FLUID DYNAMICS

MUHAMMAD SYAHIR SARKAWI, PhD

Nuclear Engineering Program
Energy Engineering Department
N01-273 | 0133274154
syahirsarkawi@utm.my

Objectives of the Topic

Apply the concepts

Contents

- Introduction
- Analysing fluid flow
- Continuity equation
- Bernoulli's equation
- Energy equation
- Momentum's equation
- Euler's equation

Introduction

- Fluid motion \Rightarrow extremely complex by the introduction of μ
\Rightarrow will create shear force \Rightarrow friction
- Qualitative analysis

Normally done visually, e.g. analysis of fluid in motion

- Quantitative analysis

Make some appropriate assumptions
Neglecting some particular parameters

Introduction (Types of Flow Lines)

- Path Lines

The actual path traveled by a fluid particle. The line shows the direction of a particle, for a certain period of time or between two given section

Introduction (Types of Flow Lines)

- Stream Lines

A curve (imaginary line) that is everywhere tangent to the instantaneous local velocity vector. An element of fluid, bounded by a number of a stream lines, which confine the flow is called stream tube. There is no movement of fluid across a stream line, therefore no fluid can enter or leave the stream tube except at the end. So that a stream tube behaves like a solid tube

NASCAR surface pressure contours and streamlines

Airplane surface pressure contours, volume streamlines, and surface streamlines

Introduction (Types of Flow Lines)

- Streak Lines

The locus of fluid particles that have passed sequentially through a prescribed point in the flow. Easy to generate in experiments: dye in a water flow, or smoke in an airflow

UTM
SCHOOL OF CHEMICAL Faculty of Engineering

Introduction (Types of Flow Lines)

- Potential Lines or Equi-potential Lines

There is always a loss of head of the fluid particles as we proceed along the flow lines. If we draw lines joining the points of equal potential on adjacent flow lines we can get potential lines of equi-potential lines

AB: Stream line
LM : Potential line

Introduction (Types of Flow Lines)

- Flow Net

If we draw both the lines for a flow (stream lines and potential lines), the pattern obtained by the intersection of the two set of lines is called flow net. The flow net helps in depicting analyzing the behaviors of irrotational flow

Analysing Fluid Flow

- In analysing fluid flow, there are 2 main alternatives: As an element of fixed mass assume as a closed system
As an element of control volume open system

Continuity Equation

- Conservation of mass principle: "Matter is neither created not destroyed" \square can be applied to a flowing fluid
- Consider any fixed region in the flow constituting a control volume

- For steady flow, the mass of fluid in the control volume remains constant and the relation reduces to:

Mass of fluid entering $=$ Mass of fluid leaving per unit time per unit time

Continuity Equation

- Other graphical methods in generating equation of continuity is illustrated below:
Simplified form for an incompressible fluid, $\rho_{1}=\rho_{2}$

$$
\begin{aligned}
& A=\frac{\pi}{4} D^{2} \\
& \rho_{1}=\rho_{2}
\end{aligned}
$$

$\frac{v_{1}}{v_{2}}=\left(\frac{D_{2}}{D_{1}}\right)^{2}$

Continuity Equation

- The continuity equation can also be applied to determine the relation between the flows into and out of a junction. For steady conditions:

$\rho_{1} Q_{1}=\rho_{2} Q_{2}+\rho_{3} Q_{3}$
- For an incompressible fluid, $\rho_{1}=\rho_{2}=\rho_{3}$, so that

$$
\begin{aligned}
& Q_{1}=Q_{2}+Q_{3} \\
\text { or } & A_{1} v_{1}=A_{2} v_{2}+A_{3} v_{3}
\end{aligned}
$$

- In general, if we consider flow towards the junction as +ve and flow away from the junction as -ve, then for incompressible steady flow at any junction will be: $\sum Q=0$

Continuity Equation (Problem 3.1)

Water flows through a pipe from point 1 to point 2 , as shown in figure below. Given $D_{1}=4$ inches, $D_{2}=2$ inches and $v_{1}=4 \mathrm{ft} / \mathrm{s}$. Determine:
a) Volume rate of flow
b) Fluid velocity at point 2
c) Mass rate of flow

