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Introduction

This talk will be
A non exhaustive overview of some algorithms.
Avoiding a lot of mathematical details.
Focusing only on signal/image processing applications.
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Mathematical Optimization
Main problem

In mathematical optimization we are interested in the
following unconstrained optimization problem

minimize
x∈Rn

F (x) , (1)

where F : Rn → R is a smooth convex function.
First-order algorithms are usually the choice for solving (1)
for large scale problems.
Gradient Descent (GD)4 and its many variants are
standard choices.

4H. Li, C. Fang, and Z. Lin, “Accelerated first-order optimization algorithms for machine learning,” Proceedings of
the IEEE, vol. 108, no. 11, pp. 2067–2082, 2020



Gradient Descent

Augustin-Louis Cauchy

Developed in the 19th century by
Augustin-Louis Cauchy5.
Motivated by astronomy for
calculating orbits of heavenly bodies.
Method of choice for low or medium
accuracy solutions due to low
per-iteration cost6.

5C. Lemaréchal, “Cauchy and the gradient method,” Doc Math Extra, vol. 251, no. 254, p. 10, 2012
6V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data: Scalable, randomized, and parallel

algorithms for big data analytics,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 32–43, 2014



Gradient Descent
Main idea

Consider the problem

minimize
x∈Rn

F (x) . (2)

The GD iteration

xk+1 = xk − η∇F (xk ) , k = 1,2, · · · (3)

where η > 0 is the step size (learning rate) and ∇F is the
gradient of the function f .



Gradient Descent
Algorithm

Complete algorithm for the GD

Algorithm 1: Gradient Descent Algorithm

Initialize: x0 ∈ Rn, η > 0
1 while not converged do
2 xk+1 = xk − η∇F (xk ) ; k = 1,2, · · ·
3 k = k + 1



Gradient Descent
Tikhonov regularized image denoising

Andrey Nikolayevich

Tikhonov

Image denoising as minimizing a
Tikhonov functional

minimize
x∈Rn

F (x) =
1
2
∥x − y∥2

2 + λ∥Dx∥2
2,

(4)
where λ > 0 is regularization
parameter which effects the noise
filtering.
The Tikhonov functional is smooth and
convex



Gradient Descent
Tikhonov regularized image denoising

The gradient of the Tikhonov functional,

∇F (xk ) = xk − y + 2λD⊤Dxk

Thus, the GD step for Tikhonov image denoising,

xk+1 = xk − η
(

xk − y + 2λD⊤Dxk

)
; k = 1,2, · · · (5)



Gradient Descent
Other Variants & Improving convergence

We can improve the convergence of GD by momentum
methods

• Heavy-Ball (HB) method7

xk+1 = xk − η∇F (xk ) + β(xt − xt−1) (6)

• Nesterov acceleration8

xk+1 = yk − η∇F (yk )

tk+1 =
tk − 1
tk + 2

yk+1 = xk+1 + tk+1(xk+1 − xk )

(7)

7B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” Ussr computational
mathematics and mathematical physics, vol. 4, no. 5, pp. 1–17, 1964

8Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate,” in Dokl. Akad.
Nauk SSSR,, vol. 269, 1983, pp. 543–547



Gradient Descent
Tikhonov regularized image denoising

(a) Noisy (PSNR = 17.35 dB) (b) GD (PSNR = 27.43 dB) (c) HB (PSNR = 27.42 dB)

(d) Nesterov (PSNR = 27. 42
dB)

Figure: Noise level of σ = 0.13 with regularization parameters λ between (1, 2.4),
η, β = 0.05



Total Variation Denoising

Stanley Osher

Tikhonov regularized image denoising
tends to over smooth the image. We
need a better model!
A classical and very popular model is
the Total Variation (TV) denoising9

model:

minimize
x∈Rn

F (x) =
1
2
∥x − y∥2

2 + λ∥Dx∥1,

(8)
Widely used due to its edge preserving
capabilities.

9L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D:
Nonlinear Phenomena, vol. 60, no. 1, pp. 259–268, 1992



Total Variation Denoising

minimize
x∈Rn

F (x) =
1
2
∥x − y∥2

2 + λ∥Dx∥1, (9)

The main problem with TV model is the non-smooth
ℓ1-norm regularization.
The overall TV model is a smooth + non-smooth model.
Thus, a non-differentiable optimization model.
We need more involved optimization techniques for this.



Alternating Direction Method of Multipliers
(ADMM)

The ADMM is a widely used optimization algorithm10. Its
origins date back to the 70’s11 12.
The composite minimization problem

minimize
x, v

f (x) + g (v)

s.t Ax + Bv = z,
(10)

where x,v ∈ Rn×1, A,B ∈ Rn×n and f (·) ,g (·) : Rn×1 → R
are convex functions. The function g (·) is possibly
non-smooth.
ADMM is well suited for TV denoising.

10S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122,
2011

11D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element
approximation,” Computers & Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976

12,R. Glowinski and A. Marroco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires,” Revue française d’automatique,
informatique, recherche opérationnelle. Analyse numérique, vol. 9, no. R2, pp. 41–76, 1975



ADMM
Total Variation Denoising

The TV in ADMM form (10)

minimize
x

1
2
∥x − y∥2

2 + λ∥v∥1,

s.t v = Dx,
(11)

when A = D, B = −I, and z = 0 in (10) thus, amenable to
ADMM.



