FLUID STATICS

MUHAMMAD SYAHIR SARKAWI, PhD

Nuclear Engineering Program
Energy Engineering Department
N01-273 | 0133274154
syahirsarkawi@utm.my

Objectives of the Topic

Calculate pressure from a given datum

Apply the equal level or pressure principle on manometers.

Demonstrate the stability of a floating body.

Contents

Introduction

- Involved the study of fluid under static conditions (rest), No shear stress act on the fluid

Pressure

- Pressure at a point : Pascal's Law, Pressure head in fluid, Pressure transmitability, Types of pressure, Datum, Summary

Manometer

- Piezometer Tube, U-Tube, Differential, Invert-Differential

Fluid force on submerge bodies

- Introduction, Action of fluid pressure on a surface of submerged bodies, Resultant force and centre of pressure on a plane and curved surface immersed in a liquid

Buoyancy and stability of floating bodies

- Introduction, Bodies completely submerged, Archimedes principal \& centre of buoyancy, Floating bodies, Stability \& stability determination of submerged \& floating bodies, Metacentric height concepts for floating bodies

Pressure

- Pressure at a point
- Absolute, gauge, and vacuum pressures
- Pressure head of fluid
- Variation of pressure with depth
- Scuba diving and hydrostatic pressure
- Transmission of fluid pressure
- Pascal's law

路
UTM
SCHOOL OF CHEM Faculty of Engineering

Pressure

Pressure is defined as the amount of force exerted on a unit area of a substance or on a surface.

$$
P=\frac{\text { Force }}{\text { Area }}=\frac{F}{A}
$$

where:
$\mathrm{P}=$ pressure, $\mathrm{Pa}\left(\mathrm{N} . \mathrm{m}^{-2}\right), \mathbf{l b} . \mathrm{ft}^{-2}, \mathrm{psi}\left(\mathbf{l b} . \mathrm{in}^{-2}\right)$, atm(1 $\left.\operatorname{atm}=101,300 \mathrm{~Pa}=2,116 \mathrm{lb} . \mathrm{ft}^{-2}\right)$, bar $\left(1 \mathrm{bar}=10^{5} \mathrm{~Pa}\right)$

Some basic pressure gages.

$$
P=\sigma_{n}=\frac{W}{A_{\text {feet }}}=\frac{(70 \times 9.81 / 1000) \mathrm{kN}}{0.0343 \mathrm{~m}^{2}}=20 \mathrm{kPa}
$$

Pressure at a Point

- Pressure is the compressive force per unit area but it is not a vector. Pressure at any point in a fluid is the same in all directions [Pascal's Law].
- Pressure has magnitude but not a specific direction, and thus it is a scalar quantity.

Pressure (Absolute, Gauge and Vacuum)

- Absolute pressure ($\mathrm{P}_{\mathrm{abs}}$)

Actual pressure at a give point
It is measured relative to absolute vacuum (absolute zero pressure)

- Atmospheric Pressure ($\mathrm{Patm}_{\mathrm{atm}}$)

Pressure due to weight of air above it
Standard value: 1 atm equal to $101.3 \mathrm{kN} / \mathrm{m}^{2}, 760 \mathrm{mmHg}, 10.35 \mathrm{mH}_{2} \mathrm{O}$ water (34 $\mathrm{ftH}_{2} \mathrm{O}$), 14.7 psi
Fluid pressure at free surface $=P_{\text {atm }}$

Pressure (Absolute, Gauge and Vacuum)

- Vacuum pressure ($\mathrm{P}_{\mathrm{vac}}$)

Pressure below atmospheric pressure:

$$
P_{\mathrm{vac}}=P_{\mathrm{atm}}-P_{\mathrm{abs}}
$$

- Gauge pressure (P_{g})

Pressure that measured using pressure gauge

- Most gauge are calibrated to read zero in the atmosphere

$$
P_{\text {gauge }}=P_{\text {abs }}-P_{\text {atm }}
$$

+ve (above atm pressure)
-ve (below atm pressure): suction pressure of vacuum pressure Zero pressure = atmospheric pressure

