

Optimization-based Image & Signal Processing

Tarmizi bin Adam, Ph.D. Faculty of Computing

December 11, 2023

KORKAR KERKER DRA

Outline

[Introduction](#page-2-0)

[Gradient Descent](#page-5-0) [Heavy-Ball Method](#page-10-0) [Nesterov Acceleration](#page-11-0)

[Alternating Direction Method of Multipliers \(ADMM\)](#page-14-0)

[Tseng's Alternating Minimization Algorithm \(AMA\)](#page-22-0)

[Conclusions](#page-26-0)

KEIXKAR KEIXKEIX E YOQO

Introduction

This talk will be

- A non exhaustive overview of some algorithms.
- Avoiding **a lot** of mathematical details.
- Focusing only on signal/image processing applications.

Mathematical Optimization¹ ² ³

1 L. Bottou, F. E. Curtis, and J. Nocedal, "Optimization methods for large-scale machine learning," *Siam Review*, vol. 60, no. 2, pp. 223–311, 2018

²Z.-Q. Luo and W. Yu, "An introduction to convex optimization for communications and signal processing," *IEEE Journal on selected areas in communications*, vol. 24, no. 8, pp. 1426–1438, 2006

³S. J. Wright and B. Recht, *Optimization for data analysis*. Cambridge Un[iver](#page-2-0)si[ty](#page-4-0) [Pr](#page-2-0)[ess,](#page-3-0) [2](#page-4-0)[02](#page-1-0)[2](#page-2-0)第二番 (\equiv ΩQ

つくい

Mathematical Optimization

Main problem

 \blacksquare In mathematical optimization we are interested in the following unconstrained optimization problem

$$
\underset{\mathbf{x}\in\mathbb{R}^n}{\text{minimize}}\,F\left(\mathbf{x}\right),\tag{1}
$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is a smooth convex function.

- First-order algorithms are usually the choice for solving (1) for large scale problems.
- Gradient Descent $(GD)^4$ and its many variants are standard choices.

⁴H. Li, C. Fang, and Z. Lin, "Accelerated first-order optimization algorithms [for](#page-3-0) m[ach](#page-5-0)[in](#page-3-0)[e le](#page-4-0)[ar](#page-5-0)[ni](#page-1-0)[ng](#page-2-0)[,"](#page-4-0) *[P](#page-5-0)[ro](#page-1-0)[ce](#page-2-0)[e](#page-4-0)[din](#page-5-0)[gs](#page-0-0) [of](#page-28-0) the IEEE*, vol. 108, no. 11, pp. 2067–2082, 2020 \Box

 OQ

Gradient Descent

Augustin-Louis Cauchy

- Developed in the 19th century by Augustin-Louis Cauchy⁵.
- **Motivated by astronomy for** calculating orbits of heavenly bodies.
- **Method of choice for low or medium** accuracy solutions due to low per-iteration cost⁶.

⁵C. Lemaréchal, "Cauchy and the gradient method," *Doc Math Extra*, vol. 251, no. 254, p. 10, 2012

⁶V. Cevher, S. Becker, and M. Schmidt, "Convex optimization for big data: Scalable, randomized, [an](#page-10-0)[d](#page-4-0) [p](#page-5-0)[ar](#page-13-0)[all](#page-14-0)[el](#page-0-0) algorithms for big data analytics," *IEEE Signal Processing Magazine*, vol. 31, [no. 5](#page-4-0), [pp.](#page-6-0) [3](#page-4-0)[2–4](#page-5-0)[3,](#page-6-0) [2](#page-4-0)[01](#page-5-0)[4](#page-9-0)

KEIXKAR KEIXKEIX E YOQO

Gradient Descent

Main idea

■ Consider the problem

$$
\underset{\mathbf{x}\in\mathbb{R}^n}{\text{minimize}}\,F\left(\mathbf{x}\right). \tag{2}
$$

■ The GD iteration

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla F(\mathbf{x}_k), \quad k = 1, 2, \cdots \tag{3}
$$

where $\eta > 0$ is the step size (learning rate) and ∇F is the gradient of the function *f*.

KEIXKAR KEIXKEIX E YOQO

Gradient Descent

Algorithm

Complete algorithm for the GD

Algorithm 1: Gradient Descent Algorithm

Initialize: $\mathbf{x}_0 \in \mathbb{R}^n$, $\eta > 0$ **¹ while** *not converged* **do 2 x**_{*k*+1} = **x**_{*k*} - $\eta \nabla F(\mathbf{x}_k)$; $k = 1, 2, \cdots$ **3** $k = k + 1$

Gradient Descent

Tikhonov regularized image denoising

Andrey Nikolayevich Tikhonov

\blacksquare Image denoising as minimizing a Tikhonov functional

$$
\underset{\mathbf{x}\in\mathbb{R}^n}{\text{minimize}}\,F\left(\mathbf{x}\right)=\frac{1}{2}\|\mathbf{x}-\mathbf{y}\|_2^2+\lambda\|\text{D}\mathbf{x}\|_2^2,\tag{4}
$$

where $\lambda > 0$ is regularization parameter which effects the noise filtering.

