

Neutron Flux Distribution in Cores

MUHAMMAD SYAHIR SARKAWI, PhD

Nuclear Engineering Program Energy Engineering Department N01-273 | 0133274154 syahirsarkawi@utm.my

Objectives of topic

NOLOGI MAL

The Role of Energy Transport in Reactor Design

- The heat generation at any point in a reactor fuel is primarily a function of the fission-reaction rate at that point.
- The neutrons are born whenever fuel is present in a core, and they travel or diffuse in random fashion and are slowed down at different rates.

The Role of Energy Transport in Reactor Design

- The procedure of determining the neutron flux distribution results in expressions for the critical dimensions and corresponding critical fuel mass of the core.
- These are the minimum dimensions and mass necessary for maintaining a chain reaction.

Neutron Conservation

- U²³⁵ has to split into two (sometimes three and rarely four) nuclei.
- 40 % neutrons for bombarding other U²³⁵ nuclei, in a critical reactor capable of producing energy at a steady rate.
- 60 % fission neutrons are lost, either by escape to the outside of the fuel or by absorption in various materials not causing fission

Neutron Conservation

- The understanding of neutron conservation is, assumed all born at the same time, undergo scattering, leakage, absorption, and other reactions, attain the same energy levels, and finally cause fission simultaneously.
- The series of events that it undergoes from birth until a new generation is born by fission is called a life cycle

Nuclear Fission

Fission Chain Reaction

ERSIT

ET NOLOGI MALAIS

8

Neutron Life Cycle in a Nuclear Reactor Core

RSI

FITNOLOGI MALATS

Neutron Life Cycle in a Nuclear Reactor Core

ERSITI

TET NOLOGI MALAS

SETN2223

Fast Fission Factor, ε

$\varepsilon = \frac{\text{Total no. of fission neutrons}}{\text{No. of neutrons from thermal fission}}$

$$\varepsilon = \exp(-\frac{N(U) I}{\xi \Sigma_s(m)})$$

Resonance Escape Probability, p

No. of neutrons leaving resonance energy range p =

No. of neutrons entering resonance energy range

Thermal Utilization Factor, f

$f = \frac{\text{Rate of absorption of thermal neutrons bt the fuel}}{\text{Rate of absorption of thermal neutrons by all reactor materials}}$

$$f = \frac{\Sigma_a(f) v(f)}{\Sigma_a(f) v(f) + \Sigma_a(M) v(M) + \Sigma_a(0) v(0)}$$

Regeneration Factor, η

Regeneration factor is also known as **thermal fission** and **reproduction factor**

$$\eta = \frac{\text{Total no.of fission neutrons (neutrons produced)}}{\text{No.of neutrons absorption}} = v \frac{\Sigma_f(f)}{\Sigma_a(f)}$$

$$\eta = \frac{v \, v(U^{235}) \, \Sigma_f(U^{235})}{v(U^{235}) \, \Sigma_a(U^{235}) + v(U^{238}) \, \Sigma_a(U^{238})}$$

v – Number of neutrons produce per neutron engaged in fission

Non-Leakage Probability

L_f = Fraction of **fast neutron** not leaking from reactor

L_t = Fraction of **thermal neutron** not leaking from reactor

Multiplication Factor

Six-factor formula:

 $k_{eff} = \varepsilon p f \eta L_f L_t$

Finite reactor core

 $\begin{array}{l} k_{eff} < 0 \; subcritical \\ k_{eff} = 0 \; critical \\ k_{eff} > 0 \; supercritical \end{array}$

Four-factor formula:

 $k_{\infty} = \varepsilon p f \eta$

Infinite reactor core

The factors ε , p and f depend on both fuel and core configuration and materials, are called lattice constants.

Multiplication Factor

Reactivity determines the time dependency of the neutron flux and power

Only reactivity is zero, the reactor is critical and the neutron flux constant

 $\rho = \frac{k_{eff} - 1}{k_{eff}}$

 $\rho > 0$ neutron flux increase $\rho < 0$ neutron flux decrease

1

Calculate the thermal-fission factor for 2,200-m/ sec neutrons for (a) natural uranium, (b) 2 percent, (c) 20 percent, and (d) fully enriched uranium (e) fully 238-U

$$\gamma(\mathbf{U}) = \frac{\nu \ \nu(\mathbf{U}^{235}) \sum_{f} (\mathbf{U}^{235})}{\nu(\mathbf{U}^{235}) \sum_{a} (\mathbf{U}^{235}) + \nu(\mathbf{U}^{238}) \sum_{a} (\mathbf{U}^{238})}$$

$$= \frac{\upsilon}{\frac{\sigma_a(U^{235})}{\sigma_f(U^{235})} + \frac{\nu(U^{238})}{\nu(U^{235})} \frac{\sigma_a(U^{238})}{\sigma_f(U^{235})}}$$

SETN2223

Calculate the infinite multiplication factor for homogeneous mixture of Fe-55 and Pu-239 is to be the shape of a bare sphere of this fast reactor.

material	σ_{i}	σ_{a}	V	η	σ_{tr}	
	(barns)	(barns)	2		(barns)	
Fe-55		0.006	_		2.7	
Pu-239	1.85	2.11	3.0	2.6	6.8	

The Diffusion of Neutrons in Media

- The transport theory, sometimes called the Boltzmann transport theory because of its similarity to Boltzmann's theory of diffusion of gases.
- Transport theory reduces to the neutron diffusion theory which holds for most of a reactor core.
- Fick's law used into the neutron diffusion equation.
- Neutron diffusion equation expressions for the desired neutron flux distribution in the core but also for the *critical* core dimensions