Continuity Equation (Problem 3.2)

Water flows through a pipe $A B$ (figure) of diameter $d_{1}=50 \mathrm{~mm}$, which is in series with a pipe $B C$ of diameter $d_{2}=75 \mathrm{~mm}$ in which the mean velocity $v_{2}=2 \mathrm{~m} / \mathrm{s}$. At C the pipe forks an one branch $C D$ is of diameter d_{3} such that the mean velocity v_{3} is $1.5 \mathrm{~m} / \mathrm{s}$. The other branch CE is of diameter $d_{4}=30 \mathrm{~mm}$ and conditions are such that the discharge Q_{2} from $B C$ divides so that $Q_{4}=0.5 Q_{3}$. Calculate the values of Q_{1}, v_{1}, $Q_{2}, Q_{3}, d_{3}, Q_{4}$ and v_{4}

PIPE	DiAMETER (mm)	FLow rate $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
AB	$d_{1}=50$	$Q_{1}=?$	$\bar{v}_{1}=?$
BC	$d_{2}=75$	$Q_{2}=?$	$\bar{v}_{2}=2.0$
CD	$d_{3}=?$	$Q_{3}=2 Q_{4}$	$\bar{v}_{3}=1.5$
CE	$d_{4}=30$	$Q_{4}=0.5 Q_{3}$	$\bar{v}_{4}=?$

Bernoulli's Equation

- Bernoulli's theorem: The total energy of each particle of a body of fluid is the same provided that no energy enters or leaves the system at any point
- There are 3 types of energy involved: potential, pressure, and kinetic energies
- The division of these energies may vary, but the total remains constant
- Consider the diagram below:

$\left(\begin{array}{c}\begin{array}{c}\text { Pressure energy } \\ \text { possess due to fluid flow } \\ \text { generates a force }\end{array}\end{array}\right)=\frac{p m g}{\rho g}=\frac{p m}{\rho}$

Pressure head
$\left(\begin{array}{c}\text { Pressure head } \\ \text { pressure energy } \\ \text { per unit weight }\end{array}\right)=\frac{p}{\rho g}$

Bernoulli's Equation

- Based on Bernoulli's Theorem

$$
\begin{aligned}
\sum E_{1} & =\sum E_{2} \\
(\mathrm{PE}+\mathrm{KE}+\mathrm{FE})_{1} & =(\mathrm{PE}+\mathrm{KE}+\mathrm{FE})_{2}
\end{aligned}
$$

- By simplifying the above relationship

$\underset{\underset{\sim}{\text { Potential }}}{\text { head }} \mathrm{\leftarrow} z_{1}+\frac{v_{1}^{2}}{2 g}+\frac{p_{1}}{\rho g}=z_{2}+\frac{v_{2}^{2}}{2 g}+\frac{p_{2}}{\rho g}$

This equation, then, is known as Bernoulli's equation

Bernoulli's Equation

- By simplifying the above relationship

This equation, then, is known as Bernoulli's equation

- Bernoulli's Equation also can be written as

$$
\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

where, $\gamma=\rho g$

Bernoulli’s Equation

$$
\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

- Assumption

1) The fluid flow is incompressible, and g is constant
2) The fluid is ideal (has no m), therefore, there is no energy losses due to friction
3) There is no mechanical devices in the system, lie between the two considered point, such as pump or turbine, which will increase or decrease the energy to or from the system
4) The fluid is under steady state flow conditions
5) There is no heat being transfer (increase or decrease) from or to point 1 to point 2 in the fluid system

Bernoulli's Equation (Problem 3.3)

For a pipe system in the figure below, determine p_{2} if $p_{1}=20 \mathrm{psig}, d_{1}=2$ in and $d_{2}=1.5$ in, and $Q_{\text {water }}=200 \mathrm{gpm}$

Energy Equation

- Introduction
- Mechanical energy of a flowing fluid
- Pumps and turbines
- Pumps and turbines efficiency

Energy Equation (Introduction)

