

LIST SCHEDLING ALGORITHMS FOR SOLVING IDENTICAL PARALLEL
PROCESSOR IN MINIMIZING MAKESPAN

Nurul Izzati binti Muhammad & Syarifah Zyurina binti Nordin

Abstract

This study focuses on the task scheduling problem on identical parallel processors. We
consider a non-preemptive task scheduling with an objective function of minimizing the
makespan. Makespan is the maximum of completion time to entire set of tasks where
𝐶𝑚𝑎𝑥 = max{𝐶𝑖 , 𝑖 = 1,2, … , 𝑛}.The standard assumptions of the task characteristic of this
study are no delay schedule and no precedence constraints are required. Moreover, all tasks
are ready at time zero and no due date or deadlines is specified. An arbitrary processing time
of mathematical model of Mixed Integer Linear Programming (MILP) is considered to
obtain the exact solution. We address three List Scheduling Algorithm, which are Shortest
Processing Time, Longest Processing Time, and First Come First Served. The MILP model
has been implemented using AIMMS 4.13 software package which uses CPLEX 12.6.2 as
the solver for minimizing the makespan. The MILP gives the optimum result for each
instance. A computational experiment is conducted to examine the effectiveness of the
different size problem. The computational results show that all the proposed heuristics obtain
good result with the gap between optimal solutions are less than 20% even for a large data
set. Longest Processing Time (LPT) is the best List Scheduling heuristic method with
maximum gap less than 2%.

Keywords : List Scheduling Algorithms; Identical parallel processor; Minimizing makespan.

Introduction

Scheduling is very common activity in industry and non-industry surroundings. Every day,
meetings are scheduled, deadlines and work periods are set, maintenance and upgrade the
operations are planned, lecture rooms are booked and others. Proper scheduling allows
various activities or tasks to be completed in an organized manner. Scheduling plays an
important role in management of a company. Scheduling is all about using mathematical
techniques and heuristic method to allocate limited resources over time to perform a set of
tasks in order to optimize objectives and achieve goals (Pinedo, 2002). According to Pinedo
(2002), decision-making process is vital in procurement and production, in transportation
and distribution, information processing and communication.

Scheduling is a method of assigning a number of tasks to process for processing and
the scheduling program can be in serial (single) or parallel. In serial processing, the process
runs in sequence while in parallel processing, it run in parallel. Therefore, parallel processing
scheduling system takes less time to complete and more effective especially for problem
with large volume of data. The purpose of the scheduling is to determine the allocation and
the sequence of the operation to the target. The schedule needs to satisfy all the requirements
and the constraints of the problem. However, the objective is to produce the best
performance of scheduling system with efficiency policy (SyarifahZyurina, 2014).

In identical parallel processor scheduling problem, they have more than one
processor are available for processing the tasks, they are identical and parallel. There are
given tasks and each of these tasks has a processing time to be processed on the 𝑚 identical
parallel processor.

323

 This study will focuses on the task scheduling problem on identical parallel
processor. The standard assumptions of the task characteristic of this study are no delay
schedule and no precedence constraints are required. Other than that, all tasks are ready at
time zero and no due date or deadlines is specified. Moreover, objective function of identical
parallel processor will focus on minimizing the makespan(𝐶𝑚𝑎𝑥), where makespan is
defined as max (𝐶1, 𝐶2,… , 𝐶𝑛), is the equivalent to the completion time of the last task to
leave the system. The problem of identical parallel processor in minimizing makespan can be
denoted as 𝑃||𝐶𝑚𝑎𝑥.A minimum makespan usually implies a good utilization of the
processor. In this study, we will use List Scheduling Algorithms to obtain the best heuristic
methods and mathematical model of Mixed Integer Linear Programming (MILP) to obtain
the exact or optimal solution.

Literature Review

Parallel processor scheduling has been a popular research field due to wide range of potential
range of potential applications. The parallel processors can be can be grouped into three
categories based on their operation, namely; identical, unrelated and uniform parallel
processors. In identical parallel processors, a task can be processed at any one of the 𝑚
processors with different processing time, Sun et al. (2003). In unrelated parallel processors,
the task has to be performed only in the allocated particular processor Pinedo (2002),
whereas, in uniform parallel processors the task can be done on any processor with equal
processing times at all processor.

