HEAT TRANSFER SETN2223

RADIATION EXCHANGE BETWEEN SURFACES

www.utm.my innovative • entrepreneurial • global

13.1.1 The View Factor Integral

The view factor F_{ij} is defined as the *fraction of the radiation leaving surface i that is intercepted by surface j*. To develop a general expression for F_{ij} , we consider the arbitrarily oriented surfaces A_i and A_j of Figure 13.1. Elemental areas on each surface, dA_i and dA_j , are connected by a line of length R, which forms the polar angles θ_i and θ_j , respectively, with the surface normals \mathbf{n}_i and \mathbf{n}_j . The values of R, θ_i , and θ_j vary with the position of the elemental areas on A_i and A_j .

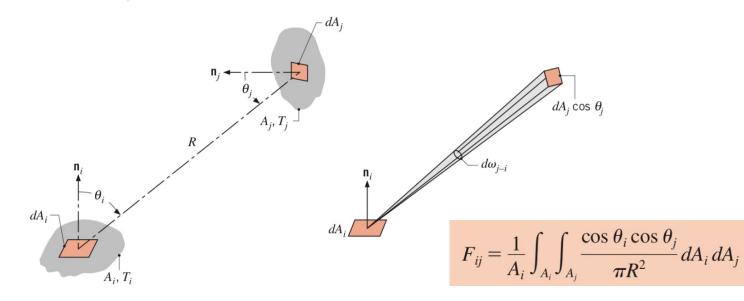


FIGURE 13.1 View factor associated with radiation exchange between elemental surfaces of area dA_i and dA_j .

13.1.2 View Factor Relations

An important view factor relation is suggested by Equations 13.1 and 13.2. In particular, equating the integrals appearing in these equations, it follows that

$$A_i F_{ij} = A_j F_{ji} \tag{13.3}$$

This expression, termed the *reciprocity relation*, is useful in determining one view factor from knowledge of the other.

$$F_{21} = \left(\frac{A_1}{A_2}\right)F_{12} = \left(\frac{A_1}{A_2}\right)$$

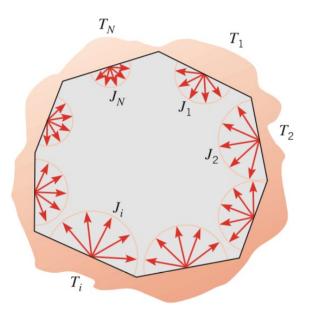


FIGURE 13.2 Radiation exchange in an enclosure.

Another important view factor relation pertains to the surfaces of an *enclosure* (Figure 13.2). From the definition of the view factor, the *summation rule*

$$\sum_{j=1}^{N} F_{ij} = 1 \tag{13.4}$$

$$\sum_{j=1}^{N} F_{ij} = 1 \tag{13.4}$$

may be applied to each of the *N* surfaces in the enclosure. This rule follows from the conservation requirement that all radiation leaving surface *i* must be intercepted by the enclosure surfaces. The term F_{ii} appearing in this summation represents the fraction of the radiation that leaves surface *i* and is directly intercepted by *i*. If the surface is concave, it *sees itself* and F_{ii} is nonzero. However, for a plane or convex surface, $F_{ii} = 0$.

To calculate radiation exchange in an enclosure of N surfaces, a total of N^2 view factors is needed. This requirement becomes evident when the view factors are arranged in the matrix form:

$$\begin{bmatrix} F_{11} & F_{12} & \cdots & F_{1N} \\ F_{21} & F_{22} & \cdots & F_{2N} \\ \vdots & \vdots & & \vdots \\ F_{N1} & F_{N2} & \cdots & F_{NN} \end{bmatrix}$$

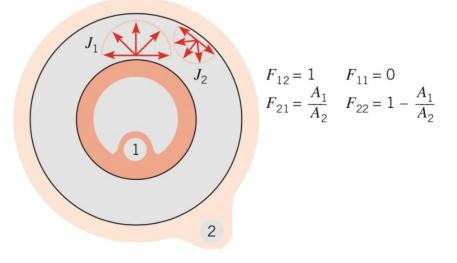


FIGURE 13.3 View factors for the enclosure formed by two spheres.

From the summation rule, we also obtain

$$F_{11} + F_{12} = 1$$

in which case $F_{11} = 0$, and

$$F_{21} + F_{22} = 1$$

in which case

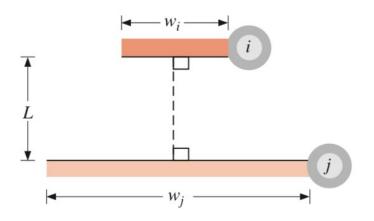
$$F_{22} = 1 - \left(\frac{A_1}{A_2}\right)$$

TABLE 13.1View Factors for Two-Dimensional Geometries [4]