- Also fundamental to the study and prediction of fluid flow phenomena
- Apply the same principal as Bernoulli's equation \longrightarrow conservation of energy to fluid flow
- The equation accommodate energy losses due to friction ($\mu \Longleftrightarrow$ to boundaries, fittings, valves, etc.), mechanical devices (e.g. fans, pump, turbine), suitable to steady incompressible flow
- Widely used in solving practical problems

Mechanical Energy of a Flowing Fluid

- Consider the situation below:

- The energy possessed by a flowing fluid consists of internal energy and energies due to pressure, velocity, and position:

```
energy at + energy _ energy _ energy = energy at
section 1 +}\mathrm{ added }\mp@subsup{}{}{-}\mathrm{ lost }-\mathrm{ extracted }=\mathrm{ section 2
```

- This equation, for steady flow of incompressible fluids in which the change in internal energy is negligible, simplifies to:

$$
\left(\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}\right)+H_{A}-H_{L}-H_{E}=\left(\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}\right)
$$

Mechanical Energy of a Flowing Fluid

$$
\left(\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}\right)+H_{A}-H_{L}-H_{E}=\left(\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}\right)
$$

- This equation is known as the Energy equation or popularly known as Bernoulli equation (with respects to the pioneer)
- The units used are: $\mathrm{ft} O R \mathrm{~m}$
- Many problems dealing with flow of liquids used this equation as the basis of solution
- Flow of gases, in many instances, involves principles of thermodynamics and heat transfer, that are beyond the scope of this subject

```
HA}: Any additional mechanical devices that can add energy to the system such as pump, HP etc.
\(H_{E}\) : Any additional mechanical devices that can extract energy from the system such as turbine, \(H_{T}\), etc.
\(H_{L}\) : Any energy losses due to friction. Can be further divided into two, major losses, \(H_{L-m a j o r}\), and minor losses, \(H_{L-m i n o r}\)
```

$H_{\text {L-major }}$: Any energy losses due to friction between fluid and solid boundaries
$H_{L-m i n o r}$: Any energy losses due to friction between fluid and bends, valves, filters, elbows, junctions, etc.

Bernoulli's Equation (Problem 3.4)

Water flows from a huge reservoir with $1.0 \mathrm{ft}^{3} / \mathrm{sec}$ flow rate, as shown in figure below. Losses occurred in the flow system are due to the pipe sudden contractions from the reservoir, two 90° bends, and globe valve. Calculate all head losses, H_{L}

Bernoulli's Equation (Problem 3.5)

Calculate the flow rate in Problem 3.4 if friction losses are ignored

Pumps and Turbines

- Pump will add energy to the fluid flow system, whereas turbine will extract energy from the fluid flow system
- This energy is called motor fluid hydraulic power (fluid hydraulic power) or motor fluid power (fluid power)

- Pump possesses an energy which will be added to the fluid flow system, whereas turbine gains its energy from fluid flow system
- This energy is called motor mechanical power
$\left[\begin{array}{c}\text { Motor mechanical } \\ \text { power }\end{array}\right]=\left[\begin{array}{l}\text { For pumps or any other devices that will add energy to } \\ \text { the system, normally it is given as HP or watt. } \\ \text { For turbines or any other devices that will extract energy from } \\ \text { the system, normally it is also given as HP or watt. }\end{array}\right]$

Pumps and Turbines Efficiency

- For pumps or any other devices that will add energy to the system
$(\%)=\frac{\text { motor fluid hydraulic power }}{\text { motor mechanical power }} \times 100 \%=\frac{h_{A} Q}{H P \text { or watt }} \times 100 \%$
- For turbines or any other devices that will extract energy from the system

$$
{ }_{(\%)}=\frac{\text { motor mechanical power }}{\text { motor fluid hydraulic power }} \times 100 \%=\frac{H P \text { or watt }}{h_{E} Q} \times 100 \%
$$

Pumps and Turbines (Problem 3.6)

If a pump is included in the system of Example 3.4 , to increase the flow rate from $1 \mathrm{ft}^{3} / \mathrm{sec}$ to $1.25 \mathrm{ft}^{3} / \mathrm{sec}$, and friction head losses increases to 12 ft due to the increasing of flow rate, calculate the pump head, H_{p}

Pumps and Turbines (Problem 3.7)

What is the pump fluid power to deliver a water in a pipeline, if the pump need to increase pressure to 500 kPa and maintaining flow rate at $0.05 \mathrm{~m}^{3} / \mathrm{s}$?

