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This Talk

Based on our book chapter of the recently published book
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Introduction
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The Big Data Deluge

• The amount of data collected in the digital age has been
tremendously growing.
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The Big Data Deluge

• The amount of data collected in the digital age has been
tremendously growing.

• Some of these data are freely available and can be used
without any fee.

• "With great power comes great responsibility"- Uncle Ben
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The Big Data Deluge
Problems and Challenges

"With big data comes big problems"
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The Big Data Deluge
Problems and Challenges

• "How do we process these data?"
• "How do we predict future events or make the best

decisions given the data at hand?"
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The Big Data Deluge
Problems and Challenges

• Large data are rarely clean. The data collected contains
noise and outliers.

• Incomplete data with missing values.
• How do we extract/select only important feature in the data

that will contribute to the intended task?
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The Big Data Deluge
Problems and Challenges

The aforementioned questions and the example situations
given are the driving force in Signal Processing (SP) and
Machine Learning (ML).
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Mathematical Optimization
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Preliminaries
Mathematical Notations

• Rn := Denotes the n-dimensional Euclidean space
equipped with an inner product ⟨·, ·⟩.
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Preliminaries
Mathematical Notations

• Rn := Denotes the n-dimensional Euclidean space
equipped with an inner product ⟨·, ·⟩

• Rm×n := The set of m × n matrices with real entries.
• Bold lowercase and uppercase letters denote vectors and

matrices i.e., u, X. Hadamard product of vectors and
matrices is denoted by ⊙.

• The ℓ1 and ℓ2, norms are defined as

∥x∥1 :=
∑

i

|xi |, ∥x∥2 :=

(∑
i

|xi |2
) 1

2
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Preliminaries
Mathematical Notations

• The proximal operator is defined as

proxµ, g (x) = argmin
z

1
2µ

∥z − x∥2
2 + g (x) .
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Preliminaries
Mathematical Notations

• The proximal operator is defined as

proxµ, g (x) = argmin
z

1
2µ

∥z − x∥2
2 + g (x) .

• When g (x) = ∥x∥1, the solution is "simple" with closed
form solution 1

proxµ, ∥x∥1
(x) = argmin

z

1
2µ

∥z − x∥2
2 + ∥x∥1, (1)

= sgn (x)⊙ max{|x| − µ, 0}. (2)

1C. A. Micchelli, L. Shen, and Y. Xu, “Proximity algorithms for image models: denoising,” Inverse Problems,
vol. 27, no. 4, p. 045009, 2011
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Problem Setup
Composite Optimization Problem

What type of optimization problem ADMM solves?
• The composite minimization problem

minimize
x∈Rn

f (x) + λg (x) , (3)

where f : Rn → R is smooth and convex, g : Rn → R is
convex but nonsmooth.
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Problem Setup
Composite Optimization Problem

What type of optimization problem ADMM solves?
• The composite minimization problem

minimize
x∈Rn

f (x) + λg (x) , (4)

where f : Rn → R is smooth and convex, g : Rn → R is
convex but nonsmooth.

• Composite minimization problem (4) are abundant in
Image Processing (IP), SP, and ML.
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Problem Setup
Composite Optimization Problem

Table: Some popular optimization models that falls into the category of model (4). Regularized logistic

regression (RLR) , Noisy matrix completion (NMC) , Robust principal component analysis (RPCA) , Regularized

least-squares (RLS) , Discrete total variation minimization (DTVM) , and ℓ1 Trend filtering (ℓ1-TF).

