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Abstract

In this note we introduce first order optimization algorithms for optimization prob-
lems with a focus in signal and image processing. The notes will go trough gradient
descent, proximal gradient descent algorithms and accelerated proximal gradient de-
scent algorithms. We will also discuss other first order algorithms from time to time.
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1 Introduction

1. Inverse problems in signal processing include:

(a) Denoising.

(b) Deconvolution (also known as channel equalization or dereverberation) .

(c) Source separation.

(d) Channel equilization.

(e) System identification.

2. Inverse problems are ill-posed problems. Its problems and difficulty include

(a) Ill conditioning of the mapping. Because to solve the inverse problem the inverse
of the mapping is needed, this is usually impractical due to ill conditioning of the
mapping.

(b) The observation (observed signal) may itself be corrupted by noise.

(c) No unique solution. Thus the need of regularization that can exploit prior infor-
mation, find a unique solution and stabilize the ill-conditioning of the mapping
inversion.

2 Gradient descent

Before discussing the proximal gradient algorithm that is widely used in signal and image
processing, it would be a good idea to first refresh and discuss the basic ideas of gradient
descent. In this subsection we will introduce the gradient descent algorithm, its convergence
and some example applications where we can use gradient descent.

2.1 Basic Gradient descent

The gradient descent method is probably one of the earliest method in optimization. It
traces back to the French mathematician Louis Augustin Cauchy [1]. It was developed in
1847 by Cauchy to do calculations related to heavenly bodies in astronomy [2]. Basically,
the pure gradient decent is used to solve the following unconstrained minimization problem,

minimize
x

f (x) , (1)
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Table 1: Gradient descent algorithm

1. Choose initial x(0) ∈ Rn

2. repeat
3. xk+1 = xk − t∇f

(
xk
)

; k = 1, 2, · · ·
4. stop at some point

where f : Rn → R is a continuously differentiable function1. The gradient descent algorithm
proceeds by iteratively solving

xk+1 = xk − t∇f
(
xk
)
, k = 1, 2, · · · (2)

until convergence is achieved. In the gradient descent iteration, t is the stepsize and ∇f
is gradient of f . Table 1 summarizes the gradient descent algorithm. We now state the
convergence of gradient discent

Theorem 1. Gradient descent with fixed step size t ≤ 1
L

satisfy

f
(
xk+1

)
− f ? ≤ ||x

0 − x?||
2tk

, (3)

that is, gradient descent with fixed step size has the convergence rate of O
(

1
k

)
i.e. to get

f
(
xk+1

)
− f ? ≤ ε0 we need O

(
1
ε0

)
iterations.

In order to proof the convergence rate, we will give first give several lemmas and defini-
tions.

Lemma 1. Let f : Rn → R be a C1 function. Suppose f is convex. Then

f (x̄) + 〈∇f (x̄) , x− x̄〉 ≤ f (x) , ∀x, x̄ ∈ Rn. (4)

Definition 1. A function f : Rn → R is Lipschitz continuous with constant L > 0 if

||f (x)− f (y)|| ≤ L ||x− y|| ∀x, y ∈ Rn. (5)

Furthermore, if f is C1, we have that ∇f is Lipschitz continuous with constant L > 0 if

||∇f (x)−∇f (y)|| ≤ L ||x− y|| ∀x, y ∈ Rn. (6)

1Sometimes also referred as smooth convex function of type C1,1. Recall that Ck function is that
the function is continuous and the kthorder derivative exists. The class of C1 function means that it
is continuously differentiable while, if the function is C1,1, it means that the function is continuously
differentiable and has Lipschitz continuous gradient ∇f with L > 0 Lipschitz constant which satisfies
||∇f (x)− f (z)||2 ≤ L ||x− z||2.
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Lemma 2. Suppose that f is a C1 function whose gradient is Lipschitz continuous with
constant L > 0, then

f (x) ≤ f (x) + 〈∇f (x̄) , x− x̄〉+
L

2
||x− x̄||2 ∀x, x̄ ∈ Rn. (7)

Lemma 2 is called the descent lemma and the detailed proof can be obtained in texts
such as [3]. With the given Lemmas and definition above, we are now ready to proof the
convergence rate of the gradient descent.