- Gauge pressure units: N/m² gauge, psig, kPa gauge, barg

Pressure (Absolute, Gauge and Vacuum)

- Case I

$$
\begin{aligned}
& p_{2}=\rho g h=\gamma h \\
& p_{a}=p_{\text {atm }}+p_{2}
\end{aligned}
$$

- Case 2

$$
\begin{aligned}
& p_{2}=\rho g h=\gamma h \quad(-\mathrm{ve} \text { or }+\mathrm{ve} \quad ? ? ? ?) \\
& p_{a}=p_{a t m}+p_{2}
\end{aligned}
$$

Variation of Pressure with Depth

Pressure is the same at all points on a horizontal plane in a given fluid

Pressure Head in Fluid

- Pressure is proportional to depth ($\mathrm{P} \alpha \mathrm{h}$) :regardless of shape of container

- Pressure head:

The height of a column of fluid of specific weight γ required to give a pressure difference $P_{1}-P_{2}$

Pressure Head in Fluid

Pressure at O

$$
p_{o}=\rho g h=\gamma h
$$

Pressure Transmissibility

- Pascal: "In a closed system, the variation of pressure at one point in the system will be transmitted to the whole system"
- Basic hydraulic system principles

$$
p_{1}=p_{2} \quad \text { (act on opposite direction) }
$$

Pressure Transmissibility

- The transmission of fluid pressure throughout a stationary fluid is the principle upon which many hydraulic devices are based

$$
P_{1}=P_{2}
$$

$$
\mathrm{F}_{1}=\mathrm{pA}_{1} \quad \mathrm{~F}_{2}=\mathrm{pA}_{2}
$$

Note:
The pressure force exerted by the fluid is always normal to the surface at the specified points

Pressure Transmissibility (Problem 2.1)

- Dimension of hydraulic jack is shown in figure below. If a force of 100 N applied onto the jet handle, determine a maximum force F_{2} would be support.

$\phi(\mathrm{OD})=$ outer diameter $=1.5 \mathrm{~cm}$

HINT

- FBD: Summing moment at point C
- Calculate P_{1}
- Principle of pressure transmissibility, calculate F_{2}

Pressure Transmissibility (Problem 2.2)

A diagram of a hydraulic jack is shown below. A force of 850 N is applied to the smaller cylinder of a hydraulic jack. The area of the small piston is $15 \mathrm{~cm}^{2}$ and the area of the larger piston is $150 \mathrm{~cm}^{2}$. What load W can be lifted on the larger piston
a) if the pistons are at the same level,
b) if the larger piston is 0.75 m below the smaller piston?
(Note: The hydraulic fluid is water)

ANS: Load $\mathrm{W}=866 \mathrm{~kg}$
b)

тTTM
UTM

Barometer

- Atmospheric pressure is measured by a device called a barometer; thus, the atmospheric pressure is often referred to as the barometric pressure.

- A frequently used pressure unit is the standard atmosphere, which is defined as the pressure produced by a column of mercury 760 mm in height at $0^{\circ} \mathrm{C}\left(\rho_{H g}=13,595 \mathrm{~kg} / \mathrm{m} 3\right)$ under standard gravitational acceleration ($g=9.807$ $\mathrm{m} / \mathrm{s} 2$).

$$
P_{\mathrm{atm}}=\rho g h
$$

The basic barometer.
(م) TTTM SCHOOL OF CHEMICAL \& ENERGY ENGINEERING Manometer

- Used to measure pressure
- Only 4 types will be consider

Piezometer Tube
U-Tube Manometer
Differential Manometer
Invert-Differential Manometer

- Generally, whatever shapes and/or orientation of the manometer, the basic concepts are still the same:
pressure equilibrium concepts (needs to comprehend comprehensively)

Manometer (Piezometer Tube)

- Used the concepts of liquid head in vertical or inclined tube
- The simplest manometer

- Choose appropriate datum line
- Pressure at point 1 (in the pipe system) is due to the weight of liquid in the Piezometer tube (above datum line): $p_{1}=\rho g h=\gamma h \quad$ (gauge)
- Absolute pressure: $p_{1}=\gamma h+p_{\text {atm }}$ (absolute)
- Based on the diagram below, determine the maximum gauge pressure of water that can be measured by a piezometer tube 2 m high? (Water mass density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$).

