ASIGNMENT FOR COMPLEX NUMBERS

QUESTION 1

- a) Given w=2i-2 and $v=\frac{\sqrt{3}}{2}+\frac{1}{2}i$. Express $w^2+\frac{2}{v}$ in the form a+ib. Hence, calculate the modulus and argument of $w^2+\frac{2}{v}$. (5 marks)
- b) Given the complex number $z = 1 + i\sqrt{3}$.
 - i. Express z in polar form. (2 marks)
 - ii. Obtain all possible complex values of $w=z^{\frac{1}{5}}$ and sketch them on an Argand diagram. (6 marks)
- c) Using De Moivre's Theorem, show that

$$\sin(3\theta) = 3\sin\theta - 4\sin^3\theta.$$

Hence, obtain all possible roots for the equation $8x^3 - 6x + 3 = 1$. (7 marks)

QUESTION 2

- (a) Given a complex number u = 2 + 3i.
 - (i) Determine $z = u^2 + 13 4i$ in the form a + ib. (2 marks)
 - (ii) Express z in polar form. (2 marks)
 - (iii) Solve $w^3=z$ and sketch the roots on a single Argand Diagram. (4 marks)
- (b) Use de Moivre's theorem to show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$$

Hence, obtain all solutions of x for the following equation:

$$4x^3 - 3x + 1 = 0.$$

(7 marks)