Pumps and Turbines (Problem 3.8)

A hydroelectric turbine receives water from a huge reservoir and jetting it out to atmosphere through a 18 inches pipe, as shown in figure below. If the velocity of water in the pipe is $20 \mathrm{ft} / \mathrm{sec}$, calculate the fluid power, which is being transferred from the water by the turbine. Ignore any losses due to friction

Pumps and Turbines (Problem 3.9)

A pump deliver water at $0.1 \mathrm{~m}^{3} / \mathrm{s}$ from a huge lake to a factory, as shown in figure below. Friction head losses from point 1 to point 2 is $H_{L}=C\left(v^{2} / 2 g\right)$, where C is friction losses coefficient (10 for this system) and p_{2} is the atmospheric pressure. Calculate the power needed to kick off the pump, if pump efficiency is 75%

Moment Equation

- Introduction
- Momentum and fluid flow \Rightarrow force exerted by a jet
- Momentum equation for 2D-flow
\Rightarrow Flow in branching pipe
\Rightarrow Flow exerted by a jet: Angular plate

Moment Equation (Introduction)

- Knowledge of the forces exerted by moving fluids is very importance in the analysis and design of such objects as pumps, turbine, airplane, rocket, propellers, ship and many other hydraulic devices
- The energy relationship is not sufficient to solve most of these problems
- Momentum principle: One additional tool of mechanics
\square most important
- Momentum equation relates the sum of forces acting on a fluid element to its acceleration or rate of change of momentum in the direction of the resultants force

Moment Equation (Momentum and Fluid

 Flow)- Momentum of a particle or object: the product of its mass m and its velocity v

Momentum $=m v$

- The particle of a fluid stream will possesses momentum, and, whenever the v of the stream is changed in magnitude or direction, there will be a corresponding change in the momentum of the fluid particles
- Rate of change of momentum determination in a fluid stream

Consider a control volume ABCD
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}=\dot{m}$

- Rate of change of momentum across the control volume

$$
\left(\rho_{1} A_{1} v_{1}\right) v_{1}-\left(\rho_{2} A_{2} v_{2}\right) v_{2}
$$

- or from the continuity of mass flow equation

$$
\rho_{1} A_{1} v_{1}\left(v_{2}-v_{1}\right)=\dot{m}\left(v_{2}-v_{1}\right)=\begin{aligned}
& \text { Mass flow per unit time } \\
& \text { X Change of velocity }
\end{aligned}
$$

Moment Equation (Momentum and Fluid

 Flow)$$
\rho_{1} A_{1} v_{1}\left(v_{2}-v_{1}\right)=\dot{m}\left(v_{2}-v_{1}\right)=\begin{aligned}
& \text { Mass flow per unit time } \\
& \text { X Change of velocity }
\end{aligned}
$$

- This is the increase of momentum per unit time in the direction of motion: according to Newton's $2^{\text {nd }}$ law will be caused by a force F

$$
F=\dot{m}\left(v_{2}-v_{1}\right)
$$

- This is the resultant force (or the rate of change of momentum) acting on the fluid element ABCD in the direction of motion in 1-D problems

$$
F=\dot{m}\left(v_{2}-v_{1}\right)
$$

or

$$
F=\dot{m}\left(v_{\text {out }}-v_{\text {in }}\right)
$$

- This resultant force, \mathbf{F}, is caused by:
contacts between fluid and solid body (e.g. rotor blades, pipe bends, pipe sudden contractions, etc)
or any other forces, which act with each other.
- \mathbf{F} and \boldsymbol{v} are vectors and assumed +ve in the direction of flow
- Some forces are dynamic (due to fluid motions) and some forces are static (due to pressure in the fluid) Flow)
- For any control volume

$$
F=F_{1}+\bar{H}_{2}+\Gamma_{3}=M\left(v_{\text {out }} \quad v_{\text {in }}\right)
$$

where:
$F_{1}=$ force exerted in the given direction on the fluid in the control volume by any solid body within the control volume or coinciding with the boundaries of the control volume (force exerted by boundary area to the fluid)
$F_{2}=$ force exerted in the given direction on the fluid in the control volume by body forces such as gravity (force exerted by the weight of the fluid)
$F_{3}=$ force exerted in the given direction on the fluid in the control volume by the fluid outside the control volume

