

Heat Conduction in Reactor Elements (Part 5)

MUHAMMAD SYAHIR SARKAWI, PhD

Nuclear Engineering Program Energy Engineering Department N01-273 | 0133274154 syahirsarkawi@utm.my

Heat Transfer from Extended Surfaces

 The term *extended surface* is commonly used to depict an important special case involving heat transfer by conduction within a solid and heat transfer by convection (and/or radiation) from the boundaries of the solid.

Combined conduction and convection in a structural element.

Heat Transfer from Extended Surfaces

Use of fins to enhance heat transfer from a plane wall. (a) Bare surface. (b) Finned surface.

Heat Transfer from Extended Surfaces

Schematic of typical finned-tube heat exchangers

General Conduction Analysis

(a) Straight fin of uniform cross section

(b) Straight fin of nonuniform cross section

(c) Annular fin

(d) Pin fin.

General Conduction Analysis

FIGURE 3.16 Energy balance for an extended surface.

$q_x = q_{x+dx} + dq_{\rm conv}$

$$q_x = -kA_c \frac{dT}{dx}$$

$$q_{x+dx} = q_x + \frac{dq_x}{dx} dx$$

HEAT DIFFUSION EQUATION

$$\frac{d^2T}{dx^2} - \frac{hP}{kA_c} \left(T - T_{\infty}\right) = 0$$

P is the fin perimeter

innovative • entrepreneurial • global

Fins of Uniform Cross-Sectional Area

(b) Pin fin

Straight fins of uniform cross section.

Fins of Uniform Cross-Sectional Area

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

Case	Tip Condition (x = L)	Temperature Distribution θ/θ_b		Fin Heat Transfer Rate	$e q_f$
A	Convection heat transfer:	$\cosh m(L-x) + (h/mk) \sinh n$	n(L-x)	$M\frac{\sinh mL + (h/mk)}{1}$	cosh <i>mL</i>
	$h\theta(L) = -kd\theta/dx\Big _{x=L}$	$\cosh mL + (h/mk) \sinh n$	$\cosh mL + (h/mk) \sinh mL$		
			(3.75)		(3.77)
В	Adiabatic: $d\theta/dx _{x=L} = 0$	$\frac{\cosh m(L-x)}{\cosh mL}$		<i>M</i> tanh <i>mL</i>	
		•••••••	(3.80)		(3.81)
С	Prescribed temperature:				()
	$\theta(L) = \theta_L$	$(\theta_L/\theta_b) \sinh mx + \sinh m(L)$	$(\cosh mL - \theta_L/\theta_b)$		
		sinh <i>mL</i>		$M = \frac{1}{\sinh mL}$	
			(3.82)		(3.83)
D	Infinite fin $(L \rightarrow \infty)$:				
	$\theta(L) = 0$	e^{-mx}	(3.84)	M	(3.85)
$\theta \equiv T - T$	$T_{\infty} \qquad m^2 \equiv h P / k A_c$				
$\theta_b = \theta(0)$	$= T_b - T_{\infty} \qquad M \equiv \sqrt{hPkA_c}\theta_b$				

Fins Performance

FIGURE 3.19 Efficiency of straight fins (rectangular, triangular, and parabolic profiles).

Fins Performance

FIGURE 3.20 Efficiency of annular fins of rectangular profile.

Fins of Nonuniform Cross-Sectional Area

Fins of Nonuniform Cross-Sectional Area

TABLE 3.5Continued

Circular Fin

<i>Rectangular</i> ^a				
$A_f = 2\pi \left(r_{2c}^2 - r_1^2 \right)$				
$r_{2c} = r_2 + (t/2)$				
$V = \pi (r_2^2 - r_1^2) t$				

$$\eta_{f} = C_{2} \frac{K_{1}(mr_{1})I_{1}(mr_{2c}) - I_{1}(mr_{1})K_{1}(mr_{2c})}{I_{0}(mr_{1})K_{1}(mr_{2c}) + K_{0}(mr_{1})I_{1}(mr_{2c})}$$
(3.96)
$$C_{2} = \frac{(2r_{1}/m)}{(r_{2c}^{2} - r_{1}^{2})}$$

Pin Fins

Rectangular^b $A_{f} = \pi DL_{c}$ $L_{c} = L + (D/4)$ $V = (\pi D^{2}/4)L$

$$\eta_f = \frac{\tanh mL_c}{mL_c} \tag{3.100}$$

Fins of Nonuniform Cross-Sectional Area

Overall Surface Efficiency

FIGURE 3.21 Representative fin arrays. (*a*) Rectangular fins. (*b*) Annular fins.

Fins In Reactors

- Fuel element temperatures may exceed safe limits.
- This in the case of gases or organic liquids.
- One method of alleviating this problem is the use of finned cladding.
- Fins are recommended whenever there exists a large difference in heattransfer coefficient between the two sides of a heat-transfer surface and are placed on the side of the low coefficient.
- The fins are usually made of the same material and are an integral part of the cladding.

