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Neutron conservation, Fission
chain reaction, the diffusion of
neutrons in media

Neutron flux distributions in cores
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The Role of Energy Transport in
Reactor Design

* The heat generation at any point in a reactor fuel is primarily a
function of the fission-reaction rate at that point.

* The neutrons are born whenever fuel is present in a core, and

they travel or diffuse in random fashion and are slowed down
at different rates.
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The Role of Energy Transport in
Reactor Design

 The procedure of determining the neutron flux distribution results in

expressions for the critical dimensions and corresponding critical fuel
mass of the core.

 These are the minimum dimensions and mass necessary for maintaining
a chain reaction.
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Neutron Conservation

«  U?%3° has to split into two (sometimes three and rarely four) nuclei.

* 40 % neutrons for bombarding other U%3> nuclei, in a critical reactor
capable of producing energy at a steady rate.

* 60 % fission neutrons are lost, either by escape to the outside of the fuel
or by absorption in various materials not causing fission
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* The understanding of neutron conservation is, assumed all born at the
same time, undergo scattering, leakage, absorption, and other

reactions, attain the same energy levels, and finally cause fission
simultaneously.

* The series of events that it undergoes from birth until a new generation
is born by fission is called a life cycle
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Neutron produced by a fission
reaction can undergo further
fission process. This process |

is called fission chain
K 235
reaction. </)/Qj
O S Neutron from thermal fission
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Neutron Life Cycle in a Nuclear
Reactor Core
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Neutron L|fe Cycle in a Nuclear
Reactor Core
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Fast Fission Factor, ¢

Total no. of fission neutrons

Ef p—
No. of neutrons from thermal fission

N(U) I
FT.(m)

£ = exp(—
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No. of neutrons leaving resonance energy range
P~ No. of neutrons entering resonance energy range
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Rate of absorption of thermal neutrons bt the fuel

f

 Rate of absorption of thermal neutrons by all reactor materials

_ %a(F) v(f)
22 () v() + 2 (M) v(M) + 2,(0) v(0)

f
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Regeneration factor is also known as thermal fission and reproduction factor

__ Total no.of fission neutrons (neutrons produced)  Xr (f)
M= No.of neutrons absorption - Xq ()
U U(UZBS) Zf(UZBS)

n= v(U235) 3 (U235) + v(U?38) 3, (U238)

v — Number of neutrons produce per neutron engaged in fission
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Ls = Fraction of fast neutron not leaking from reactor

L, = Fraction of thermal neutron not leaking from reactor
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Six-factor formula: Four-factor formula:
kerr = epfnlsLy koo = EpfN
Finite reactor core

kerr < 0 subcritical
keff = 0 critical The factors ¢, p and f depend on both fuel

. and core configuration and materials, are
keff >0 supercrltlcal called lattice constants.
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Reactivity determines the time
dependency of the neutron Kepr — 1

flux and power P kerr

p > 0 neutron flux increase

Only reactivity is zero, the p < 0 neutron flux decrease

reactor is critical and the
neutron flux constant
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Exercise 1

Calculate the thermal-fission factor for 2,200-m/ sec neutrons for (a) natural uranium,
(b) 2 percent, (c) 20 percent, and (d) fully enriched uranium (e) fully 238-U

where c,(U%%°) = 687 barn, 54(U?3°) = 587 barn, c,(U?38) =
2.3 parn.

U V(U235) Zf (U235)
V(U235) Za (U235) + V(U238) Za (U238)
'

o (U?) - w2 & (%)
C7j~([J235) 1/(‘[J'ZSS) CTJ»([J235)

n(U) =
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Calculate the infinite multiplication factor for homogeneous
mixture of Fe-55 and Pu-239 is to be the shape of a bare

sphere of this fast reactor.

material o o 1% 7 o
(barns)  (barns) (barns)
Fe-55 —- 0.006 — e 27

Pu-239 1.85 1k
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 The transport theory, sometimes called the Boltzmann transport theory because of
its similarity to Boltzmann's theory of diffusion of gases.

* Transport theory reduces to the neutron diffusion theory which holds for most of a
reactor core.

* Fick's law used into the neutron diffusion equation.

* Neutron diffusion equation expressions for the desired neutron flux distribution in
the core but also for the critical core dimensions
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In solids, a neutron conservation equation of the volume in the core is given by

on

7 = —(leakage rate) — (elimination rate) + (production rate)

where n is the neutron density, neutrons/cm?3
and t is time, sec. Mathematically.

on

0t =—-V-J- 2:ellm(]b + 5
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Reactor Equation

And in the steady state

V-] =2aimp+S5S=0

J = neutron current, neutrons/sec - cm?
21im = elimination macroscopic cross section

¢ = neutron flux

S = neutron source, neutrons/sec - cm>

The diffusion term V - | for example, is given in terms of a diffusion coefficient,
D, in the form given by Fick’s law of diffusion gases as

] =-DV.¢
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Reactor Equation

So that leakage rate becomes —V. (DV. ¢), and

2:elim S
+==0
P D

V2 —

Equation above is called the diffusion equation.
D is evaluated in terms of a slowing-down length (L,), or a thermal diffusion length (L),

For all energy groups, Eq above
Vép + B%¢p =0
This equation called the reactor equation

B? is called the material buckling, and sometimes written as B*m
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Reactor Equation

* Itis a number that depends on the properties of the material of a
particular reactor core.

* It has the dimensions (length)?-2

* The name buckling came the similarity of equation to the-well known
equation of a loaded column encountered in strength of materials
studies.
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Neutron—flux Dlstrlbutlon in Reactor
Cores

* Reactor equation expresses the flux distribution as a function of the space
coordinates as independent variables.

* Itis easily solved for various geometries, for homogeneous bare ( unreflected )
reactor cores.

* The extended dimensions of a core are called the extrapolated dimensions.

* For example, the actual radius and height of cylindrical core R and H, plus the
extrapolation lengths are called the extrapolated radius R, and the extrapolated
height H,,.

R, =R+, H, =H+ 1,
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‘ | Neutron—flux Dlstrlbutlon in Reactor
Cores
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Exercise 3

A thermal heterogenous reactor has a cylindrical bare core whose height
equals its diameter. It uses 1.3 percent enriched uranium metals as fuel
and light water as moderator. The fuel and lattice constants are follows:

Fast fission factor, e = 1.0558
Resonance escape probability, P = 0.830
Thermal utilization factor, f = 0.870
Regeneration factor, n = 1.40

Transport mean free path, A = 0.45 cm
¥, =0.0197 cm™!

Dy,0 =0.16 cm™!

Calculate the minimum critical dimension of the core.
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Exercise 4

A large research reactor consists of a cubical array of natural uranium
rods in a graphite moderator. The research reactor is 25 ft on a side and
operates at a power of 20 MW. The average value of ¢ is 2. 5X

103 cm™L.

a) Calculate the buckling.

b) What is the maximum value of the thermal flux?

c) What is the average value of the thermal flux?
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Thank You

Stay safe!
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