Model f (·) g (·)
NMC 2 1

2∥YΩ − XΩ∥2
2 λ∥X∥∗

RPCA 3 ∥L∥∗ λ∥S∥1
DTVM 4 1

2∥x − y∥2
2 λ∥Dx∥1

ℓ1-TF 5 1
2∥x − y∥2

2 λ∥Dk+1x∥1, k ≥ 0

2K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regularized linear least
squares problems,” Pacific Journal of optimization, vol. 6, no. 615-640, p. 15, 2010

3E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM (JACM),
vol. 58, no. 3, pp. 1–37, 2011

4A. Chambolle and T. Pock, “An introduction to continuous optimization for imaging,” Acta Numerica, vol. 25, pp.
161–319, 2016

5A. Ramdas and R. J. Tibshirani, “Fast and flexible admm algorithms for trend filtering,” Journal of Computational
and Graphical Statistics, vol. 25, no. 3, pp. 839–858, 2016
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Problem Setup
Composite Optimization Problem

Table: Some popular optimization models that falls into the category of model (4). Regularized logistic

regression (RLR) , Noisy matrix completion (NMC) , Robust principal component analysis (RPCA) , Regularized

least-squares (RLS) , Discrete total variation minimization (DTVM) , and ℓ1 Trend filtering (ℓ1-TF).

Model f (·) g (·)
NMC 6 1

2∥YΩ − XΩ∥2
2 λ∥X∥∗

RPCA 7 ∥L∥∗ λ∥S∥1
DTVM 8 1

2∥x − y∥2
2 λ∥Dx∥1

ℓ1-TF 9 1
2∥x − y∥2

2 λ∥Dk+1x∥1, k ≥ 0

6K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regularized linear least
squares problems,” Pacific Journal of optimization, vol. 6, no. 615-640, p. 15, 2010

7E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM (JACM),
vol. 58, no. 3, pp. 1–37, 2011

8A. Chambolle and T. Pock, “An introduction to continuous optimization for imaging,” Acta Numerica, vol. 25, pp.
161–319, 2016

9A. Ramdas and R. J. Tibshirani, “Fast and flexible admm algorithms for trend filtering,” Journal of Computational
and Graphical Statistics, vol. 25, no. 3, pp. 839–858, 2016
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Problem Setup
Composite Optimization Problem

Table: Some popular optimization models that falls into the category of model (4). Regularized logistic

regression (RLR) , Noisy matrix completion (NMC) , Robust principal component analysis (RPCA) , Regularized

least-squares (RLS) , Discrete total variation minimization (DTVM) , and ℓ1 Trend filtering (ℓ1-TF).

Model f (·) g (·)
NMC 10 1

2∥YΩ − XΩ∥2
2 λ∥X∥∗

RPCA 11 ∥L∥∗ λ∥S∥1
DTVM 12 1

2∥x − y∥2
2 λ∥Dx∥1

ℓ1-TF 13 1
2∥x − y∥2

2 λ∥Dk+1x∥1, k ≥ 0

10K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regularized linear least
squares problems,” Pacific Journal of optimization, vol. 6, no. 615-640, p. 15, 2010

11E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM (JACM),
vol. 58, no. 3, pp. 1–37, 2011

12A. Chambolle and T. Pock, “An introduction to continuous optimization for imaging,” Acta Numerica, vol. 25, pp.
161–319, 2016

13A. Ramdas and R. J. Tibshirani, “Fast and flexible admm algorithms for trend filtering,” Journal of Computational
and Graphical Statistics, vol. 25, no. 3, pp. 839–858, 2016
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Problem Setup
Composite Optimization Problem

Table: Some popular optimization models that falls into the category of model (4). Regularized logistic

regression (RLR) , Noisy matrix completion (NMC) , Robust principal component analysis (RPCA) , Regularized

least-squares (RLS) , Discrete total variation minimization (DTVM) , and ℓ1 Trend filtering (ℓ1-TF).

Model f (·) g (·)
NMC 14 1

2∥YΩ − XΩ∥2
2 λ∥X∥∗

RPCA 15 ∥L∥∗ λ∥S∥1
DTVM 16 1

2∥x − y∥2
2 λ∥Dx∥1

ℓ1-TF 17 1
2∥x − y∥2

2 λ∥Dk+1x∥1, k ≥ 0

14K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regularized linear least
squares problems,” Pacific Journal of optimization, vol. 6, no. 615-640, p. 15, 2010

15E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM (JACM),
vol. 58, no. 3, pp. 1–37, 2011

16A. Chambolle and T. Pock, “An introduction to continuous optimization for imaging,” Acta Numerica, vol. 25, pp.
161–319, 2016

