

Optimization-based Image & Signal Processing

Tarmizi bin Adam, Ph.D. Faculty of Computing

December 11, 2023

Outline

Introduction

Gradient Descent
Heavy-Ball Method
Nesterov Acceleration

Alternating Direction Method of Multipliers (ADMM)

Tseng's Alternating Minimization Algorithm (AMA)

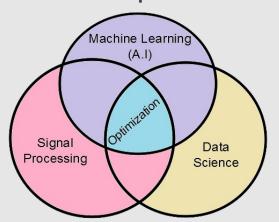
Conclusions

Introduction

This talk will be

- A non exhaustive overview of some algorithms.
- Avoiding a lot of mathematical details.
- Focusing only on signal/image processing applications.

Mathematical Optimization 1 2 3



¹L. Bottou, F. E. Curtis, and J. Nocedal, "Optimization methods for large-scale machine learning," Siam Review, vol. 60, no. 2, pp. 223-311, 2018

³S. J. Wright and B. Recht, Optimization for data analysis. Cambridge University Press, 2022

²Z.-Q. Luo and W. Yu, "An introduction to convex optimization for communications and signal processing," IEEE Journal on selected areas in communications, vol. 24, no. 8, pp. 1426-1438, 2006

Mathematical Optimization

Main problem

In mathematical optimization we are interested in the following unconstrained optimization problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} F(\mathbf{x}), \tag{1}$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is a smooth convex function.

- First-order algorithms are usually the choice for solving (1) for large scale problems.
- Gradient Descent (GD)⁴ and its many variants are standard choices.

⁴H. Li, C. Fang, and Z. Lin, "Accelerated first-order optimization algorithms for machine learning," *Proceedings of the IEEE*, vol. 108, no. 11, pp. 2067–2082, 2020

Augustin-Louis Cauchy

- Developed in the 19th century by Augustin-Louis Cauchy⁵.
- Motivated by astronomy for calculating orbits of heavenly bodies.
- Method of choice for low or medium accuracy solutions due to low per-iteration cost⁶.

⁶V. Cevher, S. Becker, and M. Schmidt, "Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics," *IEEE Signal Processing Magazine*, vol. 31, no. 5, pp. 32–43, 2014

⁵C. Lemaréchal, "Cauchy and the gradient method," *Doc Math Extra*, vol. 251, no. 254, p. 10, 2012

Main idea

■ Consider the problem

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} F(\mathbf{x}). \tag{2}$$

■ The GD iteration

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla F(\mathbf{x}_k), \quad k = 1, 2, \cdots$$
 (3)

where $\eta > 0$ is the step size (learning rate) and ∇F is the gradient of the function f.

Algorithm

Complete algorithm for the GD

Algorithm 1: Gradient Descent Algorithm

Initialize:
$$\mathbf{x}_0 \in \mathbb{R}^n$$
, $\eta > 0$

1 while not converged do

2 |
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla F(\mathbf{x}_k); \quad k = 1, 2, \cdots$$

3 | $k = k + 1$

$$k = k + 1$$

Tikhonov regularized image denoising

Andrey Nikolayevich Tikhonov

 Image denoising as minimizing a Tikhonov functional

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize } F\left(\mathbf{x}\right)} = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_2^2, \tag{4}$$

where $\lambda > 0$ is regularization parameter which effects the noise filtering.

■ The Tikhonov functional is smooth and convex

Tikhonov regularized image denoising

■ The gradient of the Tikhonov functional,

$$abla F(\mathbf{x}_k) = \mathbf{x}_k - \mathbf{y} + 2\lambda \mathbf{D}^{\top} \mathbf{D} \mathbf{x}_k$$

■ Thus, the GD step for Tikhonov image denoising,

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \left(\mathbf{x}_k - \mathbf{y} + 2\lambda \mathbf{D}^{\mathsf{T}} \mathbf{D} \mathbf{x}_k \right); \quad k = 1, 2, \cdots$$
 (5)

Other Variants & Improving convergence

- We can improve the convergence of GD by momentum methods
 - Heavy-Ball (HB) method⁷

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla F(\mathbf{x}_k) + \beta(\mathbf{x}_t - \mathbf{x}_{t-1})$$
 (6)

Nesterov acceleration⁸

$$\mathbf{x}_{k+1} = \mathbf{y}_{k} - \eta \nabla F(\mathbf{y}_{k})$$

$$t_{k+1} = \frac{t_{k} - 1}{t_{k} + 2}$$

$$\mathbf{y}_{k+1} = \mathbf{x}_{k+1} + t_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_{k})$$
(7)

⁷B. T. Polyak, "Some methods of speeding up the convergence of iteration methods," *Ussr computational mathematics and mathematical physics*, vol. 4, no. 5, pp. 1–17, 1964

⁸Y. E. Nesterov, "A method for solving the convex programming problem with convergence rate," in *Dokl. Akad. Nauk SSSR.*, vol. 269, 1983, pp. 543–547

dB)

Total Variation Denoising

Stanley Osher

- Tikhonov regularized image denoising tends to over smooth the image. We need a better model!
- A classical and very popular model is the Total Variation (TV) denoising⁹ model:

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} F(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1,$$
(8)

Widely used due to its edge preserving capabilities.