Define a function g : Rn → R by

g (x) = x− t∇f, x ∈ Rn, (8)

and choose xk ∈ Rn

xk+1 = g (xk) , k = 0, 1, 2, · · · (9)

Theorem 2. Let f : Rn → R be a C1 convex function. Suppose that ∇f is Lipschitz
continuous with constant L > 0 and 0 < t ≤ 1

L
then,

1. f (g (x)) ≤ f (x)− t
2
||∇f (x)||2,

2. f (g (x)) ≤ f (x∗) + 1
2t

(
||x− x∗||2 − ||g (x)− x∗||2

)
,

for all x, x∗ ∈ Rn.

Proof : To proof the first point, by Lemma (2) we have

f (z) ≤ f (x) + 〈∇f (x) , z− x〉+
L

2
||z− x||2

f (g (x)) = f

x− t∇f (x)︸ ︷︷ ︸
z

 ,

≤ f (x) + 〈∇f (x) , −t∇f (x)〉+
L

2
||t∇f (x)||2 ,

≤ f (x)− t ||∇f (x)||2 +
Lt2

2
||∇f (x)||2 ,

≤ f (x) +

(
Lt2

2
− t
)
||∇f (x)||2 ,

≤ f (x)− t

2
||∇f (x)||2 . � (10)

The final inequality in (10) is obtained by the stepsize being 0 < t ≤ 1
L

, multiplying both
sides of this inequality by t

2
and then subtracting the resulting inequality by t. Point 1,
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in Theorem (2) tels us that in each iteration of the gradient descent, the function value
decreases at least by a constant times the norm of the function gradient that is

f (xk+1)− f (xk) ≤ −
t

2
||∇f (xk)||2 , (11)

or equivalently,

f (xk)− f (xk+1) ≥ t

2
||∇f (xk)||2 . (12)

Next, to prove the second point, recall that

f (x) ≤ f (x∗) + 〈∇f (x) , x− x∗〉

substitute

f (g (x)) ≤ f (x∗) + 〈∇f (x) , x− x∗〉 − t

2
||∇f (x)||2

≤ f (x∗)− t

2

(
||∇f (x)||2 − 2

t
〈∇f (x) , x− x∗〉

)
(13)

By completing the square of the last inequality, with2 b = − 2
α

(x− x∗), b
2

= −x−x∗
α

and

2from ax2 + bx + c = 0.
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(
b
2

)2
= ||x−x∗||2

α2 ,

= f (x∗)− α

2

(
||∇f (x)||2 − 2

α
〈∇f (x) , x− x∗〉+

||x− x∗||2

α2
− ||x− x∗||2

α2

)
,

= f (x∗)− α

2

[∣∣∣∣∣∣∣∣∇f (x)− 1

α
(x− x∗)

∣∣∣∣∣∣∣∣2 − 1

α2
||x− x∗||2

]
,

= f (x∗)− α

2

[∣∣∣∣∣∣∣∣α∇f (x)− (x− x∗)

α

∣∣∣∣∣∣∣∣2 − 1

α2
||x− x∗||2

]
,

= f (x∗)− α

2

[
||α∇f (x)− x + x∗||2

α2
− ||x− x∗||2

α2

]
, (14)

= f (x∗)− α

2

(
1

α2

)[
||α∇f (x)− x + x∗||2 − ||x− x∗||2

]
,

= f (x∗)− 1

2α

[
||x∗ − (x− α∇f (x))||2 − ||x− x∗||2

]
,

= f (x∗)− 1

2α

[
||x∗ − g (x)||2 − ||x− x∗||2

]
,

= f (x∗)− 1

2α

[
− ||x− x∗||2 + ||x∗ − g (x)||2

]
,

= f (x∗) +
1

2α
||x− x∗||2 − 1

2α
||x∗ − g (x)||2 ,

= f (x∗) +
1

2α

[
||x− x∗||2 − ||x∗ − g (x)||2

]
,

= f (x∗) +
1

2α

[
||x− x∗||2 − ||g (x)− x∗||2

]
. (15)

