

Heat Conduction in Reactor Elements (Part 1)

MUHAMMAD SYAHIR SARKAWI, PhD

Nuclear Engineering Program Energy Engineering Department N01-273 | 0133274154 syahirsarkawi@utm.my

General Assumptions

The problems of temperature distribution in and heat removal from these elements are important in evaluating reactor-core thermal performance. We will discuss the following

- General heat-conduction mechanism.
- The equations will be derived for the temperature distribution in fuel elements of simple geometries, their cladding and coolant.
- Only one-dimensional steady-state heat flow with uniform heat generation is considered.

General Assumptions

In treating the problems of heat removal from an individual fuel element,

- The thermal conductivities of the fuel k_f and the cladding k_c are constant.
- The physical properties of the coolant (density, viscosity, specific heat) are constant and independent of temperature.
- The heat-transfer coefficient, *h* between solid and coolant will therefore be considered constant also.
- The errors involved in these assumptions depend of course on the severity of the temperature gradients and the dependence of the above properties on temperature.
- The resistance to heat transfer in the contact areas between solid materials, such as between fuel and cladding, will either be neglected or taken into account via a conductance term.

Thermal Conductivity, k_f of Some Fuel Materials (Btu/hr \cdot ft \cdot °F)

Temperature, °F	Uranium	UO ₂	UC	PuO2	Thorium	ThO,
200	15.80	4.5	14.77	3.60	21.75	7.29
300	16.40		14.07		22.18	6.25
400	17.00	3.5	13.48		22.60	5 34
500	17.50		13.02		23.00	4 61
600	18.10	2.8	12.67		23.45	4.01
700	18.62		12.39		23.90	3 59
800	19.20	2.5	12.19		24 30	3 21
900	19.70		12.02		24.65	2.01
1000	20.25	2.2	11.91		25.75	2.91
1100	20.75				25.60	2.00
1200	21.20	2.0	11.82		26.13	2.47
1300	21.60				20.15	2.50
1400	22.00	1.6	11.76	1.57		2.17
1600		1.5	11.70	1.57		1.00
1800		1.4	11.67			1.90
2000		1.3	11.57			1.00
2200		1.2				1.70
2400		1.1			•••••	1.09
2600		1.1	••••			1.00
2800		1.1			•••••	••••
3000		11			••••	••••
3200		11		• • • • •		••••

ERSIT

FITNOLOGI MALAISI

Properties of Some Cladding Materials

				The second se				
Material	Atomic Number	ρ, Density Ib _m /ft ³	N, no. of Nuclei/cm ³	Microscopic Absorption Cross Section σ_a , Barns (thermal)	Macroscopic Absorption Cross Section Σ_a , cm ⁻¹ (thermal)	k _c , Thermal Conductivity, Btu/ft hr ⁰F	Specific Heat, c, Btu/lb, ^b F	Melting Point, °F
Beryllium	4	115 (77ºF)	0.12 × 10 ²⁴	0.010	0.00123	128 (77°F) 82.2 (200°F)	0.506 (261°F)	2330
Magnesium	12	109	0.0431 × 10 ²⁴	0.059	0.00254	97 (200°F) 94 (390°F) 91 (570°F)		1205
Aluminum	13	169 (68°F)	0.0603 × 10 ²⁴	0.215	0.0130	132 (68°F) 131 (390°F) 131 (750°F)	0.230 (212°F) 0.245 (572°F)	1040
Zirconium	40	406 (75°F)	0.0423 × 10 ²⁴	0.18 ± 0.02	0.00765	12.1 (120°F) 11.8 (200°F) 11.5 (300°F) 11.0 (500°F) 10.6 (750°F)	0.0739 (260°F) 0.0815 (800°F)	3370
Zircaloy 2 (1.2–1.7% Sn. 0.07– 0.2% Fe, 0.05–0.15% Chr, 0.03–0.06% Ni), also Zircaloy 4		409		*******		Less than 10		3310
Types 304 and 304L stainless steel, 18-20 % Cr, 8-12 % Ni, 2 % max. Mn, 0.08 % max. C, 1 % max. Si, 0.03 % max. C (L)		501		******	*****	9.4 (200°F) 12.4 (930°F)	0.12 (32–212°F)	2550–2650
Type 347 stainless steel, 17–19% Cr, 9–12% Ni, 0.8% Cb, 2% max. Mn, 1% max. Si, 0.08% max. C						9.3 (200°F) 12.8 (930°F)	0.12 (32–212°F)	2550-2600

Differential Equations of Temperature in Heat Conduction

Equation name	Conduction Mode	Equation
General conduction	Transient with heat generation	$\nabla^2 T + \frac{q^{'''}}{k} = \frac{1}{\alpha} (\frac{dT}{dt})$
Poisson	Steady state with heat generation	$\nabla^2 T + \frac{q''}{k} = 0$
Fourier	Transient with no heat generation	$\nabla^2 T = \frac{1}{\alpha} \left(\frac{dT}{dt}\right)$
Laplace	Steady state with no heat generation	$\nabla^2 T = 0$
Helmholtz	Steady state with linear function of temperature term	$\nabla^2 T + B^2 T = 0$