Various Types of Fins on Fuel Cladding

- 1) Longitudinal or axial,
- 2) Circumferential or transverse
- (3) Helical, of different pitch and height
- (4) Pin and strip type, in line or staggered

Fins In Reactors

- Fins on nuclear fuel elements while transferring fission heat to the coolant, generate some heat of their own because of the absorption of nuclear radiation
- They can consequently be assumed, with little error, to have uniform volumetric thermal source strengths q''', $\frac{Btu}{hr ft^3}$.
- The choice of fin material for a fuel element is a complex function of many variables.
 - A low neutron absorption cross sections are a primary requisite.
 - Good thermal conductivity k,

Some Properties of Some Fin Materials

	Relaxation length, * cm		S am-1		
Material	Fast neutrons	y rays	(thermal)	κ, Btu/hr ft °F	
Beryllium	~9	18	0.00123	68 (600°F)	
Aluminum	~10	13	0.01300	131 (600°F)	
Magnesium			0.00254	91 (572°F)	
Iron	~6	3.7	0.1900	27 (600°F)	
Zirconium			0.00765	11 (480°F)	

2-Dimensional Steady State Conduction

Introduction

FIGURE 4.1 Two-dimensional conduction.

Adiabats and Isotherms Lines

HEAT FLUX PLOT

Isotherms – constant temperature linesAdiabats – heat flow lines

Basic Rules:

- 1. Identify lines of both geometric and thermal symmetrics.
- 2. Adiabats and isotherms are normal in the interiors of the body.
- 3. Isotherms intersects the adiabats at right angle (90°).
- 4. Adiabats intersects the isotherms at right angle (90°).
- 5. Adiabats bisects isothermal corners.
- 6. Isotherms-Adiabats intersections form curvilinear squares.

Adiabats and Isotherms Lines

FIGURE 4.3 Isotherms and heat flow lines for two-dimensional conduction in a rectangular plate.

Conduction Shape Factor

TABLE 4.1 Conduction shape factors and dimensionless conduction heat rates for selected systems.

(*a*) Shape factors $[q = Sk(T_1 - T_2)]$

System	Schematic	Restriction	s Shape Factor
Case 1 Isothermal sphere buried in a semi- infinite medium		z > D/2	$\frac{2\pi D}{1 - D/4z}$
Case 2 Horizontal isothermal cylinder of leng buried in a semi-infinite medium	gth L	$L \ge D$ $L \ge D$ $z > 3D/2$	$\frac{2\pi L}{\cosh^{-1}(2z/D)}$ $\frac{2\pi L}{\ln(4z/D)}$
Case 3 Vertical cylinder in a semi-infinite medium	T_{2}	$L \gg D$	$\frac{2\pi L}{\ln\left(4L/D\right)}$
	$q = Sk\Delta T_{1-2} \qquad R$	$R_{t,cond(2D)} = \frac{1}{Sk}$	

Finite-Difference Equations

$$T_{m,n+1} + T_{m,n-1} + T_{m+1,n} + T_{m-1,n} - 4T_{m,n} = 0$$

FIGURE 4.4 Two-dimensional conduction. (*a*) Nodal network.

(4.29)

(4.41)

Finite-Difference Equations

TABLE 4.2Summary of nodal finite-difference equations

Case 2. Node at an internal corner with convection

 $\bullet m, n-1$

Finite-Difference Equations

$$(2T_{m-1,n} + T_{m,n+1} + T_{m,n-1}) + \frac{2h\,\Delta x}{k}\,T_{\infty} - 2\left(\frac{h\,\Delta x}{k} + 2\right)T_{m,n} = 0 \tag{4.42}^a$$

Case 3. Node at a plane surface with convection

$$(T_{m,n-1} + T_{m-1,n}) + 2\frac{h\,\Delta x}{k}T_{\infty} - 2\left(\frac{h\,\Delta x}{k} + 1\right)T_{m,n} = 0 \tag{4.43}$$

Case 4. Node at an external corner with convection

 $\bullet m, n+1$

(m, n-1)

 T_{∞}, h

m, n - 1

 T_{∞}, h

m, n

 Δx

 Δx

m, n

m – 1, n

 Δy

.

 Δy

m - 1, n

$$(2T_{m-1,n} + T_{m,n+1} + T_{m,n-1}) + \frac{2q''\Delta x}{k} - 4T_{m,n} = 0$$

$$(4.44)^{b}$$

Case 5. Node at a plane surface with uniform heat flux

a,b To obtain the finite-difference equation for an adiabatic surface (or surface of symmetry), simply set h or q'' equal to zero.

Thank You

Stay safe!