Thus,

f (g (x)) ≤ f (x∗) +
1

2α

[
||x− x∗||2 − ||g (x)− x∗||2

]
. �

completing the proof of the second point of Theorem 2.
We are now ready to prove Theorem 1.

f (xk+1) = f (g (xk)) ≤ f (x∗) +
1

2α

[
||x− x∗||2 − ||xk+1 − x∗||2

]
, (16)

for all k = 0, 1, 2, 3, · · · , k − 1. If we apply for all values of k,
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f (x1) ≤ f (x∗) +
1

2α

[
||x0 − x∗||2 − ||x1 − x∗||2 ,

]
f (x2) ≤ f (x∗) +

1

2α

[
||x1 − x∗||2 − ||x2 − x∗||2

]
,

...
...

f (xk) ≤ f (x∗) +
1

2α

[
||xk−1 − x∗||2 − ||xk − x∗||2

]
. (17)

Summing up for all k we get the following

k∑
i=1

f (xi) ≤ kf (x∗) +
1

2α

[
||x0 − x∗||2 − ||xk − x∗||2

]
, (18)

which can be simplified into

kf (xk) ≤ kf (x∗) +
||x0 − x∗||2

2α

kf (xk)− kf (x∗) ≤ ||x0 − x∗||2

2α

f (xk)− f (x∗) ≤ ||x0 − x∗||2

2αk
, � (19)

which completes the proof of the O
(

1
k

)
convergence rate of gradient descent.

2.1.1 Stepsize rule strategies

The rate of convergence for the gradient method discussed above was obtained when we
have prior knowledge of the Lipschitz constant L. Unfortunately in many applications, the
Lipschitz constant L is unknown no practical method exist to estimate it [4].

Instead of using a constant stepsize t = 1
L

, a more practical stepsize is the backtracking
line search method to find the stepsize t. This method is used when no Lipschitz constant
L is known or provided. In the bakctracking line search, if the following condition is true [5]

f (x + t∆x)− f (x) > αt∇f (x)>∆x, (20)

then update the stepsize t as
t = βt. (21)

Where in the above, 0 < α < 0.5, 0 < β < 1 and ∆x is the descent direction which in the
gradient descent method ∆x = ∇f (x). The condition (20) is called the Armijo condition
[6].
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Table 2: Gradient descent algorithm for solving (22)

1. Choose initial x(0) ∈ Rn, Lipschitz constant, L
2. repeat
3. xk+1 = xk − 1

L
A>

(
Axk − y

)
; k = 1, 2, · · ·

4. stop at some point

2.1.2 Applications

In order to understand more the gradient descent algorithm, let us use it to solve a simple
least square problem. Here, we would like to solve the following optimization problem.

minimize
x

f (x) =
1

2
||Ax− y||2 . (22)

By assuming A ∈ Rm×m is symmetric positive definite, this problem is quadratic and we can
re-write it as

minimize
x

f (x) =
1

2
x>A>Ax− b>Ax +

1

2
||b|| . (23)

It is also worth mentioning that this least squares problem is also equivalent to solving a
system of linear equations

Ax = y, (24)

where we minimize the error r = Ax− y in the `2-norm sense i.e., ||Ax− y||2. Now, all we
need is the gradient of f ,

∇f (x) = A> (Ax− y) , (25)

and also the a suitable step size t. If we know the Lipschitz constant L, we can use the
constant step size rule by taking t = 1

L
. The Lipschitz L is taken to be the largest eigenvalue

of A>A. However, if the matrix A is to large, this might be impractical and hence, other
rules are used to find the step size3. The other rules will be discussed as we progress trough
these notes. Now with t = 1

L
and (25) the iteration for solving (22) is listed in Table 2.

In order to visualize the steps taken by the gradient descent algorithm, we will minimize
a simpler quadratic problem which is also an instance of problem (23),

minimize
x

f (x) =
1

2
x>Ax− b>x, (26)

with gradient
∇f (x) = Ax− y, (27)

for x ,b ∈ R2×1 and A ∈ R2×2. For this small example, we have

A =

[
3 2
2 6

]
,

3In general, if we can know the Lipschitz constant L beforehand, it is always a good idea to just use the
constant step size with t = 1

L . Unfortunately, in real applications this might not be the case.
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Figure 1: Convergence of the iterates of gradient descent on a least squares problem. The
bottom plot has the y-axis on a logarithmic scale. The bottom plot also shows that the
gradient descent converges at a linear rate.

and

b =

[
2
−8

]
.

