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* The term extended surface is commonly used to depict an important special case
involving heat transfer by conduction within a solid and heat transfer by
convection (and/or radiation) from the boundaries of the solid.
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Combined conduction and convection in a structural element.
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Use of fins to enhance heat transfer from a plane wall.
(a) Bare surface. (b) Finned surface.
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(a) Straight fin of
uniform cross section
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General Conduction Analysis
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(b) Straight fin of (c) Annular fin (d) Pin fin.

nonuniform cross section
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General Conduction Analysis

qx = qurdx + dc]conv

dT
— kA, 4L
“dx

dq,
CIerdx - qx + d_ dx
X

X

HEAT DIFFUSION EQUATION
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FicURE 3.16 Energy balance for an
extended surface.

P is the fin perimeter
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(b) Pin fin

(a) Rectangular fin

Straight fins of uniform cross section.
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Fins of Uniform Cross-Sectional Area

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Tip Condition Temperature Fin Heat
Case (x=1L) Distribution 6/0, Transfer Rate g;
A ggr?:fee?ion heat cosh m(L — x) + (h/mk) sinh m(L — x) | sinhmL + (mk) cosh mL
hG(L) : —kd@/dx‘FL cosh mL + (h/mk) sinh mL coshmL + (h/mk) sinh mL
(3.75) (3.77)
B Adiabatic: cosh m(L — x)
M tanh mL
doldx—, = 0 cosh mL "
(3.80) (3.81)
C Prescribed temperature:
O(L) =0, (6,/6,) sinh mx + sinh m(L — x) (coshmL — 6,/6,)
: M :
sinh mL sinh mL
(3.82) (3.83)
D Infinite fin (L — ):
O(L) =0 P (3.84) M (3.85)
0=T-T, m’> = hPIkA,

Bb - 9(0) - Tb - Tm M \Y, thALBb
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Ficure 3.19  Efficiency of straight fins (rectangular, triangular, and parabolic profiles).
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Fins Performance
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FIGURE 3.20 Efficiency of annular fins of rectangular profile.
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Fins of Nonuniform Cross-Sectional Area

TABLE 3.5 Efficiency of common fin shapes

Straight Fins

Rectangular”
Ay =2wL, _tanhmlL, (3.94)
L.=L+ (12) WL, '
A, =1L
Triangular® I mi)
_ 2 4 2112 _ 1 hLitem _
:f ) ?{;‘;[)LL ®2)] T L 1y2mL) (3.98)
P
Parabolic”
A, =w[C,L +
; | = 2 (3.99)

(L*/HIn (t/L + C))]
C, = [1+ /L)
A, = (t13)L

[4(mL)* + 11" + 1
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TABLE 3.5 Continued

Circular Fin

e | _ o Kok — LK o) o
! A | : W SR mr K (mry) + Komrplmr,)

Py = Fy + (1/2) . I Crim)
V=ma@s—rdt | 2=72‘ :

' (ry. —ri

| —<7L e

l T
Pin Fins
Rectangular®
Ag = mDL, b tanh mL,
L.=L + (D/4) Ny = L (3.100)
V = (wD*/4)L I

L
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Fins of Nonuniform Cross-Sectional Area

Triangular®
_mD > 29172 _ lfz(sz)
A > [L~ + (D/2)7] W= 1,2mL) (3.101)
V = (m/12)D’L f
y L
Parabolic’
3

A= EE{CC - 5

Ty (3.102)

%m [(2DC,/L) + Ci]} T [49mLy + 117+ 1

C; =1+ 2(D/L)
C,=[1+ (D/LY]"?
V = (m20)D* L

“m = (2hike)".
*m = (4WkD)"".
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FIGURE 3.21 Representative fin arrays. (a) Rectangular fins.
(b) Annular fins.
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Fuel element temperatures may exceed safe limits.

This in the case of gases or organic liquids.

One method of alleviating this problem is the use of finned cladding.

Fins are recommended whenever there exists a large difference in heat-
transfer coefficient between the two sides of a heat-transfer surface and are

placed on the side of the low coefficient.

The fins are usually made of the same material and are an integral part of the
cladding.

