DEFINITIONS

An advanced material technology that combine two or more materials of different properties and characteristics to produce

a superior material properties of those materials on their own

フフ

FIBER (REINFORCEMENT)

Low cost reinforcement for general application. Widely used in corrosion resistance.

GLASS FIBER

ARAMID FIBER

High end impact absorption application such as ballistic protection

CARBON FIBER

High end low weight high strength application such as structural reinforcement and aerospace parts

RESIN (BINDING MATRIX)

66 Resins is a polymer based material that bind the reinforcement i.e. fibers. **99**

0 Ш нос-с=с-с-о-с	-co-c		0 0-с-с-с-с-с-он
"denotes reactive site	es	Este	n = 3 to
Tensile Strength (MPa)	Polyester	Vinlyester	7 days @ 20°C 5 hours @ 80°C
Tensile Modulus (GPa)			7 days @ 20°C 5 hours @ 80°C
- 2 - 1 - 1 -			
0	Polyester	l Vinlyester	Epoxy

RESINS	APPLICATION		
POLYESTER	General corrosion resistant application.		
VINYLESTER	Heavily corrosive environment		
EPOXY	High strength and fire rating performance		

PROCESSING

66

Various processing method to suit end product design and properties **7** requirements

PROCESS	APPLICATION	
OPEN MOLD	Economic processing method for non-structural or tolerance critical application	
CLOSE MOLD	Complex 3-dimensional requirements with close tolerance	
FILAMENT WINDING	Tubular high pressure rating application such as pipe.	
PULTRUSION	Profile based end product	

Pressurised Resin Tank

Polymer

Preforming Guides Preheater

BENEFITS

- **o CORROSION RESISTANT** Unaffected by a wide range of corrosive chemicals and environments. Minimal maintenance costs.
- HIGH STRENGHT, LIGHT WEIGHT Density of composite is 20% of steel and 60% of aluminum. Higher performance at less weight costs.
- **o MAINTENANCE FREE** *Non corrosive*. *No repainting cost*.
- **o DIMENSIONAL STABILITY** *Stretch-, warp-, and swell-resistant over a wide range of temperatures and physical stresses. Close tolerances*
- **o THERMAL INSULATION** *Low thermal conductivity rating of 1/250 of aluminum; 1/60 of steel. No condensation problems*
- **o HIGH DIELECTRIC STRENGHT** *Excellent electrical insulating properties. Non conductive.*
- **o DESIGN FLEXIBILITY** *Many individual components can be combined into one large profile. Reduced assembly costs.*
- **O THEFT FREE** *ZERO recycle value. Help reduce theft for public facility and infrastructure i.e. signage*

TYPICAL PROPERTIES COMPARISON

PROPERTY	COMPOSITE PULTRUDED GRP/PE	CARBON STEEL (M1020)	STAINLESS STEEL (316)	ALUMINUM (6061-T61)	RIGID PVC	PONDEROSA PINE (WOOD)
Tensile Strength (ksi)	30.00 (axial) 7.00 (transver se)	60.00	80.00	45.00	6.20	0.42
Tensile Modulus (Msi)	2.60 (axial) 1.00 (transver se)	30.00	28.00	10.00	0.39	-
Flexural Strenght (ksi)	30.00 (axial) 10.0 (transver se)	60.00	80.00	45.00	11.00	15.40 (axial) 9.40 (transver se)
Flexural Modulus (Msi)	2.20 (axial) 0.80 (transver se)	30.00	28.00	10.00	0.35	1.00
Izod Impact (ft-lb/in)	25.0 (axial) 4.0 (transverse)	N/A	8.5-11.0	-	1.6	-
Density (lb/in2)	0.062-0.070	0.284	0.290	0.092	0.052	0.019
Thermal Conductivity (Btu/ft²/hr/ºF/in)	4.0	260-460	96-185	1200	1.3	0.08
Coefficient of Linear Expansion (10 ⁻⁶ in/in/ºF)	4.4	6-8	9-10	13.5	37.0	TEKNOLOGI MUNICIA
						- WALL REAL OCI NOT

MARKET AREAS

As a material driven indsustry, application of composites are not only limited to certain sectors, but limited to designers imagination and capability

- AUTOMOTIVE Front end, fender, doors, rocker cover, tail gate, etc.
- **O MARITIME** *Boat, jetty, sheet pile, etc.*
- **o INFRASTRUCTURE** *Bridges, railing, grating, pipe, façade & facia facelift, lighting poles, signage, shed, mosque dome, etc.*
- **o AEROSPACE** *Body parts component.*
- **O MILITARY** *Ballistic protection, missile launcher, etc.*
- CORROSION RESISTANT Water treatment infrastructure, Jetty infrastructure, offshore platform, etc..
- **O ELECTRICAL** *Feeder pillar cabinets, insulation, doors, cable management system, etc.*
- o OTHERS

PEDESTRIAN BRIDGE APPLICATION

ABERFELDY, UK

The Laroin footbridge is the very first in France to use carbon-fibre composites.

LAROIN, France

WASHINGTON NATIONAL PARK, US

VEHICLE BRIDGE

KOLDING, Denmark

and bolts holding it together

WHAN UNTUR

Steel flange beams were replaced by pultruded FRP beams, reinforced with carbon fibres in the flanges to increase stiffness to over 6 million psi, in this bridge upgrade in Blacksburg, Virginia.

MARINE PILE & SHEET PILE

Complete composite sheetpile installation, including SuperLoc™ sheetpile and composite top cap. (Picture courtesy of Creative Pultrusions.)

6 C Excellent corrosion resistant properties put composites as the most preferred material choice

Navy pier structure made using pultrusion. (Picture courtesy of Owens Corning: www.owenscorning.com.)

Composite piling being used for a dock installation in Rotterdam. (Picture courtesy of Seaward International/PC Jansen Marine Agencies.)

in marine applications

MARINE JETTY

66

The Composite Dock System incorporates an intrinsically strong and stiff structural twin box composites beam platform design which takes advantage of the incomparable strength and non-corrosive nature of the material to provide the best possible performance in terms of endurance and resistance to the harsh and unforgiving marine environment.

OTHER APPLICATIONS

FRP light poles and GRP shading and seating at Jeddah Corniche, Saudi Arabia.

Suspended Access platform made of Pultex® standard structurals and Supergrate™ grating. (Picture courtesy of Creative Pultrusions.)