The initial value x0 is chosen to be

x0 =

[
−6
−6

]
.

To further show the steps of gradient descent, we minimize a more difficult objective
function. The function is called the Rosenbrock function. This function is very ill-conditioned
and hence difficult to minimize. The Rosenbrock function is defines as

2.1.3 The Heavy Ball Method

To achieve faster convergence than the gradient descent several other first order algorithms
have been proposed. The heavy ball method by Polyak proposed in 1964 is a multi step first
order method for this purpose. The algorithm is presented in Table 3. Note that the heavy
ball method uses two previous step for its x update.
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Figure 2: The surface plot of the simple quadratic function (26).

Table 3: Heavy Ball Method

1. Choose initial xk−1, xk, xk+1 ∈ Rn, α > 0, β > 0
2. repeat
3. yk+1 = xk + β (xk − xk−1)
4. xk+1 = yk+1 − α∇f

(
xk
)

; k = 1, 2, · · ·
5. stop at some point

2.1.4 Nesterov Accelerated Gradient Descent

The gradient method discussed previously has a convergence rate of O
(

1
k

)
iterations which is

quite slow. In a seminal paper [7], Nesterov proposed an accelerated variant of the gradient
method which can achieve an iteration complexity of O

(
1
k2

)
which is a huge improvement.

This method is usually referred as Nesterov accelerated gradient descent. This convergence
rate is ”optimal” in the sense of complexity analysis of Nemirovski and Yudin [8] i.e., first
order methods cannot converge any faster than this rate [9]. The algorithm is presented in
Table 4.

2.1.5 Performance comparison

With the introduction of the above first order algorithms, let us now compare the perfor-
mance of each algorithm for minimizing the quadratic minimization problem (22),

minimize
x

f (x) =
1

2
||Ax− y||2 ,

11



−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

0.000
30
.0
00

60.
000

90.000

90.000

120.000

120.000
150.000

180.000
210.000

(a) Gradient descent path. Step size, t = 0.065.
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(b) Gradient descent path. Step size, t = 1
L .
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Table 4: Nesterov’s Accelerated Gradient descent algorithm

1. Choose initial t0 = 1, x0 = y0 ∈ Rn, α = 1
L

2. repeat
3. xk+1 = yk − α∇f (xk) ; k = 1, 2, · · ·

4. tk+1 =

(
1+
√

4·t2k+1
)

2

5. yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)

6. stop at some point
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Figure 4

with A ∈ Rn×n as

A =


2 −1 0 · · · 0
−1 2 −1 · · · 0

0
. . . . . . . . . 0

0 · · · −1 2 −1
0 0 · · · −1 2

 ,
and y ∈ Rn a random vector. We wish to recover or obtain x by minimizing the above
problem. The performance of gradient descent, Nesterov’s accelerated descent and Heavy
ball method is shown in Figure 4.

2.2 Anderson Acceleration

Anderson acceleration (AA) was first introduce in the 1960’s to speed up solutions related to
nonlinear integral equations [10]. This extrapolation technique has then been modified for
accelerating fixed point iteration schemes [11]. An advantage of the Anderson acceleration
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technique is the estimation of the solution directly from the available previous sequence
without needing any of problem parameters. Before delving further into the idea of (AA)
we give some preliminaries of fixed point iterations.

2.2.1 Fixed point iterations

The fixed point iteration (FPI) or also called the Picard iteration [12] is an algorithm to find
a fixed point of a function g (·). Recall that x is a fixed point of the function g (x) : Rn → Rn

if
x = g (x) (28)

Let r ∈ Rn be the root of the function g (·), this means

g (r) = 0, (29)

by using (28) this can be written as

g (r) = r− g (r) . (30)

Because r is the root and g (r) = 0,

g (r) = r− 0

= r. (31)

Hence, we can write g (x) = x. In terms of iterations the FPI goes as follows

xk+1 = g
(
xk
)
, (32)
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Algorithm 1. Anderson Acceleration