ANS: P1 $=20 \mathrm{kN} / \mathrm{m}^{\wedge} 2$

Manometer (U-Tube)

- Fabricated from ' U ' shaped tube with one open-ended
- Filled with manometer liquid which is of greater ρ and is immiscible with the liquid system that to be measured e.g. $\mathrm{Hg} / \mathrm{H}_{2} \mathrm{OHg} / \mathrm{Oil} \mathrm{H}_{2} \mathrm{O} / \mathrm{Oil}$
- First and foremost, choose the appropriate datum line
- Rule of thumbs: choose the lowest level of contact between the two liquids

For equilibrium

$$
p_{B}=p_{C}
$$

$\binom{$ Weight of liquid $\rho_{2}}{$ above datum line }$=(p$ at $x)+\binom{$ Weight of liquid $\rho_{1}}{$ above datum line }
$\binom{h_{2}$ head p of }{ manometer liquid $\rho_{2}}=(p$ at $x)+\binom{h_{1}$ head p of }{ flowing liquid $\rho_{1}}$

$$
\begin{aligned}
\rho_{2} g h_{2} & =p_{x}+\rho_{1} g h_{1} \\
p_{x} & =\rho_{2} g h_{2}-\rho_{1} g h_{1}
\end{aligned}
$$

$$
\therefore \quad p_{x}=g\left(\rho_{2} h_{2}-\rho_{1} h_{1}\right)=\gamma_{2} h_{2}-\gamma_{1} h_{1} \text { (gauge) }
$$

Manometer_U-Tube (Problem 2.4)

- A U-tube manometer as shown in figure below is used to measure the gauge pressure of fluid N of density $\rho_{1}=800 \mathrm{~kg} / \mathrm{m}^{3}$. If the manometer fluid is mercury with a density of $13600 \mathrm{~kg} / \mathrm{m}^{3}\left(\rho_{2}\right)$, what will be the gauge pressure at x if $h_{1}=0.5 \mathrm{~m}$ and $\mathrm{h}_{2}=0.9 \mathrm{~m}$

Manometer_U-Tube (Problem 2.4)

- Calculate the air pressure in the tank as shown in the figure below

Manometer (Differential)

- Measure the pressure difference between 2 points in a pipeline
- Choose the lowest level of contact between the two liquids as datum

Direction of fluid flow \rightarrow

For equilibrium

$$
p_{C}=p_{D}
$$

$$
p_{A}+\rho_{1} g(h+I)=p_{B}+\rho_{2} g h+\rho_{1} g I
$$

$$
\therefore \quad p_{A}-p_{B}=\operatorname{gh}\left(\rho_{2}-\rho_{1}\right)=h\left(\gamma_{2}-\gamma_{1}\right)
$$

Manometer (Inverted-Differential)

- Inverted-differential or inverted u-tube manometer
- As in the previous case, it is also measuring the pressure difference between 2 points in a pipeline
- Has a reverse orientation from an ordinary differential manometer
- Choose the lowest level of contact between the two liquids as a datum

For equilibrium

$$
\begin{gathered}
p_{x}=p_{x^{\prime}} \\
\mathrm{P}_{\mathrm{A}^{-}} \rho_{2} \mathrm{ga}-\rho_{1} \mathrm{gh}=\mathrm{P}_{\mathrm{B}}-\rho_{2} \mathrm{~g}(\mathrm{~b}+\mathrm{h}) \\
\therefore p_{A}-p_{B}=\rho_{2} g(a-b)+g h\left(\rho_{1}-\rho_{2}\right)
\end{gathered}
$$