Reactor Equation

In solids, a *neutron conservation equation* of the volume in the core is given by

$$\frac{\partial n}{\partial t} = -(\text{leakage rate}) - (\text{elimination rate}) + (\text{production rate})$$

where n is the neutron density, neutrons/cm³ and t is time, sec. Mathematically.

$$\frac{\partial n}{\partial t} = -\nabla \cdot J - \Sigma_{elim} \phi + S$$

DUTING SCH

Reactor Equation

And in the steady state

 $-\nabla \cdot J - \Sigma_{elim}\phi + S = 0$

 $J = \text{neutron current, neutrons/sec} \cdot \text{cm}^2$ $\Sigma_{elim} = \text{elimination macroscopic cross section}$ $\phi = \text{neutron flux}$

 $S = neutron source, neutrons/sec \cdot cm^3$

The diffusion term $\nabla \cdot J$ for example, is given in terms of a *diffusion coefficient*, D, in the form given by *Fick's law* of diffusion gases as

$$J = -D\nabla . \phi$$

Reactor Equation

So that leakage rate becomes $-\nabla (D\nabla \phi)$, and

$$\nabla^2 \phi - \frac{\Sigma_{elim}}{D} \phi + \frac{S}{D} = 0$$

Equation above is called the diffusion equation.

D is evaluated in terms of a slowing-down length (L,), or a thermal diffusion length (L),

For all energy groups, Eq above

$$\nabla^2 \varphi + B^2 \varphi = 0$$

This equation called the reactor equation

 B^2 is called the material buckling, and sometimes written as B^2 m.

Reactor Equation

- It is a number that depends on the properties of the material of a particular reactor core.
- It has the dimensions (length)^-2
- The name buckling came the similarity of equation to the-well known equation of a loaded column encountered in strength of materials studies.

Neutron-flux Distribution in Reactor Cores

- Reactor equation expresses the flux distribution as a function of the space coordinates as independent variables.
- It is easily solved for various geometries, for homogeneous bare (unreflected) reactor cores.
- The extended dimensions of a core are called the extrapolated dimensions.
- For example, the actual radius and height of cylindrical core R and H, plus the extrapolation lengths are called the extrapolated radius R_e and the extrapolated height H_e,.

$$R_e = R + \lambda_e \qquad \qquad H_e = H + \lambda_e$$

Neutron-flux Distribution in Reactor Cores

Buckling, Minimum Critical Volume, and Flux Distribution in some core shapes

SET NZZZ

Neutron-flux Distribution in Reactor Cores

Geometry	Dimensions	Buckling (B ²)	Flux	A	$\phi_{ m max}$ / $\phi_{ m av}$
Infinite slab	Thickness a	$\left(\frac{\pi}{a}\right)^2$	$A \cdot \cos\left(\frac{\pi x}{a}\right)$	$\frac{1.57 \cdot P}{a \cdot E_R \cdot \Sigma_f}$	1.57
Rectangular parallelepiped	$a \cdot b \cdot c$	$\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi}{c}\right)^2$	$A \cdot \cos\left(\frac{\pi x}{a}\right) \cdot \cos\left(\frac{\pi y}{b}\right) \cdot \cos\left(\frac{\pi z}{c}\right)$	$\frac{3.87 \cdot P}{V \cdot E_R \cdot \Sigma_f}$	3.88
Infinite cylinder	Radius R	$\left(\frac{2.405}{R}\right)^2$	$A \cdot J_0 \cdot \left(\frac{2.405r}{R}\right)$	$\frac{0.738 \cdot P}{R^2 \cdot E_R \cdot \Sigma_f}$	2.32
Finite cylinder	Radius R Height H	$\left(\frac{2.405}{R}\right)^2 + \left(\frac{\pi}{H}\right)^2$	$A \cdot J_0 \cdot \left(\frac{2.405r}{R}\right) \cdot \cos\left(\frac{\pi z}{H}\right)$	$\frac{3.63 \cdot P}{V \cdot E_R \cdot \Sigma_f}$	3.64
Sphere	Radius R	$\left(\frac{\pi}{R}\right)^2$	$A \cdot \frac{1}{r} \cdot \sin\left(\frac{\pi r}{R}\right)$	$\frac{P}{4\cdot R^2\cdot E_R\cdot \Sigma_f}$	3.29

Buckling, Minimum Critical Volume, and Flux Distribution in some core shapes

ERSIT

FANOLOGI MALATS

Exercise 3

A thermal heterogenous reactor has a cylindrical bare core whose height equals its diameter. It uses 1.3 percent enriched uranium metals as fuel and light water as moderator. The fuel and lattice constants are follows:

> Fast fission factor, $\varepsilon = 1.0558$ Resonance escape probability, P = 0.830Thermal utilization factor, f = 0.870Regeneration factor, $\eta = 1.40$ Transport mean free path, $\lambda = 0.45 \ cm$ $\Sigma_a = 0.0197 \ cm^{-1}$ $D_{H_20} = 0.16 \ cm^{-1}$

Calculate the minimum critical dimension of the core.

A large research reactor consists of a cubical array of natural uranium rods in a graphite moderator. The research reactor is 25 ft on a side and operates at a power of 20 MW. The average value of Σ_f is 2.5× 10^{-3} cm⁻¹.

- a) Calculate the buckling.
- b) What is the maximum value of the thermal flux?
- c) What is the average value of the thermal flux?

Thank You

Stay safe!