Input: x0, m ≥ 1
1. x1 = g (x0)
2. for k = 1, 2, · · · , K
3. mk = min (m, k)
4. ri = g (xi)− xi
5. Rk = [rk−mk , · · · , rk]
6. αk = argmin

α>1=1

||Rkα||

7. xk+1 =
∑mk

i=0 α
k
i g (xk−mk+i)

8. end for
Output: xK

with x0 ∈ Rn as some starting point. We will not delve into details of FPI, rather the
interested reader should consult related references on numerical methods. The main point
for this small section on FPI is to show the reader that in the FPI iteration (32), the current
iterate xk+1 is only obtained by one previous iteration xk. Different from AA which we
shall see later, in AA the current iterate is obtained by a linear combination of several past
iterations.

2.2.2 Anderson Accelerated Gradient Descent

As stated earlier, AA is used to speed up convergence of FPI. In order to apply AA for
gradient descent, we will manipulate the gradient descent step as a FPI. First, let us introduce
the AA algorithm. The full AA algorithm is presented as Algorithm 1.

To further understand the steps of AA as listed in Algorithm (??), we will elaborate on
steps 4, 5, 6 and 7. Step 4, is the residual computation of the kth iteration. This residual is
then used as the columns for the kth residual matrix Rk in step 5. To elaborate further, lets
say that we are on the 7th iteration (i.e., k = 7) and our chosen m = 5. From step 3, this
would yield mk = 5 thus, rk−mk = r7−5 = r2 and

R7 = [r2, · · · , r7] ,

= [r2, r3, r4, r5, r6, r7] . (33)

More clearly, Rk would be a matrix as follows,

Rk =



...
...

...
...

...
...

r2 r3 · · · r7
...

...
...

...
...

...


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Let us clarify with another example. Consider now iteration 10 i.e., k = 10. The residual
matrix would be

Rk =



...
...

...
...

...
...

r5 r6 · · · r10
...

...
...

...
...

...


3 Proximal gradient

1. Proximal gradient algorithm is to solve the following optimization problem

min
x
F (x) = f (x) + g (x) , (34)

where f (·) is smooth and differentiable (its gradient ∇f , is Lipschitz continuous) and
g (·) is possibly non-smooth.

2. Problem of the form 34 plays an important role in various signal processing and machine
learning task. Some examples

(a) Basis pursuit denosing (BPD): min
u

1
2
||u− f ||22 + λ ||u||1

3. Due to the non-smooth term g (·) methods such as gradient descent, nonlinear conju-
gate gradient and Newton method are not possible due to the non-differentiable nature
of non-smooth functions.

4. Other methods like splitting methods i.e., ADMM or Douglas-Rachford (DR) can be
used but leads to solving a linear system which needs a solver of its own. Therefore,
we have inner iterations within these splitting algorithms.

5. To deal with the non-smooth function g (·) the proximal operator is used. It is defined
as

z∗ = proxµ g (u) = arg min
z

1

2µ
||z− u||22 + g (u) (35)

6. In the proximal operator, we add a quadratic proximal term to the function g (·). By
minimizing the proximal operator, the solution z∗ is regulated to be in the proximity
of the solution to the minimization of g (·).

7. The scalar µ controls the closeness of the solution z to u. Small values will result z
being close to u while large values will have z close to the minimum of g (·).

8. Solution to the proximal map (35) are usually cheap to compute. They usually have
analytic solution or closed form solution.
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9. Some examples: If g (·) = ||·||22, the proximal amount to solving a linear system of
equation. Closed form with matrix inversion is possible in this situation but iterative
methods are preferable if the problem is of large scale.