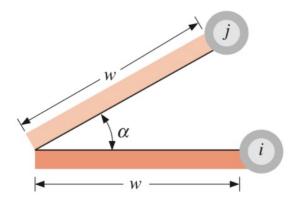
Geometry

Relation

Parallel Plates with Midlines Connected by Perpendicular



Inclined Parallel Plates of Equal Width and a Common Edge



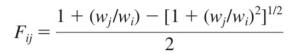
$$F_{ij} = \frac{[(W_i + W_j)^2 + 4]^{1/2} - [(W_j - W_i)^2 + 4]^{1/2}}{2W_i}$$
$$W_i = w_i/L, W_j = w_j/L$$

$$F_{ij} = 1 - \sin\left(\frac{\alpha}{2}\right)$$

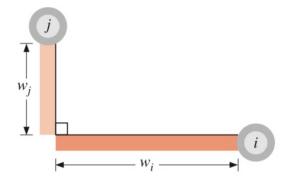
1

(continues)

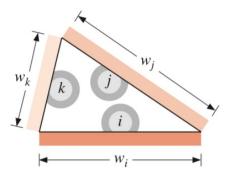
Perpendicular Plates with a Common Edge



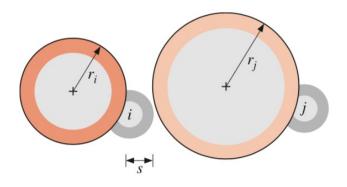
 $F_{ij} = \frac{w_i + w_j - w_k}{2w_i}$



Three-Sided Enclosure



Parallel Cylinders of Different Radii

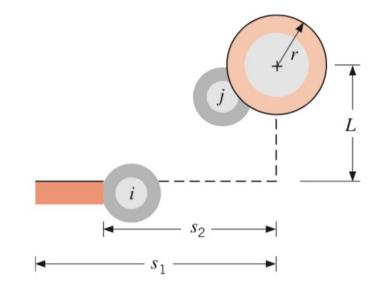


$$F_{ij} = \frac{1}{2\pi} \left\{ \pi + [C^2 - (R+1)^2]^{1/2} - [C^2 - (R-1)^2]^{1/2} + (R-1)\cos^{-1}\left[\left(\frac{R}{C}\right) - \left(\frac{1}{C}\right)\right] - (R+1)\cos^{-1}\left[\left(\frac{R}{C}\right) + \left(\frac{1}{C}\right)\right]\right\}$$

$$R = r_j/r_i, S = s/r_i$$

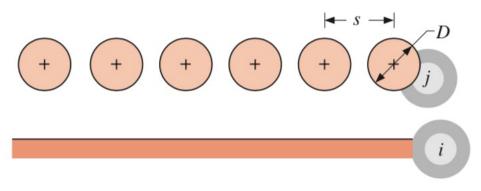
$$C = 1 + R + S$$

Cylinder and Parallel Rectangle



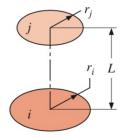
 $F_{ij} = \frac{r}{s_1 - s_2} \left[\tan^{-1} \frac{s_1}{L} - \tan^{-1} \frac{s_2}{L} \right]$

Infinite Plane and Row of Cylinders

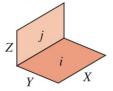


$$\begin{split} F_{ij} &= 1 - \left[1 - \left(\frac{D}{s}\right)^2\right]^{1/2} \\ &+ \left(\frac{D}{s}\right) \tan^{-1}\left[\left(\frac{s^2 - D^2}{D^2}\right)^{1/2}\right] \end{split}$$

Relation	
Ž	$\overline{X} = X/L, \overline{Y} = Y/L$
F	$u_{ii} = \frac{2}{1} \left\{ \ln \left[\frac{(1 + \overline{X}^2)(1 + \overline{Y}^2)}{1} \right]^{1/2} \right\}$



Perpendicular Rectangles with a Common Edge (Figure 13.6)



$$R_{i} = r_{i}/L, R_{j} = r_{j}/L$$

$$S = 1 + \frac{1 + R_{j}^{2}}{R_{i}^{2}}$$

$$F_{ij} = \frac{1}{2} \{ S - [S^{2} - 4(r_{j}/r_{i})^{2}]^{1/2} \}$$

$$\begin{split} H &= Z/X, \ W = Y/X \\ F_{ij} &= \frac{1}{\pi W} \Biggl(W \tan^{-1} \frac{1}{W} + H \tan^{-1} \frac{1}{H} \\ &- (H^2 + W^2)^{1/2} \tan^{-1} \frac{1}{(H^2 + W^2)^{1/2}} \\ &+ \frac{1}{4} \ln \Biggl\{ \frac{(1 + W^2)(1 + H^2)}{1 + W^2 + H^2} \Biggl[\frac{W^2(1 + W^2 + H^2)}{(1 + W^2)(W^2 + H^2)} \Biggr]^{W^2} \\ &\times \Biggl[\frac{H^2(1 + H^2 + W^2)}{(1 + H^2)(H^2 + W^2)} \Biggr]^{H^2} \Biggr\} \Biggr) \end{split}$$