Manometer_Inverted-Differential (Problem 2.6)

- An inverted U-tube manometer as shown in figure below is used to measure the gauge pressure. If the liquids at A and B are water with density $r=1000 \mathrm{~kg} / \mathrm{m}^{3}$, and the height differences are $h=0.3 \mathrm{~m}, \mathrm{a}=0.25 \mathrm{~m}$ and $\mathrm{b}=0.15 \mathrm{~m}$ respectively. Calculate the pressure difference $p_{A}-p_{B}$ if the top of the manometer is filled with
a. air ANS: Pair $=-1962 \mathrm{~N} / \mathrm{m}^{\wedge} 2$
b. oil with $\mathrm{SG}=0.8 \quad$ ANS: Poil $=392.4 \mathrm{~N} / \mathrm{m}^{\wedge} 2$

Fluid Force on Submerged Bodies

- Introduction
- Action of fluid pressure on a surface of submerged bodies
- Resultant force and centre of pressure on a plane surface immersed in a liquid
- Resultant force and centre of pressure on a curved surface immersed in a liquid
- Buoyancy and stability of floating bodies

Action of Fluid Pressure on a Surface of Submerged Bodies

- Resultant force

$$
R=p_{1} d A_{1}+p_{2} d A_{2}+\ldots \ldots \ldots \ldots . .+p_{n} d A_{n}=\Sigma\left(p_{n} d A_{n}\right)
$$

- Point which R acts \square centre of pressure/force
- If the boundary is a plane surface, all the forces act on it will be parallel

$$
\therefore \quad R=\Sigma\left(p_{n} d A_{n}\right) \text { sum of forces }
$$

- If the boundary is a curved surface, all the forces will act perpendicular to the surface at each point \square nonparallel forces

Action of Fluid Pressure on a Surface of Submerged Bodies

- For curved surface:

All forces are not parallel \longrightarrow must be combined as a vector

The forces will be divided to horizontal, R_{H}, and vertical, R_{V}, component of forces \& then combined using Pythagorean theorem to determine the resultant force

$$
R=F_{T}=\sqrt{R_{H}^{2}+R_{V}^{2}}
$$

Resultant force direction, q

$$
\theta=\tan ^{-1}\left(\frac{R_{V}}{R_{H}}\right)
$$

- Examples:-

1) vertical retaining wall

(o) $J^{\prime} M$

Force Due to Statics Fluids

- Examples:-

2) inclined wall (dam)

The figure shows a dam 30.5 m long that retains 8 m of fresh water and is inclined at an angle Θ of $60^{\circ} \mathrm{C}$. Calculate the magnitude of the Resultant force on the dam and the location of the centre of pressure (CP)

Application

Itaipú Dam on the Upper Paraná River, north of Ciudad del Este, Paraguay

Application

Aerial view of Hoover Dam on the Arizona-Nevada border

Application

Fort Peck Dam on the Missouri River creates Fort Peck Lake, near Glasgow, northeastern
Montana. Construction began in 1933 and was finished in 1940

Application

Construction of the Glen Canyon Dam on the Colorado River formed Lake Powell in Arizona

Application

Kariba Dam, on the Zambezi River at the border between Zambia and Zimbabwe

Application

Bonneville Dam stems the Columbia River in Washington and Oregon. The dam's special fish ladders help salmon swim upstream to their spawning grounds

Application

The Fengman Dam and hydroelectric power station on the Sungari (Songhua) River, Jilin province, northeastern China

Application

Dam on the Karun River, Iran

SCHOOL OF CHEMICA

Application

Péligre Dam, Artibonite River, Haiti

Application

The Three Gorges Dam spanning the Yangtze River (Chang Jiang) near Yichang, Hubei province, China

Application

The Kenyir Dam and hydroelectric power station on Kenyir Lake, Terengganu, Malaysia (Average annual energy output is 1,600 GWh)