3.1 Iterative Shrinkage and Thresholding Algorithm

Consider the unconstrained minimization problem

minimize
x

f (x) , (36)

where f : Rn → R is a continuously differentiable function. The classical gradient descent
solves the above unconstrained optimization problem in each iteration as:

xk+1 = xk − t∇f
(
xk
)
, k = 1, 2, · · · (37)

where t is a step size. The above gradient iteration of xk+1 can be viewed as a proximal
regularization of the linearized function f at xk

xk+1 = argmin
x

f
(
xk
)

+ 〈∇f
(
xk
)
, x− xk〉+

1

2t

∣∣∣∣x− xk
∣∣∣∣2

2
(38)

Recall the following composite objective function (34)

minimize
x

F (x) = f(x) + g(x), (39)

the iterative shrinkage and thresholding algorithm (ISTA) solves this by adopting the same
linearization technique. At each iteration of ISTA, x is updated as4:

xk+1 = argmin
x

f
(
xk
)

+ 〈∇f
(
xk
)
, x− xk〉+

1

2t

∣∣∣∣x− xk
∣∣∣∣2

2
+ g(x)

= argmin
x

1

2t

∣∣∣∣x− (xk − t∇f (xk))∣∣∣∣2
2

+ g (x) . (40)

Note that (40) is actually a proximal operator defined as defined in (35). Here, the
argument to the proximal operator is the gradient step5 xk − t∇f

(
xk
)
. Depending on the

function g (x), the proximal step (40) may have simple closed form solutions. As an example,
if g (x) = ||x||1 i.e., the `1-norm, the proximal step (40) is the well known soft thresholding
or shrinkage operator which can be solved by

soft (x) = sgn (x)�max (|x| − λ) . (41)

More examples will be discussed in the subsequent sections. Next, we will state the conver-
gence of ISTA.

4Refer to appendix to see the derivations
5Hence, the name proximal gradient method.
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The convergence rate of ISTA has the same convergence rate of O
(

1
k

)
as the classical

gradient method (gradient decent). The following theorem states the convergence rate of
ISTA.

Theorem 3. Let {xk} be the sequence generated by ISTA. Then for any k ≥ 1, we have that

F (xk)− F (x∗) ≤ αL ||x0 − x∗||2

2k
, (42)

where x∗ is a minimizer of F , α = 1 for constant stepsize and α = η for backtracking
stepsize.

This theorem states that in order to obtain an ε-optimal solution x i.e., F (x) − F (x∗)

the iteration required is at most C
ε
, where C = αL||x0−x∗||2

2
. Proof of the convergence can be

found in the excellent paper by Beck and Teboulle [13].

Example 1: Basis pursuit denoising (BPD)

We will solve the basis pursuit denoising for sparse signal recover using ISTA. The following
problem is to be minimized

minimize
x

F (x) =
1

2
||Ax− y||22 + λ ||x||1 , (43)

where A ∈ Rm×n is the measurement matrix, y ∈ Rn×1 is the observed corrupted signal and
x ∈ Rn×1 is the sparse signal to be estimated. Obviously, the BPD fits into the model (39)
with f (x) = 1

2
||Ax− y||22 and g (x) = λ ||x||1.

The first step is to compute the gradient of the smooth and differentiable part ∇f (x)
and leaving alone the nonsmooth part g (x). The gradient of f (x) is

∇f (x) = A> (Ax− y) .

By the iteration update of ISTA (40) we have

xk+1 = argmin
x

1

2t

∣∣∣∣x− (xk − t∇f (xk))∣∣∣∣2
2

+ λg (x)

= argmin
x

1

2tλ

∣∣∣∣x− (xk − tA> (Axk − y
))∣∣∣∣2

2
+ g (x) (44)

The value of the stepsize t, is taken to be t = 1
L

, where L ≥ maxeig
(
A>A

)
is the Lips-

chitz constant of the gradient ∇f . The regularization parameter λ, controls the degree of
sparseness of the solution. With these parameter, we can re-write (44) as

xk+1 = argmin
x

1

2
(
λ
L

) ∣∣∣∣∣∣∣∣x− (xk − 1

L
A>

(
Axk − y

))∣∣∣∣∣∣∣∣2
2

+ g (x)

= argmin
x

L

2λ

∣∣∣∣∣∣∣∣x− (xk − 1

L
A>

(
Axk − y

))∣∣∣∣∣∣∣∣2
2

+ g (x)

(45)
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Algorithm 2. ISTA for basis pursuit denoising (constant stepsize)

Input: L (Lipschitz constant), λ (regularization parameter)
1. while not converged
2. v = xk − 1

L
A> (Ax− y)

3. xk+1 = prox λ
L
g (v)