⁹L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," *Physica D: Nonlinear Phenomena*, vol. 60, no. 1, pp. 259–268, 1992

Total Variation Denoising

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} F(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1, \tag{9}$$

- The main problem with TV model is the non-smooth ℓ_1 -norm regularization.
- The overall TV model is a smooth + non-smooth model. Thus, a non-differentiable optimization model.
- We need more involved optimization techniques for this.

Alternating Direction Method of Multipliers

- The ADMM is a widely used optimization algorithm¹⁰. Its origins date back to the 70's¹¹ 12.
- The composite minimization problem

minimize
$$f(\mathbf{x}) + g(\mathbf{v})$$

s.t $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{v} = \mathbf{z}$, (10)

where $\mathbf{x}, \mathbf{v} \in \mathbb{R}^{n \times 1}$, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $f(\cdot), g(\cdot) : \mathbb{R}^{n \times 1} \to \mathbb{R}$ are convex functions. The function $g(\cdot)$ is possibly non-smooth.

ADMM is well suited for TV denoising.

¹⁰S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Foundations and Trends® in Machine Learning*, vol. 3, no. 1, pp. 1–122, 2011

¹¹D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite element approximation." *Computers & Mathematics with Applications*, vol. 2, no. 1, pp. 17–40, 1976

¹²,R. Glowinski and A. Marroco, "Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires," *Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique*, vol. 9, no. R2, pp. 41=76, 1975

Total Variation Denoising

■ The TV in ADMM form (10)

minimize
$$\frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{v}\|_1,$$
s.t $\mathbf{v} = \mathbf{D}\mathbf{x}$, (11)

when $\mathbf{A} = \mathbf{D}$, $\mathbf{B} = -\mathbf{I}$, and $\mathbf{z} = \mathbf{0}$ in (10) thus, amenable to ADMM.

Total Variation Denoising

■ The \mathcal{L}_A function for (11)

$$\mathcal{L}_{\mathcal{A}}\left(\mathbf{x},\,\mathbf{v},\mu\right) = \frac{1}{2}\|\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda\|\mathbf{v}\|_{1} - \langle\mu,\,\mathbf{v} - \mathbf{D}\mathbf{x}\rangle + \frac{\rho}{2}\|\mathbf{v} - \mathbf{D}\mathbf{x}\|_{2}^{2}$$
(12)

Alternate minimization

$$\begin{cases} \mathbf{x}^{k+1} = \underset{\mathbf{x}}{\arg\min} \ \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 - \langle \mu, \, \mathbf{v}^k - \mathbf{D}\mathbf{x} \rangle + \frac{\rho}{2} \|\mathbf{v}^k - \mathbf{D}\mathbf{x}\|_2^2, \\ \mathbf{v}^{k+1} = \underset{\mathbf{v}}{\arg\min} \ \frac{\rho}{2} \|\mathbf{v} - \mathbf{D}\mathbf{x}^{k+1}\|_2^2 + \lambda \|\mathbf{v}\|_1 - \langle \mu, \, \mathbf{v} - \mathbf{D}\mathbf{x}^{k+1} \rangle, \\ \mu^{k+1} = \mu^k + \rho \left(\mathbf{v}^{k+1} - \mathbf{D}\mathbf{x}^{k+1} \right). \end{cases}$$

$$(13)$$

Total Variation Denoising

■ Complete ADMM total variation image denoising

Algorithm 2: ADMM for TV image denoising. **Initialize:** \mathbf{x}^0 , \mathbf{v}^0 , μ^0 , k = 0, $\rho > 0$, and $\lambda > 0$

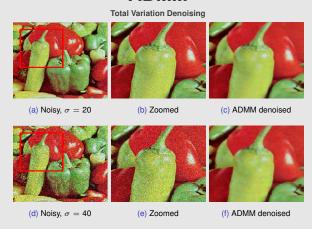


Figure: Noise level of $\sigma=20$ and $\sigma=40$ with regularization parameter $\lambda=8$ and $\lambda=25$ respectively. Value of $\rho=0.3$

Total Variation Denoising

Figure: Noise level of $\sigma=80$ with regularization parameter $\lambda=50$. Value of $\rho=0.3$

Time-series Smoothing

- Applications in fields such as climatology, macroeconomics, environmental science, and finance. In finance and economics, it is called trend filtering ¹³
- Given a time-series data point f_t , $t = 1, \dots, n$ assumed to consist of two components, a slow varying trend u_t and a rapidly varying random component z_t , estimate the slowly varying component u_t such that $z_t = f_t u_t$ i.e., the error is small as possible.
- The slow varying component u_t is estimated by the j^{th} order smoothing by solving the following optimization problem

¹³ R. Gençay, F. Selçuk, and B. J. Whitcher, An introduction to wavelets and other filtering methods in finance and economics. Elsevier, 2001

Time-series Smoothing

■ The time-series smoothing problem

$$\underset{\mathbf{u} \in \mathbb{R}^n}{\text{minimize}} \ \frac{1}{2} \|\mathbf{u} - \mathbf{f}\|_2^2 + \lambda \|\mathbf{D}^{j+1}\mathbf{u}\|_1, \tag{14}$$

where the scalar λ is the smoothing parameter, $\mathbf{D}^{j+1} \in \mathbb{R}^{(n-j) \times n}$ is the j^{th} order discrete difference operator.