17A. Ramdas and R. J. Tibshirani, “Fast and flexible admm algorithms for trend filtering,” Journal of Computational
and Graphical Statistics, vol. 25, no. 3, pp. 839–858, 2016
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The Alternating
Direction Methods of Multipliers

General Problem

The ADMM solves problems of the following form,

minimize
x, v

f (x) + g (v)

s.t Ax + Bv = z,
(5)

where x,v ∈ Rn×1, A,B ∈ Rn×n and f (·) ,g (·) : Rn×1 → R are
convex functions.
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The Alternating
Direction Methods of Multipliers

General Problem

The Augmented Lagrangian function for problem (5) is

LA (x,v, µ) = f (x)+g (v)+ ⟨µ, Ax+Bv−z⟩+ ρ

2
∥Ax+Bv−z∥2

2.

(6)
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The Alternating
Direction Methods of Multipliers

General Problem

Goal: Find the saddle point of (6) by alternately minimizing with
respect to each variable

xk+1 = argmin
x

f (x) + ⟨µ, Ax + Bvk − z⟩+ ρ
2∥Ax + Bvk − z∥2

2,

vk+1 = argmin
v

g (v) + ⟨µ, Axk+1 + Bv − z⟩+ ρ
2∥Axk+1 + Bv − z∥2

2,

µk+1 = µk + ρ
(

Axk+1 + Bvk+1 − z
)
,

(7)
where k is the k th iteration.
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The Alternating
Direction Methods of Multipliers

General Problem

Algorithm 1: ADMM
Initialize: x0, v0, µ0, k = 0, and ρ > 0

1 while not converged do
2 xk+1 = argmin

x
f (x) + ρ

2∥Ax + Bvk − z + µk

ρ ∥2
2

3 vk+1 = argmin
v

g (v) + ρ
2∥Axk+1 + Bv − z + µk

ρ ∥2
2

4 µk+1 = µk + ρ
(

Axk+1 + Bvk+1 − d
)

5 k = k + 1
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Applications
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Image Denoising
Degradation Model

• Assuming the following degradation model

y = x + n, (8)

y ∈ Rn is the observed corrupted image, x ∈ Rn is the
clean image that is to be estimated, n ∈ Rn is additive
Gaussian noise.
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Image Denoising
Total Variation Denoising

• A classical and very popular model is the Total Variation
(TV) 18 19 denoising model:

minimize
x

F (x) =
∫
Ω
(x − y)2 + λ

∫
Ω
|∇x |, (9)

18L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D:
Nonlinear Phenomena, vol. 60, no. 1, pp. 259–268, 1992

19R. Chartrand and V. Staneva, “Total variation regularisation of images corrupted by non-gaussian noise using a
quasi-newton method,” IET Image Processing, vol. 2, no. 6, pp. 295–303, 2008
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Image Denoising
Total Variation Denoising

• A classical and very popular model is the Total Variation
(TV) denoising model:

minimize
x

F (x) =
∫
Ω
(x − y)2 + λ

∫
Ω
|∇x |, (9)

• Widely used due to its edge preserving capabilities.
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Image Denoising
Total Variation Denoising

• The TV in vector notation

minimize
x

F (x) =
1
2
∥x − y∥2

2 + λ∥Dx∥1, (10)
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Image Denoising
Total Variation Denoising

• The TV in vector notation

minimize
x

F (x) =
1
2
∥x − y∥2

2 + λ∥Dx∥1, (10)

• In the form of (5) with A = D, B = −I, and z = 0 in (5) thus,
amenable to ADMM.
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Image Denoising
Total Variation Denoising

• The TV in vector notation

minimize
x

F (x) =
1
2
∥x − y∥2

2 + λ∥Dx∥1, (10)

• In the form of (5) with A = D, B = −I, and z = 0 in (5) thus,
amenable to ADMM.