- The force R exerted by the fluid on the solid body inside or coinciding with the control volume in the given direction will be equal and opposite to F_{1} (Newton $3^{\text {rd }}$ law) so that:

$$
R=-F_{1}
$$

Moment Equation (Momentum and Fluid

 Flow)- Important equation in solving momentum problem:

Momentum equation

Continuity equation

$$
F=\dot{m}\left(v_{2}-v_{1}\right)
$$

$$
\begin{array}{cc}
Q_{1}=Q_{2} & \dot{m}_{1}=\dot{m}_{2} \\
Q_{1}=Q_{2}+Q_{3} & \dot{m_{1}}=\dot{m}_{2}+\dot{m}_{3}
\end{array}
$$

Bernoulli's equation

$$
\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

Force Exerted by a Jet

- Consider the situation below:

Case 1:

Force Exerted by a Jet (Problem 3.10)

A jet of water from 1 inch diameter nozzle strikes with a velocity of $30 \mathrm{ft} / \mathrm{sec}$ on a stationary flat plate as shown in figure below. Calculate the force exerted by the water on the plate

Force Exerted by a Jet (Problem 3.11)

A 1 inch diameter nozzle is connected to a horizontal pipe of 4 inches in diameter, as shown in figure below. The water is flowing through the pipe and jetting out at 200 gpm and strike a stationary plate. If the nozzle outlet is exposed to atmosphere, determine the forces exerted by the water on the plate and in the nozzle

Force Exerted by a Jet (Notes)

- If $p_{1}, \& p_{2}$ are given, just put it in the derived equation, an then solve it directly
- If either one of p is not given, use Bernoulli's equation together with continuity equation to solved the problem (z has to be given in this case, or the nozzle has to be in horizontal position)
- If $p_{1}, \& p_{2}$ are not given, use iteration technique \Rightarrow computing time will be too long

Momentum Equation for 2D-Flow

- Consider the situation below:

$$
F=F_{1}+F_{2}+F_{3}=\dot{m}\left(v_{2}-v_{1}\right) \quad \quad \begin{aligned}
& \text { General momentum } \\
& \text { equation for 1-D }
\end{aligned}
$$

$$
\begin{array}{ll}
\left(F_{1}+F_{2}+F_{3}\right)_{x}=\dot{m}\left(v_{2 x}-v_{1 x}\right) \\
\left(F_{1}+F_{2}+F_{3}\right)_{y}=\dot{m}\left(v_{2 y}-v_{1 y}\right)
\end{array} \quad \begin{aligned}
& \text { General Momentum } \\
& \text { equation for 2-D }
\end{aligned}
$$

$\underset{x \text { direction }}{F+\mathrm{ve}}$
$R_{x}=-\left(F_{1}\right)_{x}$
$F_{2 x}=0\binom{$ due to no fluid's weight }{ component in x direction }
$F_{3 x}=p_{1} A_{1} \cos \theta-p_{2} A_{2} \cos \alpha$
$v_{1 x}=v_{1} \cos \theta$
$v_{2 x}=v_{2} \cos \alpha$
Combine all the equation together, becomes:
$R_{x}=p_{1} A_{1} \cos \theta-p_{2} A_{2} \cos \alpha-\dot{m}\left(v_{2} \cos \alpha-v_{1} \cos \theta\right)$
y direction $\uparrow F+$ ve
$R_{y}=-\left(F_{1}\right)_{y}$
$F_{2 y}=-w$
$F_{3 y}=p_{1} A_{1} \sin \theta-p_{2} A_{2} \sin \alpha$
$v_{1 y}=v_{1} \sin \theta$
$v_{2 y}=v_{2} \sin \alpha$
Combine all the equation together, becomes:
$R_{y}=p_{1} A_{1} \sin \theta-p_{2} A_{2} \sin \alpha-w-\dot{m}\left(v_{2} \sin \alpha-v_{1} \sin \theta\right)$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}, \quad \beta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right) \quad
$$

