ASSIGNMENT POLAR COORDINATES

QUESTION 1

a) Transform the polar equation

$$r = \frac{4\cos\theta}{\cos^2\theta + 1}$$

into its Cartesian form and identify the curve. (5 marks)

- b) Consider the polar equation $r = 3\sin(3\theta)$.
 - i. Test the symmetries for the above polar equation. (4 marks)
 - ii. Construct a table for (r, θ) by choosing appropriate values for r and θ . Hence, sketch the graph of $r = 3\sin(3\theta)$ on the **polar grid** provided in page 7. (6 marks)

iii. Sketch the graph of r = 3 on the same polar grid in part (ii).

(2 marks)

iv. Find all intersection points between $r = 3\sin(3\theta)$ and r = 3. (3 marks)

QUESTION 2

Given the polar equation $r = 1 - \cos \theta$. (i) Test the symmetries of the above polar equation.	(3 marks)
(ii) Construct a table for (r, θ) with appropriate values and sketce of $r = 1 - \cos \theta$. (Use the polar grid provided)	h the graph (5 marks)
(iii) Sketch the graph $\tan \theta = 1$ on the same diagram.	(3 marks)
(iv) Find the intersection points between the curves $r = 1 - \tan \theta = 1$.	$-\cos heta$ and
	(4 marks)