• The TV in ADMM form (5)

minimize
x

1
2
∥x − y∥2

2 + λ∥v∥1,

s.t v = Dx.
(11)
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Image Denoising
Total Variation Denoising

minimize
x

1
2
∥x − y∥2

2 + λ∥v∥1,

s.t v = Dx.
(11)

• Next steps,
• Construct the augmented Lagrangian function LA
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Image Denoising
Total Variation Denoising

minimize
x

1
2
∥x − y∥2

2 + λ∥v∥1,

s.t v = Dx.
(11)

• Next steps,
• Construct the augmented Lagrangian function LA
• Alternate minimization of each subproblem
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Image Denoising
Total Variation Denoising

• The LA function for (11)

LA (x, v, µ) =
1
2
∥x−y∥2

2+λ∥v∥1−⟨µ, v−Dx⟩+ ρ

2
∥v−Dx∥2

2

(12)
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Image Denoising
Total Variation Denoising

• The LA function for (11)

LA (x, v, µ) =
1
2
∥x−y∥2

2+λ∥v∥1−⟨µ, v−Dx⟩+ ρ

2
∥v−Dx∥2

2

(13)
• Alternate minimization

xk+1 = argmin
x

1
2∥x − y∥2

2 − ⟨µ, vk − Dx⟩+ ρ
2∥vk − Dx∥2

2,

vk+1 = argmin
v

ρ
2∥v − Dxk+1∥2

2 + λ∥v∥1 − ⟨µ, v − Dxk+1⟩,

µk+1 = µk + ρ
(

vk+1 − Dxk+1
)
.

(14)
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Image Denoising
Total Variation Denoising

• Complete ADMM total variation image denoising

Algorithm 2: ADMM for TV image denoising.

Initialize: x0, v0, µ0, k = 0, ρ > 0, and λ > 0
1 while not converged do
2 xk+1 = argmin

x

1
2∥x − y∥2

2 +
ρ
2∥vk − Dx + µk

ρ ∥2
2 // solved

via conjugate gradient (CG)

3 vk+1 = argmin
v

λ∥v∥1 +
ρ
2∥v − Dxk+1 + µk

ρ ∥2
2

4 µk+1 = µk + ρ
(

vk+1 − Dxk+1
)

5 k = k + 1

45



Image Denoising
Total Variation Denoising

Some remarks on Algorithm 2
• The first-order difference matrix

D =


−1 1

−1 1 0
0 . . . . . .

−1 1

 .

• The regularization parameter λ controls the amount of
noise filtered.

• The algorithm can be terminated by several ways. The
simplest is by a predefined number of iteration.
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Image Denoising
Total Variation Denoising

Some remarks on Algorithm 2
• The minimization problem w.r.t x is a linear system. This

can be solved using several iterations of Conjugate
Gradient (CG) method.

• The minimization problem w.r.t v has a closed form
solution via the ℓ1-norm proximal operator 20

vk+1 = sgn
(

Dxk+1 +
µ

ρ

)
⊙max{|Dxk+1+

µ

ρ
|−λ

ρ
,0}, (15)

20C. A. Micchelli, L. Shen, and Y. Xu, “Proximity algorithms for image models: denoising,” Inverse Problems,
vol. 27, no. 4, p. 045009, 2011
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Image Denoising
Results

(a) Noisy, σ = 20 (b) Zoomed (c) ADMM denoised

(d) Noisy, σ = 40 (e) Zoomed (f) ADMM denoised

Figure: Noise level of σ = 20 and σ = 40 with regularization
parameter λ = 8 and λ = 25 respectively. Value of ρ = 0.3
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Image Denoising
Results

(a) Noisy, σ = 80 (b) Zoomed (c) ADMM denoised

Figure: Noise level of σ = 80 with regularization parameter λ = 50.
Value of ρ = 0.3
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Time-series Smoothing
Problem Definition

• Applications in fields such as climatology,
macroeconomics, environmental science, and finance. In
finance and economics, it is called trend filtering 21

• Given a time-series data point ft , t = 1, · · · ,n assumed to
consist of two components, a slow varying trend ut and a
rapidly varying random component zt , estimate the slowly
varying component ut such that zt = ft − ut i.e., the error is
small as possible.