$$\overline{X} = X/L, \, \overline{Y} = Y/L$$

$$F_{ij} = \frac{2}{\pi \overline{X} \, \overline{Y}} \left\{ \ln \left[\frac{(1 + \overline{X}^2) \, (1 + \overline{Y}^2)}{1 + \overline{X}^2 + \overline{Y}^2} \right]^{1/2} + \overline{X} \, (1 + \overline{Y}^2)^{1/2} \tan^{-1} \frac{\overline{X}}{(1 + \overline{Y}^2)^{1/2}} \right]^{1/2}$$

$$+\overline{Y}(1+\overline{X}^2)^{1/2}\tan^{-1}\frac{\overline{Y}}{(1+\overline{X}^2)^{1/2}}-\overline{X}\tan^{-1}\overline{X}-\overline{Y}\tan^{-1}\overline{Y}\right\}$$

Geometry

Aligned Parallel Rectangles

(Figure 13.4)

X

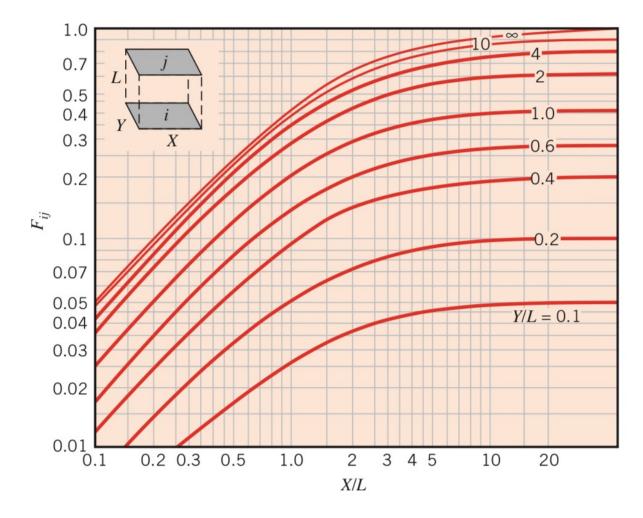


FIGURE 13.4 View factor for aligned parallel rectangles.

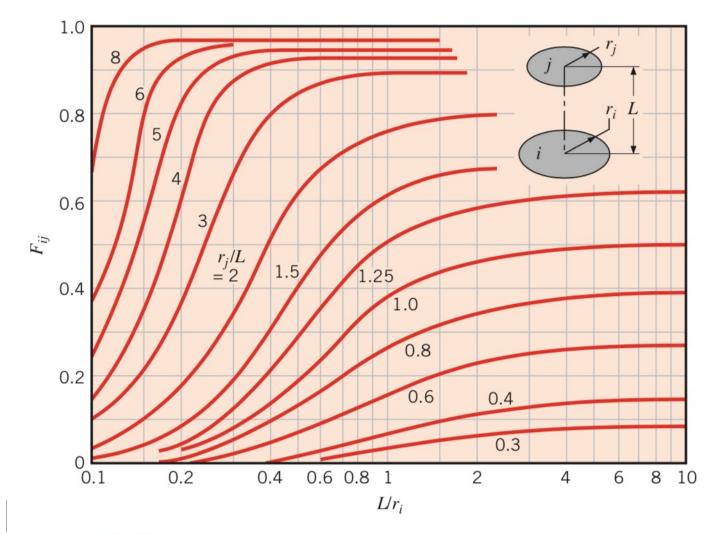


FIGURE 13.5 View factor for coaxial parallel disks.

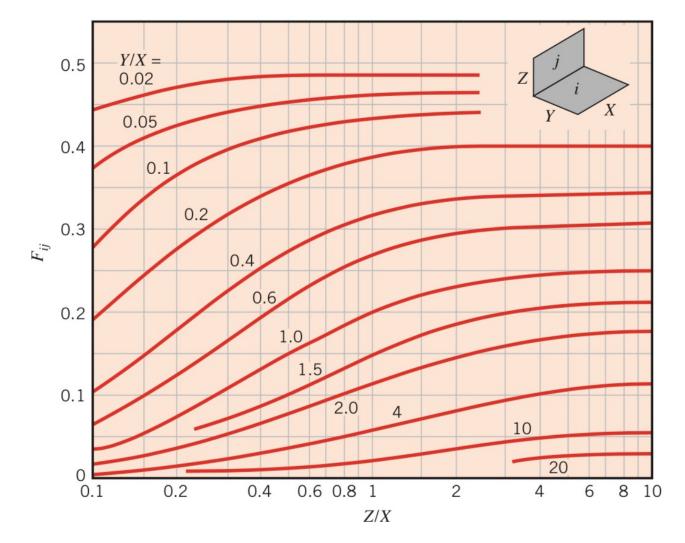


FIGURE 13.6 View factor for perpendicular rectangles with a common edge.

www.utm.my innovative • entrepreneurial • global