Momentum Equation for 2D-Flow

- Summary

Momentum Equation for 2D-Flow

- Consider the situation below:

$$
\xrightarrow[p_{1} A_{1}]{v_{1}}
$$

$$
\begin{aligned}
& \left(F_{1}+F_{2}+F_{3}\right)_{x}=\dot{m}\left(v_{2 x}-v_{1 x}\right) \\
& R_{x x}=-\left(F_{1}\right)_{x} \\
& F_{2 x}=0\binom{\text { due to no fluid's weight }}{\text { component in } x \text { direction }} \\
& F_{3 x}=p_{1} A_{1}-p_{2} A_{2} \cos \theta \\
& v_{1 x}=v_{1} \\
& v_{2 x}=v_{2} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& y \text { direction } \uparrow F+\mathrm{ve} \\
& \left(F_{1}+F_{2}+F_{3}\right)_{y}=\dot{m}\left(v_{2 y}-v_{1 y}\right) \\
& R_{y}=-\left(F_{1}\right)_{y} \\
& F_{2 y}=-w \\
& F_{3 y}=p_{1} A_{1}+p_{2} A_{2} \sin \theta=p_{2} A_{2} \sin \theta \\
& \left(\text { due to no } p_{1} A_{1} \text { component in } y \text { direction }\right) \\
& v_{1 y}=0\binom{\text { due to no } v_{1} \text { component }}{\text { in } y \text { direction }} \\
& v_{2 y}=-v_{2} \sin \theta
\end{aligned}
$$

Combine all the equation together, becomes:
$R_{y}=p_{2} A_{2} \sin \theta-w+m v_{2} \sin \theta$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}, \quad \beta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)
$$

Combine all the equation together, becomes:

Momentum Equation for 2D-Flow

Notes:

- If $p_{1}, \& p_{2}$ are given, just put it in the derived equation, an then solve it directly
- If either one of p is not given, use Bernoulli's equation together with continuity equation to solved the problem (z has to be given in this case, or the nozzle has to be in horizontal position)
- If the bend is in horizontal position, ignore $w(x \& y)$, if it is in vertical position, take w into account
- If $p_{1}, \& p_{2}$ are not given, use iteration technique \rightarrow computing time will be too long

An oil of 0.9 specific gravity flows at $0.05 \mathrm{~m}^{3} / \mathrm{s}$ through an 90° elbow which is laid horizontally and connected to 100 mm pipe, as shown in figure below. If the pressure at 1 is 200 kPa gauge, determine the force exerted by the water to the elbow

Flow in Branching Pipe

- Consider the situation below:

$$
\begin{aligned}
& F=F_{1}+F_{2}+F_{3}=\stackrel{m}{m}\left(v_{\text {out }}-v_{\text {in }}\right. \\
& \left(F_{1}+F_{2}+F_{3}\right)_{x}=(\overbrace{\left(m_{3} v_{3}+m_{2} v_{2}\right)-\left(m_{1} v_{1}\right)}^{\text {out }} \overbrace{x}^{\text {in }}
\end{aligned}
$$

General momentum
$F=F_{1}+F_{2}+F_{3}=m\left(v_{\text {out }}-v_{\text {in }}\right) \square$ equation for 1-D

General Momentum equation for 2-D at x direction
 for 2-D at y direction

Flow in Branching Pipe

$$
\begin{aligned}
& x \text { direction } \\
& \qquad\left(F_{1}+F_{2}+F_{3}\right)_{x}=\left(\left(\dot{m}_{3} v_{3}+\dot{m}_{2} v_{2}\right)-\left(\dot{m}_{1} v_{1}\right)\right)_{x}
\end{aligned}
$$