ADMM
Total Variation Denoising

The LA function for (11)

LA (x, v, µ) =
1
2
∥x−y∥2

2+λ∥v∥1−⟨µ, v−Dx⟩+ ρ

2
∥v−Dx∥2

2

(12)
Alternate minimization

xk+1 = argmin
x

1
2∥x − y∥2

2 − ⟨µ, vk − Dx⟩+ ρ
2∥vk − Dx∥2

2,

vk+1 = argmin
v

ρ
2∥v − Dxk+1∥2

2 + λ∥v∥1 − ⟨µ, v − Dxk+1⟩,

µk+1 = µk + ρ
(

vk+1 − Dxk+1
)
.

(13)



ADMM
Total Variation Denoising

Complete ADMM total variation image denoising

Algorithm 2: ADMM for TV image denoising.

Initialize: x0, v0, µ0, k = 0, ρ > 0, and λ > 0
1 while not converged do
2 xk+1 = argmin

x

1
2∥x − y∥2

2 +
ρ
2∥vk − Dx + µk

ρ ∥2
2 // solved

via conjugate gradient (CG)

3 vk+1 = argmin
v

λ∥v∥1 +
ρ
2∥v − Dxk+1 + µk

ρ ∥2
2

4 µk+1 = µk + ρ
(

vk+1 − Dxk+1
)

5 k = k + 1



ADMM
Total Variation Denoising

(a) Noisy, σ = 20 (b) Zoomed (c) ADMM denoised

(d) Noisy, σ = 40 (e) Zoomed (f) ADMM denoised

Figure: Noise level of σ = 20 and σ = 40 with regularization
parameter λ = 8 and λ = 25 respectively. Value of ρ = 0.3



ADMM
Total Variation Denoising

(a) Noisy, σ = 80 (b) Zoomed (c) ADMM denoised

Figure: Noise level of σ = 80 with regularization parameter λ = 50.
Value of ρ = 0.3



Time-series Smoothing

Applications in fields such as climatology,
macroeconomics, environmental science, and finance. In
finance and economics, it is called trend filtering 13

Given a time-series data point ft , t = 1, · · · ,n assumed to
consist of two components, a slow varying trend ut and a
rapidly varying random component zt , estimate the slowly
varying component ut such that zt = ft − ut i.e., the error is
small as possible.
The slow varying component ut is estimated by the j th

order smoothing by solving the following optimization
problem

13R. Gençay, F. Selçuk, and B. J. Whitcher, An introduction to wavelets and other filtering methods in finance and
economics. Elsevier, 2001



Time-series Smoothing

The time-series smoothing problem

minimize
u∈Rn

1
2
∥u − f∥2

2 + λ∥Dj+1u∥1, (14)

where the scalar λ is the smoothing parameter,
Dj+1 ∈ R(n−j)×n is the j th order discrete difference operator.



Tseng’s Alternating Minimization Algorithm
(AMA)

For time-series smoothing, we can use Tseng’s Alternating
Minimization Algorithm14 (AMA).
One advantage, does not need to solve a linear system,
unlike ADMM.
Different from ADMM, in each iteration, AMA minimizes
both the Lagrangian and the augmented Lagrangian.

14P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and variational
inequalities,” SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138, 1991



AMA
Time-series Smoothing

The AMA also solves optimization problems of the form
(10). For the time-series smoothing, the complete AMA
algorithm is

Algorithm 3: AMA (Time-series smoothing)

Initialize: λ > 0, τ > 0, u0, v0, ρ0 > 0, k = 0
1 while not converged do
2 uk+1 = argmin

u∈Rm

1
2∥u − f∥2

2 + ⟨ρk , vk − D2u⟩,

3 vk+1 = argmin
v∈Rn

λ∥v∥1+⟨ρk , v−D2uk+1⟩+ β
2∥v−D2uk+1∥2

2,

4 ρk+1 = ρk + τ
(
vk+1 − D2uk+1

)
.

5 k = k + 1



AMA
Time-series Smoothing
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AMA
Time-series Smoothing

200 400 600 800 1000 1200

0

100

200

300

400

500

Malaysia Covid19 death per day (17/2/2020 - 2/12/2023)



Summary

Reviewed some popular mathematical optimization
algorithm

• Gradient Descent (GD) and some of its variants.
• Alternating Direction Method of Multipliers (ADMM)
• Tseng’s Alternating Minimization Algorithm (AMA)

Mathematical optimization is used in various applications
in signal processing and image processing. Simple
examples in this talk

• Image denoising
• Time-series smoothing



Summary
Other mathematical optimization algorithms worth knowing
(not discussed)

• Proximal Gradient (PG) and accelerated PG methods15.
• Primal-Dual Hybrid Gradient (PDHG) methods16 17.

Other applications (outside signal & image processing) not
touched in this talk

• Mesh processing in computer graphics 18

• Deep algorithm unrolling 19 20 (provable deep learning)
15A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM

journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009
16L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, “Proximal splitting algorithms for convex optimization:

A tour of recent advances, with new twists,” SIAM Review, vol. 65, no. 2, pp. 375–435, 2023
17N. Komodakis and J.-C. Pesquet, “Playing with duality: An overview of recent primal-dual approaches for solving

large-scale optimization problems,” IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 31–54, 2015
18T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker, “Compressed manifold modes for mesh

processing,” in Computer Graphics Forum, vol. 33, no. 5. Wiley Online Library, 2014, pp. 35–44
19Y. Yang, J. Sun, H. Li, and Z. Xu, “Admm-csnet: A deep learning approach for image compressive sensing,”

IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 3, pp. 521–538, 2018
20V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image

processing,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021



Thank You !
Q&A
Codes to reproduce the figures can be obtained at my Github:
https://github.com/tarmiziAdam2005/2023-Workshop-on-
Metaverse

https://github.com/tarmiziAdam2005/2023-Workshop-on-Metaverse
https://github.com/tarmiziAdam2005/2023-Workshop-on-Metaverse
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