SETN2223 15



Faculty of Engineering

g3 SCHOOL OF CHEMICAL & ENERGY ENGINEERING

1) Longitudinal or axial,

2) Circumferential or transverse

(3) Helical, of different pitch and height

(4) Pin and strip type, in line or staggered
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* Fins on nuclear fuel elements while transferring fission heat to the coolant,
generate some heat of their own because of the absorption of nuclear

radiation

* They can consequently be assumed, with little error, to have uniform
Btu

" hr ft3°

volumetric thermal source strengths q'"’

* The choice of fin material for a fuel element is a complex function of many

variables.
 Alow neutron absorption cross sections are a primary requisite.

 Good thermal conductivity k,
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Some Properties of Some Fin Materials

Relaxation length, * cm
. ' DO ) k,
Material Fast | (ﬂferm al) Btu/hr ft °F
y rays
neutrons
BervIlIii, ..o pne ~9 18 0.00123 638 (600°F)
Aluminum ........ ~10 13 0.01300 131 (600°F)
Magnesium ........ 0.00254 91 (572°F)
BITI. coninis & & Sebiiess ~6 3.1 0.1900 27 (600°F)
Zirconium ......... : 0.00765 11 (480°F)
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2-Dimensional Steady
State Conduction
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FIGURE 4.1 Two-dimensional conduction.
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Adiabats and Isotherms Lines

HEAT FLUX PLOT

Isotherms — constant temperature lines
Adiabats — heat flow lines

Basic Rules:

Identify lines of both geometric and thermal symmetrics.
Adiabats and isotherms are normal in the interiors of the body.
Isotherms intersects the adiabats at right angle (90°).

Adiabats intersects the isotherms at right angle (90°).

Adiabats bisects isothermal corners.

Isotherms-Adiabats intersections form curvilinear squares.

ok wnN R
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FIGURE 4.3  Isotherms and heat flow lines for
two-dimensional conduction in a rectangular plate.
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TABLE 4.1 Conduction shape factors and dimensionless conduction heat rates for
selected systems.

(a) Shape factors [q = SK(T, — T,)]

System Schematic Restrictions Shape Factor
Case 1 [
Isothermal sphere buried in a semi- “ . 27D
infinite medium ﬁ-‘— 2> D2 1 —D/4z
T ™D
Case 2 3 B
. . . 2mL
Horizontal isothermal cylinder of length L | L>D —
buried in a semi-infinite medium I ; cosh " (2z/D)
L e L>D 2L
/D 2> 3D In (42/D)
Case 3 15
Vertical cylinder in a semi-infinite l i f
medium — 1L 2L
> [
T | ! L=Db In (4L/D)
Ak
1

q = SkATl—z Rt,cond(ZD) = §
23
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FiGURE 4.4 Two-dimensional conduction. (a) Nodal network.
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TABLE 4.2  Summary of nodal finite-difference equations

Configuration Finite-Difference Equation for Ax = Ay
m,n+1
T +
ﬁ:l-‘ - -y
I I
j,_. L mm |
m-1,n I' ]I m+ 1,n (4.29)
a— Tm.u+l + TmJ:—I + Tm+l.n + Tm—ln - 41:".” = D .
OB Case 1. Interior node
l— A —
lt— A —]
myn+1
L
2(1(:"—].” + T:.n-.u+ I) + (Tm+l.n + Tm.n— l)
S S
|
m-1n I I 1
' [ i, N, m+ 1, n
D S +2h—‘5‘“"n—2(3+“‘—&“‘7)n,”:0 (4.41)
I ! k k :
,ﬁ}! [} | T ., h
L40 m,n-1 Case 2. Node at an internal corner with convection
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(ZT:'JT—],H + T:'n,n+l + T;Jul—]} + % Tbc' - 2 (% + 2) T;n,u = 0 (442}”

Case 3. Node at a plane surface with convection

Ty + Ty ) + 257, =2 ("—ﬁx + 1) T, =0 (443)
Case 4. Node at an external corner with convection
-————
r
| | -— 2 ﬂ'&x
: = n‘: ! (ZTm—l.u + JrrJ-n,n+l + Tm.u—]) + 1 _4'Tm.n =0 (444}&
m-1,n | | —
I 1
-7
y Case 5. Node at a plane surface with uniform heat flux
m,n—

“—Ar——

“PTo obtain the finite-difference equation for an adiabatic surface (or surface of symmetry), simply set i or g" equal to zero. 26
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Thank You

Stay safe!
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