 Identical parallel processor scheduling problem with task splitting and sequence is
considered dependent setup times to minimize the maximum makespan within the set of all
processor scheduling plans (Yalaoui and Chu, 2003). They develop two phase heuristic. First
phase, they approached it as a single processor problem, transforming it into a Traveling
Salesman Problem (TSP) and assign tasks to processors using Little’s method (Little et al.,
1963). Second phase was created a feasible schedule for each processor, with the previously
assigned tasks, which is improved taking advantage of the problems characteristics.

Naitet al. (2006) was used this method for the same problem, introduce a heuristic
based on Linear Programming (LP) formulation to improve the approach Yalaoui and Chu
(2003). According to Xing and Zhang (2000), they was studied about the task splitting
property on an identical parallel processor scheduling problem with independent setup times
to minimize the makespan, discussing cases with splitting properties and analysing a
heuristic for this problem by extrapolating preemption properties. Another article by
Mokotoff (2004), in the classical deterministic identical parallel machine problem, there are
a number of independent jobs to be processed on a range of identical machines. Each job has
to be carried out on one of the machines during a fixed processing time, without preemption.
The problem of finding the schedule that optimizes the makespan is considered. Dynamic
programming and branch and bound (B&B) techniques have been used to find optimal
solutions.

 Min and Cheng (1999) presented a kind of Genetic Algorithm (GA) based on
processor code for minimizing the makespan in identical parallel processor scheduling. They
demonstrate that the proposed GA is efficient ad fit for large scale problems and has
advantage over heuristic procedure and simulated annealing method. Lee et al. (2006)
propose a simulated annealing method to generate near optimal solutions for the
minimization of makespan in identical parallel processor scheduling. With the help of
computational analysis, they demonstrate that the proposed method is very accurate and
outperforms the existing method. According to Hong et al. (2009), consider minimizing

324

makespan of identical parallel processor scheduling problems with mold constraints. In this
kind of problems, tasks are non-preemptive with mold constraints and several identical
processors are available. They proposed GA based approach to solve this problem. In
parallel processor scheduling problem, no matter how many processors are involved, the
number of workers at each processor may be ignored or assumed to be fixed and not taken
into consideration. However, assigning more workers to work on the same task will decrease
task completion time.

Methodology

Model description.Let consider the problem of scheduling is independent tasks on 𝑚
identical parallel processors with availability constraints. The availability constraint means
that some processors are not available for a certain period of time. Therefore, it cannot be
used to process tasks. The objective function is to minimize the makespan.

In the modelling of this problem, the following standard assumptions are used :

a) All processor are identical and able to perform all operations.
b) Each processor can process only one task at any time.
c) Each part has only one, maybe complex, operation.
d) Preemption of a task on another processor is not allowed.
e) All tasks are available at time zero. However, some processors may not be

available at that time.
f) Setup times are independent of task sequence and are included in the

processing times.
g) The duration is known and constant. Therefore, off-line algorithm is used to

solve the problem.
 In this study, we will focus on method MILP which is defined the value of the
variables are integer, the objective function and the constraints are linear. MILP problem is a
mathematical optimization or feasibility program that can take exponential time to solve due
to the combinatorial solving process. This method is the most power representation that
usually used to formulate decision making problems under uncertainty in operation research
and cooperative control.

Notations

The following notations are used for the problem under consideration.

 𝑖 Index for task, 𝑖 = 1,2,3, … , 𝑛

 𝑗 Index for processor, 𝑗 = 1,2,3, … , 𝑚

𝑛 Maximum number of task

𝑚 Maximum number of processor

𝑝𝑖 Processing time for task 𝑖

𝑥𝑖𝑗 Assignment variable for task 𝑖 on processor 𝑗

𝐶𝑚𝑎𝑥 Makespan

The MILP model for the problem 𝑃||𝐶𝑚𝑎𝑥 can be written as follows :

325

Let 𝑥𝑖𝑗 = {1, if job 𝑖 is processed on processor 𝑗
0, otherwise

This variable to ensure each position on the list can hold only one task at the same time, and
need to reveal that the first task should have setup time on the same processor. Setup time is
required when a task is followed by another task from a different group and vice versa.