4. k = k + 1
5. end while

For perfect reconstruction or recovery of the sparse signal, we require that the sensing
matrix A satisfy the restricted isometric property (RIP) as follows,

(1− δ) ||x||2 ≤ ||Ax|| ≤ (1− δ) ||x||2 . (46)

Ensuring that the sensing matrix A satisfy RIP is NP-hard. Fortunately, this RIP property
usually holds with very high probability when the entries of the sensing matrix is formed from
some random distribution. For example, if the entries of A has independent and identically
distributed (i.i.d) Gaussian entries then A satisfy RIP with high probability. We will not
delve into the details of the theoretical results that govern the perfect reconstruction in this
note. These theoretical results are discussed with high level of details in papers related to
compressed sensing.

Example 2: Matrix Completion

We are interested in the recovery of a low rank matrix from the following linear model

YΩ = PΩ (X) + N, (47)

where YΩ, X ,N ∈ Rm×n. Therefore we minimize the following objective

minimize
X∈Rm×n

F (X) =
1

2
||YΩ − PΩ (X)||22 + λ ||X||∗ . (48)

Observe that in this case f (X) = 1
2
||YΩ − PΩ (X)||22 and g (X) = λ ||X||∗. The projection

operator P (·) applied to X sets Xi,j, if (i, j) ∈ Ω and 0 otherwise. Therefore, we can re-write
problem (48) as

minimize
X∈Rm×n

F (X) =
1

2
||YΩ −XΩ||22 + λ ||X||∗ . (49)
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Appendix

A Derivation of proximal gradient update

The proximal gradient update (40) is6

xk+1 = argmin
x

f
(
xk
)

+ 〈∇f
(
xk
)
, x− xk〉+

1

2t

∣∣∣∣x− xk
∣∣∣∣2

2
+ g(x)

= argmin
x

1

2t

∣∣∣∣x− (xk − t∇f (xk))∣∣∣∣2
2

+ g (x) .

We will show how to get the latter equation. First, expand

= f
(
xk
)

+ 〈∇f
(
xk
)
, x− xk〉+

1

2t

∣∣∣∣x− xk
∣∣∣∣2

2

= f
(
xk
)

+ x∇f
(
xk
)
− xk∇f

(
xk
)

+
1

2t

(
x>x− 2x>xk + x>k xk

)
= f

(
xk
)

+ x∇f
(
xk
)
− xk∇f

(
xk
)

+
1

2t
x>x− 1

t
x>xk +

1

2
x>k xk,

(50)

by discarding constant terms:

=
1

2t
x>x + x∇f

(
xk
)
− 1

t
x>xk

=
1

2t
x>x−

(
1

t
xk −∇f

(
xk
))

x

=
1

2t

x>x− 2t

(
1

t
xk −∇f (xk)

)
x︸ ︷︷ ︸

ax2+bx+c, form

 , (51)

we will now need to complete the square for expression (51). With a = 1 and

b = −2t

(
1

t
xk −∇f (xk)

)
Elementary algebra for completing the square is to express the quadratic form ax2 + bx+ c
in the form of

a

[(
x− b

2

)2

+
b2

4
+ c

]
,

6This is actually an identity as stated in chapter 9 of [3].
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which we will do for (51). We have

b

2
= −

2t
(

1
t
xk −∇f (xk)

)
2

= − (xk − t∇f (xk)) (52)

and (
b

2

)2

= [−xk + t∇f (xk)]
2

Applying the elementary completing the square formula,

1

2t

[
x>x− 2t

(
1

t
xk −∇f (xk)

)
x + (−xk + t∇f (xk))

2 − (−xk + t∇f (xk))
2

]
=

1

2t

[
(x− (xk − t∇f (xk)))

2 − (−xk + t∇f (xk))
2]

=
1

2t

[
(x− (xk − t∇f (xk)))

2 − constant
]

=
1

2t
(x− (xk − t∇f (xk)))

2 − 1

2t
constant

=
1

2t
||x− (xk − t∇f (xk))||22 + constant. (53)

Combining with the function g (x), we get the desired equation

1

2t
||x− (xk − t∇f (xk))||22 + g (x) (54)

B Lyapunov Functions and Gradient Methods

B.1 Differential equation of the gradient descent
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