• The slow varying component ut is estimated by the j th

order smoothing by solving the following optimization
problem

21R. Gençay, F. Selçuk, and B. J. Whitcher, An introduction to wavelets and other filtering methods in finance and
economics. Elsevier, 2001
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Time-series Smoothing
Problem Definition

• The time-series smoothing problem posed as an ADMM
optimization problem

minimize
u∈Rn

λ

2
∥u − f∥2

2 + ∥Dj+1u∥1

s.t v = Dj+1u.
(16)
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Time-series Smoothing
Problem Definition

• The time-series smoothing problem posed as an ADMM
optimization problem

minimize
u∈Rn

λ

2
∥u − f∥2

2 + ∥Dj+1u∥1

s.t v = Dj+1u.
(17)

• The scalar λ is the smoothing parameter, Dj+1 ∈ R(n−j)×n

is the j th order discrete difference operator,
f = [f1, · · · , fn] ∈ Rn, and u = [u1, · · · ,un] ∈ Rn. In this talk,
j = 1 thus

D2 =


1 −2 1

1 −2 1
1 −2 1

. . . . . .
1 1 −2
−2 1 1

 . (18)
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Time-series Smoothing
Problem Formulation

• The augmented Lagrangian LA of (17)

LA (u, v, µ) =
λ

2
∥u−f∥2

2+λ∥v∥1−⟨µ, v−D2u⟩+ρ

2
∥v−D2u∥2

2,

(19)
• Alternating minimize

uk+1 = argmin
u

λ
2∥u − f∥2

2 − ⟨µ, v − D2u⟩+ ρ
2∥vk − D2u∥2

2,

vk+1 = argmin
v

ρ
2∥v − D2uk+1∥2

2 + ∥v∥1 − ⟨µ, v − D2u⟩,

µk+1 = µk + ρ
(

vk+1 − D2uk+1
)
.

(20)
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Time-series Smoothing
Problem Formulation

Algorithm 3: ADMM for time-series smoothing

Initialize: u0, f0, µ0, k = 0, and ρ > 0
1 while not converged do
2 uk+1 = argmin

u

λ
2∥u − f∥2

2 +
ρ
2∥vk − D2u + µk

ρ ∥2
2

// solved via conjugate gradient (CG)

3 vk+1 = argmin
v

∥v∥1 +
ρ
2∥v −

(
D2uk+1

+ µk

ρ

)
∥2

2

4 µk+1 = µk + ρ
(

vk+1 − D2uk+1
)

5 k = k + 1
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Time-series Smoothing
Problem Formulation

Remarks on Algorithm 3
• The minimization problems w.r.t u and v are solved in a

similar fashion as in the TV denoising.
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Time-series Smoothing
Results

Smoothing daily death rate of COVID-19 time-series
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Time-series Smoothing
Results

Smoothing via ADMM Algorithm 3 (λ = 0.0035 and ρ = 1.35)
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Time-series Smoothing
Results

Real data vs Smoothed data
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Conclusions
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Take Home Messages

• The ADMM can be used in various applications in ML and
SP. Simple examples in this talk

• Image denoising
• Time-series smoothing

• Applications not touched in this talk
• Mesh processing in computer graphics 22

• Deep algorithm unrolling 23 24 (provable deep learning)

22T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker, “Compressed manifold modes for mesh
processing,” in Computer Graphics Forum, vol. 33, no. 5. Wiley Online Library, 2014, pp. 35–44

23Y. Yang, J. Sun, H. Li, and Z. Xu, “Admm-csnet: A deep learning approach for image compressive sensing,”
IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 3, pp. 521–538, 2018

24V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image
processing,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021
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Take Home Messages

• Some advantages of ADMM
• Simple to formulate for a variety of applications. Sub

minimization problems will usually have closed form
solutions.

• Implementation in code usually just takes several lines
• Steps to minimize composite optimization problems using

ADMM
1. Formulate the optimization problem into ADMM form (5)
2. Construct the augmented Lagrangian LA
3. Alternately minimize each variables involved
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Thank You !
Q&A
ADMM example codes can be obtained at my Github:
https://github.com/tarmiziAdam2005/Image-Signal-Processing
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