Minimize 𝐶𝑚𝑎𝑥 (1)

 subject to ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 𝑝𝑖 ≤ 𝐶𝑚𝑎𝑥, 𝑗 = 1,2, … , 𝑚 (2)

 ∑ 𝑥𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,2, … , 𝑛 (3)

 𝐶𝑚𝑎𝑥 ≥ 0 (4)

 𝑥𝑖𝑗 ∈ {0,1} for 𝑖 = 1,2, . . 𝑛; 𝑗 = 1,2, … , 𝑚 (5)

In the above formulation, constraint (1) represents as the objective function,
minimization of the makespan. Constraint (2) ensure that the sum of execution time for every
task on processor 𝑗 is less than or equal to 𝐶𝑚𝑎𝑥. Constraint (3) ensures that each task is
assigned to only one of the 𝑚 processors. Constraint (4) represent that makespan is greater or
equal to zero. Constraint (5) ensure each position on the list can hold only one task at the
same time, and need to reveal that the first task should have setup time on the same
processor. Setup time is required when a task is followed by another task from a different
group and vice versa.

List Scheduling Algorithms

In this study, the list scheduling algorithms that will be used are Shortest Processing Time
(SPT), Longest Processing Time (LPT) and First Come First Served (FCFS).Shortest
processing timeis a list of tasks that sequenced in ascending order of the processing time
required at the processor, with the task requiring the least processing time at the processor
scheduled first.Longest processing time is a list of tasks that sequenced in descending order
of the processing time required at the processor, with the task requiring the longest
processing time at the processor scheduled first. First come first servedis a list of tasks that
sequenced in the general order in which they arrive at the processor. The tasks need to be
done earlier will be at the front of the list.

Results And Analysis

The simulation data for the problem 𝑃||𝐶𝑚𝑎𝑥 is generated as follows :

1. The number of independent tasks are n={10, 20, 30, 50}.
2. For every set of tasks, we use a different number of processors m ={2, 3, 5}.

In total, there are 12 combinations of m and n.
3. For every combination of m byn, we generate 10 instances. Therefore, the total

number of instances that we have are 12 × 10 = 120.
We use an interval for the processing time where 𝑝𝑚𝑖𝑛(𝑖) = 0and 𝑝𝑚𝑎𝑥 (𝑖) = 20.

326

Computational Results.

We now present our result of the SPT, LPT and FCFS algorithms compared with the optimal
solutions. The result for the MILP model and algorithms will be presented as a gap (%) and
can be calculated as follows :

𝐺𝑎𝑝 (%) =
𝐶𝑚𝑎𝑥,𝐴 − 𝐶∗

𝑚𝑎𝑥
𝐶∗

𝑚𝑎𝑥
× 100

where 𝐶∗
𝑚𝑎𝑥 is the optimum solution and 𝐶𝑚𝑎𝑥,𝐴 is the value obtained when reached the

specific time limit for SPT, LPT or FCFS.

Table 1 Result of the average makespan, 𝑃||𝐶𝑚𝑎𝑥

Table 2 Gap (%) between list scheduling algorithms and optimal solution

Number of Number of Gap (%)
Processor m Task n SPT LPT FCFS

2

10 6.93 0.43 3.46
20 5 0.2 0.9
30 2.85 0.07 0.13
50 1.91 0 0.08

3

10 16.67 1.28 7.05
20 12.46 0.15 3.6
30 6.54 0 1.49
50 4.39 0 0.76

5

10 30.2 0.5 15.84
20 19.8 0.5 8.91
30 16.28 0 4.11
50 8.57 0 2.63

Number of Number of Average Makespan
Processor m Task n MILP SPT LPT FCFS
2 10 46.2 49.4 46.4 47.8
 20 99.9 104.9 100.1 100.8
 30 151 155.3 151.1 151.2
 50 256.2 261.1 256.2 256.4
3 10 31.2 36.4 31.6 33.4
 20 66.6 74.9 66.7 69
 30 100.9 107.5 100.9 102.4
 50 171 178.5 171 172.3
5 10 20.2 26.3 20.3 23.4
 20 40.4 48.4 40.6 44
 30 60.8 70.7 60.8 63.3
 50 102.7 111.5 102.7 105.4

