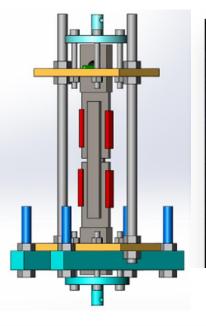
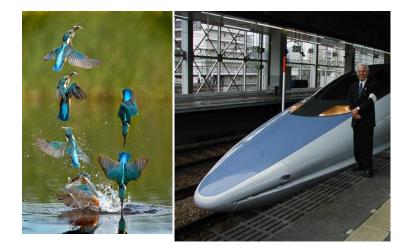
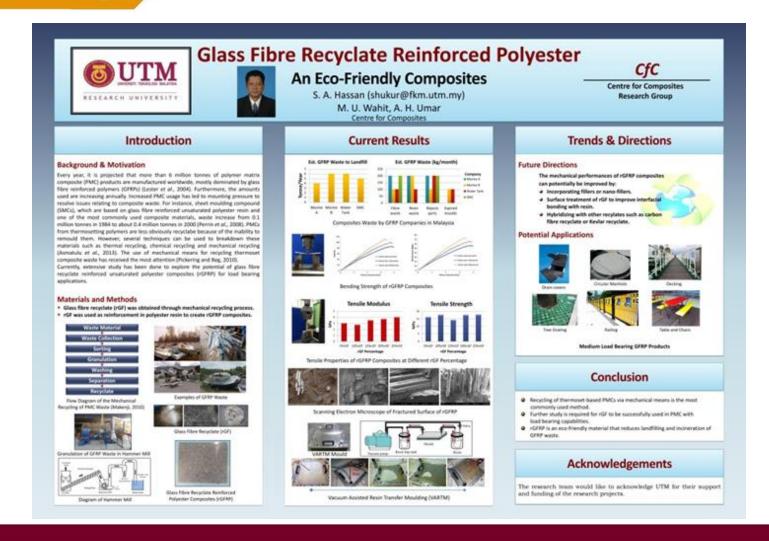


Dr. Shukur Abu Hassan Centre for Composites IVeSE






BOND DURABILITY ECO-COMPOSITES MATERIALS (FRP WASTE + NATURAL FIBRE COMPOSITES) and BIOMIMETICS

ECO-COMPOSITES MATERIALS

environmental friendly materials

www.utm.my

Mechanical Recycling of GFRP waste

MECHANICAL RECYCLING

GFRP RECYCLATE

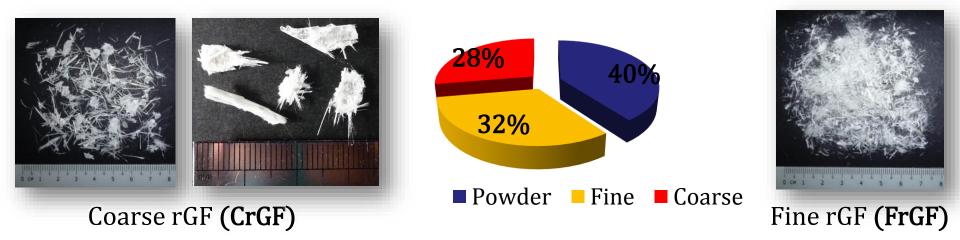
www.utm.my

Fibre Sizing Process

Coarse rGF (CrGF)

Recyclates or recycled glass fibre or Raw rGF Sieve Shaker

Powder


RESULTS

www.utm.my

Fibre Size Groups

Recyclates Composition

Recyclate Grade	Weight Composition (%)	Fibre Length (mm)
Powder	40	<1
Fine (FrGF)	32	1-6
Coarse (CrGF)	28	4-15

TEST SAMPLE

www.utm.my

Compression Moulding Process

UP/MMT mixed with MEKP

rGF placed into the mould evenly

Resin poured into the mould and distributed by roller

Mould closed

Applied Pressure 100 bar

"INTERLOCKING / BRIDGING AGENT"

www.utm.my

HYBRID WOVEN KENAF/RECYCLED GLASS FIBRE REINFORCED POLYESTER COMPOSITES

(a) Kenaf composites

(b) Kenaf/glass composites

(c) Kenaf/rGFRP composites

(a) Woven kenaf cut into mold size

(b) rGFRP interleaf between 2 layer kenaf

(c) Cured sampled after 24 hours in room temperature

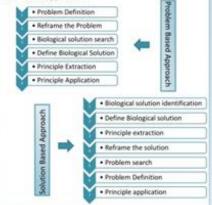
INTERLAMINAR BEHAVIOUR OF KENAF/GFRP RECYCLATE REINFORCED POLYESTER

Bridging failure

Breakage failure

RESEARCH UNIVERSITY

S. A. Hassan, (shukur@fkm.utm.my) M. Y. Yahya, K. J. Wong, L. G. Chong, S. K. Jamal Centre for Composites, Universiti Teknologi Malaysia CfC Centre for Composites Research Group