Action of Fluid Pressure on a Surface of Submerged Bodies (Problem 2.7)

- Relationship between force and the weight of fluid

An opened trapezoidal shaped tank as shown below, length of 5 m , is filled with water. Calculate:
a) The weight of water in the tank \quad ANs: Wwater $=245 \mathrm{kN}$
b) Resultant force which acts at the bottom of the tank ANS: $\mathrm{R}=196 \mathrm{kN}$

RTTVM
UTM
Resultant Force and Centre of Pressure on a Plane Surface Immersed in a Liquid

- Symbols and meaning

$$
\begin{aligned}
& R=\text { resultant force } \\
& A=\text { plane surface area }
\end{aligned}
$$

$$
\rho=\text { fluid density }
$$

$h_{C}=$ depth of object centroid centre from horizontal axis, measured from free fluid surface
$h_{R}=$ depth of the centre of R acts on an object from horizontal axis, measured from free fluid surface
$Y_{C}=$ object's centroid coordinate measured from X axis perpendicular to object location (from free fluid surface)
$Y_{R}=$ centre coordinate of R acts on an object from X axis perpendicular to object location (from free fluid surface)
$X_{C}=$ object's centroid coordinate measured from Y axis perpendicular to object location (from free fluid surface)
$X_{R}=$ centre coordinate of R acts on an object from Y axis perpendicular to object location (from free fluid surface)
$I, I_{X C}, I_{X Y C}=$ second moment of area $/$ moment inertia

(a)

$$
\begin{aligned}
& A=\pi R^{2} \\
& I_{x c}=I_{y c}=\frac{\pi R^{4}}{4} \\
& I_{x y c}=0
\end{aligned}
$$

Geometric Properties of some Common Shapes

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{2} \\
& I_{x c}=0.1098 R^{4} \\
& I_{y c}=0.3927 R^{4} \\
& I_{x y c}=0
\end{aligned}
$$

(c)

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{4} \\
& I_{x c}=I_{y c}=0.05488 R^{4} \\
& I_{x y c}=-0.01647 R^{4}
\end{aligned}
$$

(e)

Total Submerged Plane Areas
 Faculty of Engineering

Resultant Force and Centre of Pressure on a Plane Surface Immersed in a Liquid (Problem 2.8)

A rectangular shaped plate with a dimension of 10 m wide by 35 m long, is immersed 25 m deep vertically in a water as shown in figure below. Find the resultant force that acts on the plate and its centre of action from a surface

Resultant Force and Centre of Pressure on a Plane Surface Immersed in a Liquid (Problem 2.9)

If the same plate (Problem 2.9) is tilted to 30° angle from the liquid surface (as shown below), determine R and Y_{R}

- Forces are not parallel
- Forces act on the curved surface have to be combine vectorially
- There are 2 components of the resultant force \mathbf{R}

1. Horizontal component, R_{H}

- This force acts horizontally from vertical axis
- Mathematically

$$
R_{H}=\rho g h_{C} A=\gamma h_{C} A
$$

2. Vertical component, \mathbf{R}_{V}

- This force acts vertically from horizontal axis due to the weight of fluid above the curved surface
- Mathematically

$$
R_{V}=\rho g V=\gamma V
$$

Curved surface
$R_{V}=\rho g V=\gamma$

- Forces are combined using Pythagorean theorems $R=\sqrt{R_{H}^{2}+R_{V}^{2}}$
- The direction of R, θ, is solved by using trigonometry law $\theta=\tan ^{-1}\left(\frac{R_{V}}{R_{H}}\right)$

Distribution of Force on a Submerged Curve

 Surface

Distribution of Force on a Submerged Curve Surface

Aims

To determine the horizontal force F_{H} and the vertical force F_{V} exerted on the fluid by the curved surface and their resultant force F_{R}

Resultant Force and Centre of Pressure on a Curved Surface Immersed in a Liquid (Problem 2.10)

A sluice gate consists of quadrant of a circle of radius 1.5 m pivoted at O . Determine the magnitude and direction of the resultant force on the gate. The width of the gate is 3 m

