

1D STEADY STATE CONDUCTION

innovative • entrepreneurial • global

www.utm.my

Plane Wall

Heat transfer through a
(a) Temperature distribution.

$-\underbrace{\underbrace{}_{KA}}_{\frac{L}{kA}} \underbrace{\underbrace{}_{h_{2}A}}^{T_{s,2}} \underbrace{}_{\frac{1}{h_{2}A}} (b) \text{ Equivalent thermal circuit.}$

(b)

Temperature Distribution

□ The temperature distribution in the wall can be determined by solving the heat equation with the proper boundary conditions.

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right)=0 \qquad k \frac{d}{dx}\left(\frac{dT}{dx}\right) = 0$$

□ For one-dimensional, steady-state conduction in a plane wall with no heat generation, the heat flux is a constant, independent of x.

If the thermal conductivity of the wall material is assumed to be constant, the equation may be integrated twice to obtain the general solution:

$$\frac{d}{dx}\left(\frac{dT}{dx}\right) = 0 \qquad \frac{dT}{dx} = C_1$$

$$T(x) = C_1 x + C_2$$

Substituting into the general solution, the temperature distribution is then:

$$T(x) = (T_{s,2} - T_{s,1}) \frac{x}{L} + T_{s,1}$$

Thermal Resistance

- Just as an electrical resistance is associated with the conduction of electricity, a thermal resistance may be associated with the conduction of heat.
- Defining resistance as the ratio of a driving potential to the corresponding transfer rate, the thermal resistance for conduction in a plane wall is:

$$R_{t,\text{cond}} \equiv \frac{T_{s,1} - T_{s,2}}{q_x} = \frac{L}{kA}$$

The thermal resistance for convection is then:

$$R_{t,\text{conv}} \equiv \frac{T_s - T_\infty}{q} = \frac{1}{hA}$$

Thermal Resistance

For one-dimensional, steady-state conduction in a plane wall with no heat generation, the heat flux is a constant, independent of x.

$$q_x = \frac{T_{\infty,1} - T_{s,1}}{1/h_1 A} = \frac{T_{s,1} - T_{s,2}}{L/kA} = \frac{T_{s,2} - T_{\infty,2}}{1/h_2 A} \qquad \qquad q_x = \frac{T_{\infty,1} - T_{\infty,2}}{R_{\text{tot}}}$$

$$R_{\text{tot}} = \frac{1}{h_1 A} + \frac{L}{kA} + \frac{1}{h_2 A}$$

Composite Wall

Equivalent thermal circuits may also be used for more complex systems, such as composite walls.

- Such walls may involve any number of series and parallel thermal resistances due to layers of different materials.
- The one-dimensional heat transfer rate for this system may be expressed as:

$$q_x = \frac{T_{\infty,1} - T_{\infty,4}}{\Sigma R_t}$$

• Where $T_{\infty,1} - T_{\infty,4}$ (free stream) is the overall temperature difference, and the summation includes all thermal resistances.

Composite Wall

UNIVERSITI TEKNOLOGI MALAYSIA

Composite Wall

FIGURE 3.3 Equivalent thermal circuits for a series–parallel composite wall.

TABLE 3.3 One-dimensional, steady-state solutions to the heatequation with no generation

	Plane Wall	Cylindrical Wall ^a	Spherical Wall ^a
Heat equation	$\frac{d^2T}{dx^2} = 0$	$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$	$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$
Heat flux (q'')	$k \frac{\Delta T}{L}$	$\frac{k\Delta T}{r\ln\left(r_2/r_1\right)}$	$\frac{k\Delta T}{r^2[(1/r_1) - (1/r_2)]}$
Heat rate (q)	$kA\frac{\Delta T}{L}$	$\frac{2\pi Lk\Delta T}{\ln\left(r_2/r_1\right)}$	$\frac{4\pi k\Delta T}{(1/r_1) - (1/r_2)}$
Thermal resistance $(R_{t, \text{cond}})$	$\frac{L}{kA}$	$\frac{\ln\left(r_2/r_1\right)}{2\pi Lk}$	$\frac{(1/r_1) - (1/r_2)}{4 \pi k}$

^{*a*}The critical radius of insulation is $r_{cr} = k/h$ for the cylinder and $r_{cr} = 2k/h$ for the sphere.

Thermal Resistance

• For some cases, it is convenient to express the net radiation heat exchange in the form:

$$q_{\rm rad} = h_r A(T_s - T_{\rm sur})$$

• Where *h_r*, is the *radiation heat transfer coefficient*:

$$h_r \equiv \varepsilon \sigma (T_s + T_{sur}) (T_s^2 + T_{sur}^2)$$

Therefore, thermal resistance for radiation may be defined by:

$$R_{t,\text{rad}} = \frac{T_s - T_{\text{sur}}}{q_{\text{rad}}} = \frac{1}{h_r A}$$