$$
\begin{gathered}
y \text { direction } \mid F+\text { ve } \\
\left(F_{1}+F_{2}+F_{3}\right)_{y}=\left(\left(\dot{m}_{3} v_{3}+\dot{m}_{2} v_{2}\right)-\left(\dot{m}_{1} v_{1}\right)\right)_{y} \\
R_{y}=-\left(F_{1}\right)_{y} \\
F_{2 y}=-w \\
F_{3 y}=p_{1} A_{1}-p_{2} A_{2} \sin \theta+p_{3} A_{3} \sin \alpha \\
\text { (due to no } p_{1} A_{1} \text { component in } y \text { direction) } \\
v_{1 y}=0\binom{\text { due to no } v_{1} \text { component in }}{y \text { direction }} \\
v_{2 y}=v_{2} \sin \theta \\
v_{3 y}=-v_{3} \sin \alpha
\end{gathered}
$$

$$
R_{x}=-\left(F_{1}\right)_{x}
$$

$$
F_{2 x}=0\binom{\text { due to no fluid's weight component in }}{x \text { direction }}
$$

$$
F_{3 x}=p_{1} A_{1}-p_{2} A_{2} \cos \theta-p_{3} A_{3} \cos \alpha
$$

$$
v_{1 x}=v_{1}
$$

$$
v_{2 x}=v_{2} \cos \theta
$$

$$
v_{3 x}=v_{3} \cos \alpha
$$

Combine all the equation together, becomes:

$$
R_{x}=p_{1} A_{1}-p_{2} A_{2} \cos \theta-p_{3} A_{3} \cos \alpha
$$

$$
+m_{1} v_{1}-m_{2} v_{2} \cos \theta-m_{3} v_{3} \cos \alpha
$$

Flow in Branching Pipe

Summary \& Notes

$$
\begin{aligned}
& R_{x}= p_{1} A_{1}-p_{2} A_{2} \cos \theta-p_{3} A_{3} \cos \alpha \\
&+m_{1} v_{1}-\dot{m}_{2} v_{2} \cos \theta-\dot{m}_{3} v_{3} \cos \alpha \\
& R_{y}=-p_{2} A_{2} \sin \theta+p_{3} A_{3} \sin \alpha-w \\
&-\dot{m}_{2} v_{2} \sin \theta+\dot{m}_{3} v_{3} \sin \alpha \\
& R= \sqrt{R_{x}^{2}+R_{y}^{2}} \\
& \beta= \tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right) \quad R_{y} R \\
& R \beta \\
& R_{x}
\end{aligned}
$$

$>p_{1}, p_{2} \& p_{3}$, solved using Bernoulli's equation (branching pipe problem)
$>v_{1}, v_{2} \& v_{3}$, solved using continuity equation
$>$ Solution can be made directly, or by using simultaneous equation, or by using iteration method, depending on the known parameters available.

Example of Cases

$>v_{2}=v_{3}, p_{2}=p_{3}=p_{\text {atm }}$, pipe is in horizontal position, Q_{1} is given, v_{1} can be solved using continuity equation, p_{1} can be solved using Bernoulli's equation, $m_{1}=m_{2}+m_{3}$ \rightarrow the easiest one.
$>$ too many unknown parameter, needs iteration method to solved each one \rightarrow the hardest one: computing time too long.

Flow in Branching Pipe

- Food for thought:

$v_{1}, A_{1}, p_{1}, z_{1}$

Forces Exerted by a Jet: Angular Plate

- Consider the situation below:

In previous cases, force exerted by a jet strike on flat stationary plate.
$F=\dot{m}\left(v_{\text {out }}-v_{\text {in }}\right)=\dot{m} v_{\text {out }}-\dot{m} v_{\text {in }}=-\dot{m} v_{\text {in }}$
In cases, where force exerted by a jet strike on angular flat stationary plate.
$F=\dot{m}\left(v_{\text {out }}-v_{\text {in }}\right)=\dot{m}\left(v_{2}^{\prime}-v_{1}\right)=\dot{m} v_{2}^{\prime}-\dot{m} v_{1}$
$\xrightarrow[x \text { direction }]{F+\mathrm{ve}}$
$\therefore\left(F_{1}\right)_{x}=\left(\dot{m}_{2} v_{2}+\dot{m}_{3} v_{3}-\dot{m}_{1} v_{1}\right)_{x}$
$\left(F_{1}+F_{2}+F_{3}\right)_{x}=(\overbrace{\left(\dot{m}_{2} v_{2}+\dot{m}_{3} v_{3}\right)}^{\text {out }})-(\overbrace{\left(m_{1} v_{1}\right)}^{\text {in }})$
$\left(F_{1}+F_{2}+F_{3}\right)_{x}=\left(\dot{m}_{2} v_{2}+\dot{m}_{3} v_{3}-\dot{m}_{1} v_{1}\right)_{x}$
In the control volume,
$F_{2 x}=0$ (ignore because the w effect is too small)
$F_{3 x}^{2 x}=0($ atmospheric pressure $)$
$R_{x}=-\left(F_{1}\right)_{x}$