Resultant Force and Centre of Pressure on a Curved Surface Immersed in a Liquid (Problem 2.11)

The figure below shows a part of the water tank of a quadrant circle of 9 m radius. Calculate the magnitude and direction of the resultant force on the curved surface from the horizontal axis. (Given $g=14715 \mathrm{~N} / \mathrm{m}^{3}$)

Calculate R_{H}, R_{V}, R and θ act on the curved surface of the quarter circle. The length of the object is 1.5 m

Buoyancy and Stability of Floating

 Bodies- Introduction
- Bodies completely submerged
- Archimedes principal \& centre of buoyancy
- Floating bodies
- Stability of submerged bodies
- Stability determination of submerged bodies
- Stability of floating bodies
- Metacentric height concepts for floating bodies

Introduction

- Previous sections $\longrightarrow \mathbf{R}$ determination which acts on any surface of submerged bodies
- Another important aspect need to consider in fluid static is hydrostatic pressure, which is the neat force, which acts on any submerged or floating bodies in a fluid
- This force is known as buoyancy force, occurred due to the increase of p with h
- The neat horizontal p on a body of completely submerged or floating is equal to zero \Rightarrow due to pressure forces on each side are equal

Body Completely Submerged

- Weight of submerged body, $w \curvearrowleft V_{\text {IJKLI }}$
- Force due to weight of fluid, $\mathbf{F}_{\mathbf{w}}$

$$
\boldsymbol{F}_{\mathbf{w}}=\gamma_{\text {fluid }} V_{\text {fluid }}=\gamma_{\text {fluid }} V_{\text {HILKMH }}
$$

- Upthrust force acts on the surface body, $\mathbf{F}_{\mathbf{R}}$

$$
\mathbf{F}_{\mathbf{R}}=\gamma_{\text {fluid }} V_{\text {fluid }}=\gamma_{\text {fluid }} V_{\text {HIJKMH }}
$$

- $F_{R}>F_{W}$, therefore, the neat vertical pressure
 force ($F_{R}-F_{W}$) acts on the submerged bodies

$$
\therefore \quad F_{\mathrm{B}}=F_{\mathrm{R}}-F_{\mathrm{W}}=\gamma_{\text {fluid }} V_{\text {body }} \quad \text { Neat vertical force } @ \text { buoyancy force }
$$

Body Completely Submerged

- Archimedes principle: The upthrust force (upward vertical force due to the fluid) on a body immersed in a fluid is equal to the weight of fluid displaced
- The buoyancy force will act through the centre of centroid of the displaced fluid which is known as centre of buoyancy
- Generally, buoyancy force does not equal to the weight of immersed body due to that immersed body has upward or downward acceleration which depends on g of the body either bigger or smaller than g of the fluid
- For floating body, there is no upward acceleration. Buoyancy force for floating body is equal to its own weight. In other words, a floating body replaces its own weight with the weight of fluid when it floats

Floating Bodies

Body apparent weight $=\gamma_{\text {body }} V_{\text {body }}-\gamma_{\text {air }} V_{\text {air }}$

In engineering calculations, $g_{\text {air }}$ can be neglected
Body apparent weight $=$ Body's weight $=\gamma_{\text {body }} V_{\text {body }}$

Floating Bodies (Problem 2.13)

By using pressure-depth relationships ($p=\gamma h$), shows that buoyancy force on a solid cylinder which is completely immersed is equal to the weight of fluid replaced by the cylinder. (Neglect the weight of the cylinder)

(3)UTM

SCHOOL OF CHEMICAL \& ENERGY ENGINEERING Faculty of Engineering

Floating Bodies (Problem 2.13)

- The top of the cylinder is marked with $1 \&$ at the bottom is marked with 2, the cross-sectional area is A, and volume is $V_{\text {cylinder }}$