327

Figure 1 Average Gap against number of tasks for list scheduling algorithms

The objective is to evaluate the average gap of list scheduling algorithms when the
data get larger. The experiment shows that the average gap for Figure 1 of SPT, LPT and
FCFS are slightly decreased. The figure depicts the average gap for the larger number of
tasks 𝑛 = 50 becomes decrease for SPT, LPT and FCFS, this mean when the data greater
than 50, it will near to optimal solution. Then, when the number of tasks increases, the
average gap becomes decrease which means these three lists scheduling are best method
when the data get larger and its stable method. The experiment shows that the gap has been
shorter when more resources are allocated. However, longest processing time algorithms
show the best heuristic method when the maximum gap between the MILP model and LPT
around 2%. These results show us that as the number of tasks and processors increase, the
list scheduling algorithms are getting better when the algorithms has more resources to
allocate and increase the possibilities for tasks assignment.

Conclusion

In conclusion, we have achieved all of the objectives in this study. The computational results
show that all the three list scheduling algorithms heuristics obtain good result with the gap of
average between optimal solutions are less than 30% even for a large data set. Moreover,
longest processing time algorithms show the best heuristic method when the maximum gap
between the MILP model and LPT less than 2%. Then, the second heuristic method for
solving identical parallel processor in minimizing makespan is FCFS with 16% of maximum
gap.

Recommendations

For future research, there are some recommendations that can be suggested from this study.
Firstly, the other list scheduling algorithms such as longest remain processing time (LRPT)
or meta-heuristics algorithm for example Simulated Annealing, Tabu Search, and Genetic
Algorithms can be used to solve identical parallel processor in minimizing makespan,
𝑃||𝐶𝑚𝑎𝑥. Furthermore, other software like Matlab, LINGO/LINDO and CPLEX can be used
to solve the MILP model and heuristic methods of the problem. Other than that, change the

0
2
4
6
8

10
12
14
16
18
20

10 20 30 50

A
ve

ra
ge

 G
ap

Number of Task

SPT

LPT

FCFS

328

standard assumptions of the task characteristic have delay schedule and precedence or
preemtive constraints are required. Due date is specified for all tasks.

References

Hong TP, Sun PC, Jou SS (2009), Evolutionary computation for minimizingmakespan on
identical parallel machine with mold constraints, WSEAS Trans Syst Control,
7(4);339-348.

Lee W. C, Wu C. C, Chen P (2006), A simulated annealing approach to
makespanminimization on identical parallel machines. Int J AdvManuf Tech,
31:328-334.

Little, J. D., Murty, K. G., Sweeney, D. W., and Karel, C. (1963), An algorithm forthe
traveling salesman problem, Operations research, 11(6):972–989.

Min L, Cheng W (1999), A genetic algorithm for minimizing the makespan in thecase of
scheduling identical parallel machines, ArtifIntellEng, 13(4):399-403.

Mokotoff Ethel (2004), An exact algorithm for the identical parallel machinescheduling
problem, European Journal of Operational Research, 152(2):758-769.

Nait, T. D., Yalaoui, F., Chu, C., and Amodeo, L. (2006), A linear programmingapproach for
identical parallel machine scheduling with job splitting and sequence-dependent
setup times, International Journal of Production Economics, 99(1):63–73.

Pinedo M. L. (2002), Scheduling : Theory, Algorithms, and Systems, Prentice Hall,2nd ed.
2002 edition.

Sun, H., Wang, G, (2003), Parallel machine earliness and tardiness scheduling
withproportional weights, Computers & Operations Research, 30, 801-808.

SyarifahZyurinaNordin (2014), Lecture notes : Introduction of scheduling,Scheduling 2nd
edition.

Xing, W. and Zhang, J. (2000), Parallel machine scheduling with splitting jobs,Discrete
Applied Mathematics, 103(1):259–269.

Yalaoui, F. and Chu, C. (2003), An efficient heuristic approach for parallel
machinescheduling with job splitting and sequence-dependent setup times, IIE
Transactions, 35(2):183–190.

329