Tseng's Alternating Minimization Algorithm

- For time-series smoothing, we can use Tseng's Alternating Minimization Algorithm¹⁴ (AMA).
- One advantage, does not need to solve a linear system, unlike ADMM.
- Different from ADMM, in each iteration, AMA minimizes both the Lagrangian and the augmented Lagrangian.

¹⁴P. Tseng, "Applications of a splitting algorithm to decomposition in convex programming and variational inequalities," *SIAM Journal on Control and Optimization*, vol. 29, no. 1, pp. 119–138, 1991

AMA

Time-series Smoothing

■ The AMA also solves optimization problems of the form (10). For the time-series smoothing, the complete AMA algorithm is

Algorithm 3: AMA (Time-series smoothing)

```
Initialize: \lambda > 0, \tau > 0, \mathbf{u}_0, \mathbf{v}_0, \rho_0 > 0, k = 0

1 while not converged do

2 | \mathbf{u}_{k+1} = \underset{\mathbf{u} \in \mathbb{R}^m}{\operatorname{argmin}} \frac{1}{2} || \mathbf{u} - \mathbf{f}||_2^2 + \langle \rho_k, \mathbf{v}_k - \mathbf{D}^2 \mathbf{u} \rangle,

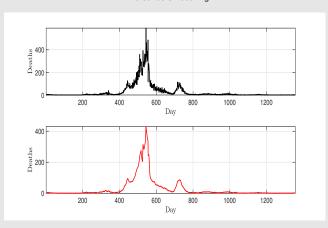
3 | \mathbf{v}_{k+1} = \underset{\mathbf{v} \in \mathbb{R}^n}{\operatorname{argmin}} \lambda || \mathbf{v} ||_1 + \langle \rho_k, \mathbf{v} - \mathbf{D}^2 \mathbf{u}_{k+1} \rangle + \frac{\beta}{2} || \mathbf{v} - \mathbf{D}^2 \mathbf{u}_{k+1} ||_2^2,

4 | \rho_{k+1} = \rho_k + \tau \left( \mathbf{v}_{k+1} - \mathbf{D}^2 \mathbf{u}_{k+1} \right).

5 | k = k+1
```


AMA

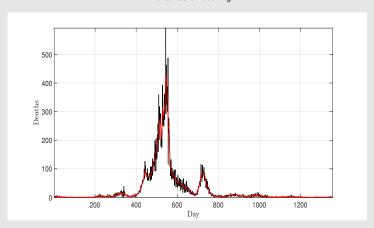
Time-series Smoothing



Malaysia Covid19 death per day (17/2/2020 - 2/12/2023)

AMA

Time-series Smoothing



Malaysia Covid19 death per day (17/2/2020 - 2/12/2023)

Summary

- Reviewed some popular mathematical optimization algorithm
 - Gradient Descent (GD) and some of its variants.
 - Alternating Direction Method of Multipliers (ADMM)
 - Tseng's Alternating Minimization Algorithm (AMA)
- Mathematical optimization is used in various applications in signal processing and image processing. Simple examples in this talk
 - Image denoising
 - Time-series smoothing

Summary

- Other mathematical optimization algorithms worth knowing (not discussed)
 - Proximal Gradient (PG) and accelerated PG methods¹⁵.
 - Primal-Dual Hybrid Gradient (PDHG) methods¹⁶
- Other applications (outside signal & image processing) not touched in this talk
 - Mesh processing in computer graphics ¹⁸
 - Deep algorithm unrolling ¹⁹ ²⁰ (provable deep learning)

¹⁵A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009

¹⁶L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, "Proximal splitting algorithms for convex optimization: A tour of recent advances, with new twists," *SIAM Review*, vol. 65, no. 2, pp. 375–435, 2023

¹⁷N. Komodakis and J.-C. Pesquet, "Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems," *IEEE Signal Processing Magazine*, vol. 32, no. 6, pp. 31–54, 2015

¹⁸T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker, "Compressed manifold modes for mesh processing," in *Computer Graphics Forum*, vol. 33, no. 5. Wiley Online Library, 2014, pp. 35–44

¹⁹Y. Yang, J. Sun, H. Li, and Z. Xu, "Admm-csnet: A deep learning approach for image compressive sensing," IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 3, pp. 521–538, 2018

²⁰ V. Monga, Y. Li, and Y. C. Eldar, "Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing," *IEEE Signal Processing Magazine*, vol. 38, no. 2, pp. 18–44, 2021

Thank You! Q&A

Codes to reproduce the figures can be obtained at my Github: https://github.com/tarmiziAdam2005/2023-Workshop-on-Metaverse