Buoyancy force $=\left[\begin{array}{c}\text { Upthrust } \\ \text { force }\end{array}\right]-\left[\begin{array}{c}\text { Downthrust } \\ \text { force }\end{array}\right]$
$F_{B}=F_{2}-F_{1}=p_{2} A_{2}-p_{1} A_{1}=A\left(p_{2}-p_{1}\right)$
$\Rightarrow p=\gamma h$
$\therefore F_{B}=A\left[\left(p_{\text {atm }}+\gamma h_{2}\right)-\left(p_{\text {atm }}+\gamma h_{1}\right)\right]=\gamma\left(h_{2}-h_{1}\right) A$

where $\gamma=\gamma_{\text {fluid }}$
$\Rightarrow\left(h_{2}-h_{1}\right) A=V_{\text {cylinder }} \quad$ (volume of cylinder)
$\therefore F_{B}=\gamma_{\text {fuid }} V_{\text {cylinder }}$

SCHOOL OF CHEMICAL \& ENERGY ENGINEERING Faculty of Engineering

Floating Bodies (Problem 2.14)

A spherical buoy is fastened to the bottom of the river (fresh water) with a cable, as shown in figure below. The buoy was designed to float in water. At one time, the river water level has risen and submerges the buoy. If the buoy is 1 m diameter and $750 \mathrm{~kg} / \mathrm{m}^{3}$ density, calculate the tension force that acts on the cable

Stability of Submerged Bodies

- Submerged body is said stable:

When small amount of \mathbf{F} (disturbance) applied on a body during its stability state, the body will turn back to its previous position

- Example
- Air balloon (which is completely floats/submerged in the air) \Rightarrow wind blow disturbance)
- Submarine (which is completely submerged in the water) \longrightarrow current disturbance

Stability Determination of Submerged Bodies

- For completely submerged body, to be stable

body's centre of gravity	must lie directly below	body's centre of buoyancy

- Graphically

where
$F_{B}=$ buoyancy force
$B=$ body's centre of buoyancy
$C G=$ body's centre of gravity
$w=$ body's weight
(0) UTM

Stability Determination of Submerged Bodies

Stability Determination of Submerged Bodies (Problem 2.15)

- An air balloon system is shown in figure below. Due to a cross wind blowing, the air balloon is turning clockwise through the 10° angle from stability state. If the weight of the air balloon system is 2500 lb and the distance, L, between the gravity centre and buoyancy centre is 18 ft , determine the magnitude and direction of the coupling moment produced

Stability of Floating Bodies

- The analysis is more complex compared to completely submerged bodies
- The buoyancy centre position will shift with the body shapes when turning force is applied
- Generally, to be more stable, the body's buoyancy centre must lie below the centre of gravity. (Note: It's depends on the shape of the object. Will be discuss in Metacentric height concepts)
- Consider the situation below:

Overturning moment

Coupling moment

ודשוח
UTM

Metacentric Height Concepts for Floating Bodies

- Metacentric height:

Used as a parameter to measure the stability of floating bodies \square quantitatively

$\overline{\mathrm{GM}}$ - Directly measure the stability of floating bodies due to coupling moment produced is directly proportional to the height of meta centre
$\mathrm{M}_{\text {coupling }}=w \overline{\mathrm{GM}} \sin \theta$
innovative e entrepreneurial \bullet global

Metacentric Height Concepts for Floating Bodies

- Determine magnitude of $\mathrm{GM} \longmapsto \mathrm{M}_{\text {coupling }}$

CHOOL OF CHEMICAL \& ENERGY ENGINEERING aculty of Engineering

Metacentric Height Concepts for Floating Bodies (Problem 2.16)

A cylindrical block of wood which has a dimension of 1 ft long and 3 inches diameter, is placed vertically in water as shown in figure below. If the wood has a specific gravity of 0.5 , determine whether the cylindrical block of wood is stable or not?

Summary (Fluid Force on Submerged BodiesPlane Surface)

Summary (Fluid Force on Submerged Bodies-

 Curve Surface)

THANK YOU

Stay safe!

