow past a flat plate and the fixed control volume 
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By conservation of mass 
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equation (3) is Integral Momentum Equation (I.M.E) Von Karman 
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Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find the value of the wall shear stress, o on the flat plate. Given,   = 999.1 kg/m
3
 at 

15C. 
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Solution 

 

1.999  kg/m
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Vo = 7.6 m/s 

dx = 0.3 m 

d = 0.155 – 0.152 = 0.003 m 

 

  = ?? 
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Blasius boundary layer profile boundary layer profile in dimensionless 

form using the similarity variable,   
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2.6  Analysis of Lamina Boundary Layer flows along a flat plate with zero 

pressure gradient. 

 

Consider lamina boundary layer flows along a flat plate with uniform flow is zero and 

pressure gradient is also zero. 
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Prandlt assume that velocity profile is 
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2.7 Analysis of Turbulent Boundary Layer flows along a flat. 

 

Consider turbulent boundary layer flows along a flat plate with  pressure gradient is zero. 
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For turbulent flow, Prandtl law 1/7 is used. 
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Value for experimental in turbulence flow, Uu 8.0 …………………………..(3) 

Substitute equation (3) into equation (2) 
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equation (4) = equation (1) 
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substitute equation (7) into equation (1) 
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From equation (6), drag force, 
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Equation (10) can only be used for Re < 10
7
.  

If Re between 10
7
 < Re < 10

9
, the suitable drag coefficient can be used is  
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