$$
\therefore R_{x}=-\left(\dot{m}_{2} v_{2}+\dot{m}_{3} v_{3}-\dot{m}_{1} v_{1}\right)_{x}
$$

By using similar technique, for y direction.

$$
y \text { direction } \uparrow F+\mathrm{ve}
$$

$$
\therefore R_{y}=-\left(\dot{m}_{2} v_{2}+\dot{m}_{3} v_{3}-\dot{m_{1}} v_{1}\right)_{y}
$$

$$
\begin{aligned}
& R=\sqrt{R_{x}^{2}+R_{y}^{2}} \\
& \beta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right) \quad R^{R} R_{x}
\end{aligned}
$$

Forces Exerted by a Jet: Angular Plate (Problem 3.13)

The fixed surface as shown in figure below, divides the jet so that $1.00 \mathrm{ft}^{3} / \mathrm{sec}$ goes in each direction. For an initial velocity of $48.0 \mathrm{ft} / \mathrm{sec}$, find the values of R_{x} and R_{y} components to keep in equilibrium (assuming no friction), also find the forces exerted by the water on the surface

Forces Exerted by a Jet: Angular Plate

General equation for Example 3.13 (or for similar cases)

```
\(\xrightarrow{F+\mathrm{ve}}\)
\(x\) direction
\[
R_{x}=-\left(\dot{m_{2}} v_{2}+\dot{m_{3}} v_{3}-\dot{m}_{1} v_{1}\right)_{x} \quad v_{1}=v_{2}=v_{3}=v
\]
\[
R_{x}=-\left(\dot{m}_{2} v \cos \phi+\dot{m}_{3} v \cos \alpha-\dot{m}_{1} v \cos \theta\right)_{x}
\]
\[
y \text { direction } \uparrow F+\mathrm{ve}
\]
\[
R_{y}=-\left(\dot{m_{2}} v_{2}+\dot{m_{3}} v_{3}-\dot{m_{1}} v_{1}\right)_{y} \quad v_{1}=v_{2}=v_{3}=v
\]
\[
R_{y}=-\left(\dot{m}_{2} v \sin \phi-\dot{m}_{3} v \sin \alpha-\dot{m}_{1} v \sin \theta\right)_{y}
\]
```

Forces Exerted by a Jet: Angular Plate

Food for thought

R_{x} ? ? ? ?
R_{y} ????

RITTM

Euler's Equation

- From consideration of the rate of change of momentum from point to point along a streamline and the forces acting due to the effect of the surrounding pressure and changes of elevation, \rightarrow possible to derive a relationship between p, v, ρ and z along a streamline

- If the relationship between p, v, ρ and z is known, the equation can be solved by integration \rightarrow it is very cumbersome

Euler's Equation (Problem 3.14)

A steady flow of water through a pipe which changes its diameter, is shown in figure below. The relationship between velocity and the distance of flow is given by $v=10(1+x) \mathrm{ft} / \mathrm{s}$, where x in ft
a. Determine the pressure slope, $d p / d x$, required to generate the flow
b. If the pressure at point 1 is 50 psi , determine the pressure at point 2 by integrating $d p / d x$ from a.

3 ft

Euler's Equation (Problem 3.15)

Repeat Example 3.a if the position of the pipe and direction of flow are vertical

Euler's Equation (Problem 3.16)

What is the pressure slope along streamline that is required to accelerate water upward in vertical pipe at the rate of $30 \mathrm{ft} / \mathrm{sec}^{2}$. What is the answer if the flow is downward?

THANK YOU

Stay safe!