Heat Flow Out of Solid-Plate-Type Fuel Elements

- A thin bare (unclad) plate-type fuel element of thermal conductivity k_f and constant crosssectional area.
- The dimensions of the element are large in the y and z directions compared with that in the x-direction, so that heat flow can be considered one-dimensional
- \$\overline{\phi}\$ and \$\overline{q}'''\$ are constant over the element cross section
- So, heat is conducted equally in the +x and -x directions

Heat Flow Out of Solid-Plate-Type Fuel Elements

• The heat-conduction equation for this case is the one-dimensional Poisson equation

$$\nabla^2 T + \frac{q^{\prime\prime\prime\prime}}{k_f} = 0 \tag{1}$$

• The same equation can be obtained by a heat balance. It is instructive to do this.

(*Heat crossing plane* $x + \Delta x$) = *Heat crossing plane* x + (*Heat generated in layer*)

Thus

$$q_{x+\Delta x} = q_x + q^{\prime\prime\prime} A \Delta x$$
 (2)

Heat Flow Out of Solid-Plate-Type Fuel Elements

But $q_x = -Ak_f \frac{dT}{dx}$

And

$$q_x + \Delta x = q_x + \frac{d}{dx} q_x \Delta x \tag{4}$$

$$q_x + \Delta x = \left(-Ak_f \frac{dT}{dx}\right) + \left(-Ak_f \frac{d^2T}{dx^2} \Delta x\right)$$
(5)

where *A* is the area of the layer in the yz plane, perpendicular to the direction of heat flow Equation (2) can now be written

$$q_{x+\Delta x} - q_x = q^{\prime\prime\prime} A \Delta x \tag{6}$$

Heat Flow Out of Solid-Plate-Type Fuel Elements

$$q^{\prime\prime\prime}A\Delta x = -Ak_f \frac{d^2T}{dx^2} \Delta x$$

Divide the equation $\mathbf{A} \Delta x$ and rearrange it

$$q^{\prime\prime\prime} = -k_f \frac{d^2 T}{dx^2}$$

And

$$\frac{d^2T}{dx^2} = -\frac{q^{\prime\prime\prime}}{k_f} \tag{7}$$

2

Equation (7) double integrated

$$\frac{dT}{dx} = -\frac{q^{\prime\prime\prime}}{k_f}x + c_1$$

Heat Flow Out of Solid-Plate-Type Fuel Elements

$$T = -\frac{q'''}{2k_f}x^2 + c_1 + c_2 \tag{8}$$

Where c_1 and c_2 are the constants of integration

The boundary conditions are:

- Because of symmetry a round the mid-plane and there is equal and opposite and consequently no net heat flow at the midplane, T_m,
- The temperature at the midpoint, is the maximum temperature in the section.

Heat Flow Out of Solid-Plate-Type Fuel Elements

$$\frac{dT}{dx} = 0 \qquad \text{at } x = 0$$

 $T = T_m$ at x = 0

Thus $c_1 = 0$ and $c_2 = T_m$ Substituting the values for c_1 and c_2 into equation (8)

$$\frac{dT(x)}{dx} = -\frac{q^{\prime\prime\prime}}{k_f}x$$
(9)

$$T(x) = -\frac{q'''}{2k_f}x^2 + T_m$$
 (10)

The *temperature at the surface*, Ts, can be obtained by putting *x* = *s*, where s is equal to half the element thickness in the *x* direction. Thus

$$T_s = -\frac{q'''}{2k_f}s^2 + T_m$$
 (11)

Heat Flow Out of Solid-Plate-Type Fuel Elements

 q_x , the heat conducted past any plane x, is equal to the total heat generated between x = 0 and x. Thus

$$q_x = q^{\prime\prime\prime} A_x \tag{12}$$

 q_s , the heat conducted out of one surface (x = s), equal to the heat generated from onehalf of the element, is given by

$$q_s = q^{\prime\prime\prime} A_s \qquad \qquad q^{\prime\prime\prime} = \frac{q_s}{A_s} \qquad (13)$$

By combining equation (11) and (13) and rearranging to give

$$T_s = -\frac{q_s}{2k_f A_s}s^2 + T_m$$

Heat Flow Out of Solid-Plate-Type Fuel Elements

$$q_s = 2k_f A \frac{(T_m - T_s)}{s}$$
 $q_s = \frac{(T_m - T_s)}{s/2k_f A}$ (14)

This expression may be viewed as the heat transfer analogue of Ohm's law in electricity-namely,.

$$I=\frac{V}{R}$$

In the present case,

q corresponds to **I**

 $T_m - T_s$ is analogous to the potential difference, and $s/2k_f A$ is called the thermal resistance

Thank You

Stay safe!