Introduction

Background & Motivation

Nature has arrived to an optimal and efficient through natural selection after billion years of evolution. The word "Biominetics" was corred by Otto Schmitts for the transfer of ideas from biology to technology applications. Sominetics rise the attention of researchers' newadays as Lanine Benyus, a tisologist who actuely encourages and promotes the need to mimic biological model from nature by energing discipline of Biominetics.

Since the emerging of Biosmetrics design, this discipline has keep enlarge its influence in the field of design, architecture, medical, and engineering. Non, biomimetrics also refer as biomimize, biognosis, bio-inspiration or biologically implied design. In present time, Biomimetrics is developing thos a new creative design discipline that can be classified into hexa groups of physical biomimizery and behavioural biomimizery. Providal biomimizery focused on translating the interesting physical qualities of biological model while behavioural biomimizery traveled on imitate the functional advertages of creatures such as self-diagnosis, self-healing or water regeletier effect.

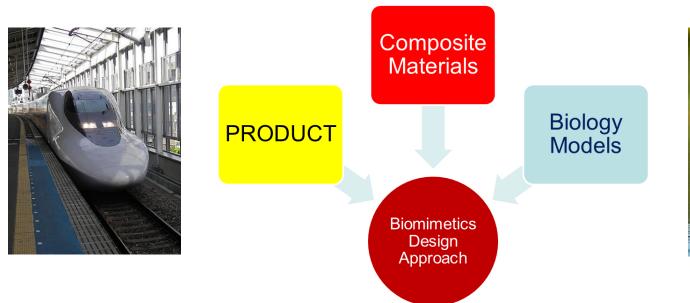
Biomimetics Approaches

Trends & Directions

Composites Sandwich Structure Inspired by Bananas Tree

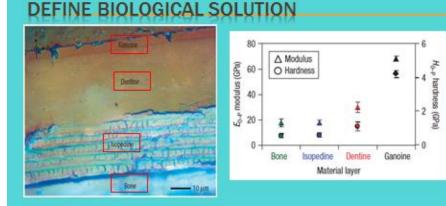
Conclusion

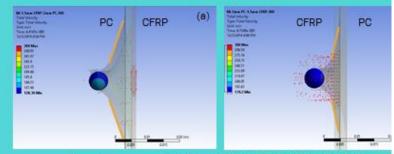
 Nature provides us unimitted importations for engineering applications. Better understanding in biological and ecological, developed different angle of engineering design from large and strong concepts to sustain-concepts added and support by analytical, experimental and computational tools the biointimetic concepts become part of engineering application.


Acknowledgements

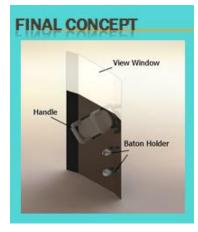
We would like to thank MQE and UTM for their continual support in this research projects.

BIOMIMETICS


Bringing Nature for Sustainable Engineering Design

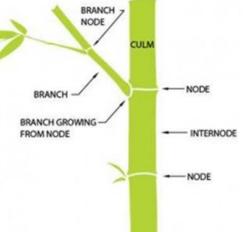


BIOMIMETICS: BULLET PROOF SHIELD



Reference: Benjamin J.F. Bruet, Juha Song et al. Materials design principles of ancient fish armour. Nature Materials, 2008. 7:749-758.

DEFORMATION BEHAVIOUR


Impact response of hybrid material. (a) CFRP-PC; (b) PC-CFRP

BIOMIMETICS: COMPOSITES HARVESTING POLE

BIOMIMETICS: ECO-CARE TRASH TRAP

'Biomimetics' design approach is the imitation of model/system that resembles the nature. The prototype will be designed to fit larger drainage (up to 10 meters wide) that only rely on the natural gravity flow and will be installed floating across the waterways. The prototype also requires no power pumps or electrical devices since it relies on the natural gravity flow and will be installed floating across the waterways.

Thank You

INSPIRING CREATIVE AND INNOVATIVE MINDS