■ The Tikhonov functional is smooth and convex

KEIXKAR KEIXKEIX E YOQO

KEIXKAR KEIXKEIX EI KOQO

Gradient Descent

Tikhonov regularized image denoising

■ The gradient of the Tikhonov functional,

$$
\nabla F(\mathbf{x}_k) = \mathbf{x}_k - \mathbf{y} + 2\lambda \mathbf{D}^\top \mathbf{D} \mathbf{x}_k
$$

■ Thus, the GD step for Tikhonov image denoising,

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \left(\mathbf{x}_k - \mathbf{y} + 2\lambda \mathbf{D}^\top \mathbf{D} \mathbf{x}_k \right); \quad k = 1, 2, \cdots \quad (5)
$$

 $2Q$

Gradient Descent

Other Variants & Improving convergence

- We can improve the convergence of GD by *momentum* methods
	- Heavy-Ball (HB) method⁷

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla F(\mathbf{x}_k) + \beta(\mathbf{x}_t - \mathbf{x}_{t-1})
$$
 (6)

• Nesterov acceleration⁸

$$
\mathbf{x}_{k+1} = \mathbf{y}_k - \eta \nabla F(\mathbf{y}_k)
$$

\n
$$
t_{k+1} = \frac{t_k - 1}{t_k + 2}
$$
 (7)
\n
$$
\mathbf{y}_{k+1} = \mathbf{x}_{k+1} + t_{k+1}(\mathbf{x}_{k+1} - \mathbf{x}_k)
$$

⁷B. T. Polyak, "Some methods of speeding up the convergence of iteration methods," *Ussr computational mathematics and mathematical physics*, vol. 4, no. 5, pp. 1–17, 1964

⁸Y. E. Nesterov, "A method for solving the convex programming problem wi[th c](#page-9-0)o[nve](#page-11-0)[rg](#page-9-0)[enc](#page-10-0)[e r](#page-11-0)[at](#page-9-0)[e," i](#page-10-0)[n](#page-11-0) *[Do](#page-4-0)[kl](#page-5-0)[.](#page-13-0) [Ak](#page-14-0)[ad.](#page-0-0) Nauk SSSR,*, vol. 269, 1983, pp. 543–547 \Box

Gradient Descent

(d) Nesterov (PSNR = 27. 42 dB)

 2990 Figur[e](#page-11-0): Noise level of $\sigma = 0.13$ $\sigma = 0.13$ $\sigma = 0.13$ with regularization para[mete](#page-10-0)[rs](#page-12-0) λ [be](#page-11-0)[tw](#page-12-0)ee[n](#page-13-0) [\(](#page-14-0)1, [2](#page-13-0),[4](#page-14-0)[\)](#page-0-0),

 Ω

Total Variation Denoising

Stanley Osher

- Tikhonov regularized image denoising tends to over smooth the image. We need a better model!
- A classical and very popular model is the Total Variation (TV) denoising⁹ model:

$$
\underset{\mathbf{x}\in\mathbb{R}^n}{\text{minimize}}\, F(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1,\tag{8}
$$

Widely used due to its edge preserving capabilities.

⁹ L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based nois[e rem](#page-11-0)[ova](#page-13-0)[l](#page-11-0) [algo](#page-12-0)[rit](#page-13-0)[hm](#page-10-0)[s](#page-11-0)[,"](#page-13-0) *[Ph](#page-14-0)[y](#page-4-0)[sic](#page-5-0)[a](#page-13-0) [D](#page-14-0)[:](#page-0-0) Nonlinear Phenomena*, vol. 60, no. 1, pp. 259–268, 1992

KEIXKAR KEIXKEIX EI KOQO

Total Variation Denoising

$$
\underset{\mathbf{x} \in \mathbb{R}^n}{\text{minimize}} \ F(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_1,\tag{9}
$$

- The main problem with TV model is the non-smooth ℓ_1 -norm regularization.
- \blacksquare The overall TV model is a smooth $+$ non-smooth model. Thus, a non-differentiable optimization model.
- We need more involved optimization techniques for this.

 $2Q$

Alternating Direction Method of Multipliers

- **(ADMM)** \blacksquare The ADMM is a widely used optimization algorithm¹⁰. Its origins date back to the 70's^{11 12}.
- The composite minimization problem

minimize $f(\mathbf{x}) + g(\mathbf{v})$ **x**, **v** s.t $Ax + By = z$, (10)

where $\textbf{x},\textbf{v}\in\mathbb{R}^{n\times1},\,\textbf{A},\textbf{B}\in\mathbb{R}^{n\times n}$ and $f(\cdot)$, $g(\cdot):\mathbb{R}^{n\times1}\rightarrow\mathbb{R}$ are convex functions. The function $g(\cdot)$ is possibly non-smooth.

ADMM is well suited for TV denoising.

 10 S. Bovd. N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Foundations and Trends® in Machine Learning*, vol. 3, no. 1, pp. 1–122, 2011

 11 D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear variational problems via finite element approximation," *Computers & Mathematics with Applications*, vol. 2, no. 1, pp. 17–40, 1976

¹².R. Glowinski and A. Marroco, "Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires," *Revue française [d'a](#page-15-0)[ut](#page-13-0)[om](#page-14-0)[a](#page-21-0)[tiq](#page-22-0)[u](#page-13-0)[e,](#page-14-0) informatique, recherche opérationnelle. Analyse numérique*, vol. 9, no. R2, pp[. 41](#page-13-0)–[76,](#page-15-0) [19](#page-13-0)[75](#page-14-0)

KEIKARIKEIKEI PROGRAM

ADMM Total Variation Denoising

■ The TV in ADMM form [\(10\)](#page-14-1)

$$
\begin{array}{ll}\n\text{minimize} & \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{v}\|_1, \\
\text{s.t} & \mathbf{v} = \mathbf{D}\mathbf{x},\n\end{array} \tag{11}
$$

when $A = D$, $B = -I$, and $z = 0$ in [\(10\)](#page-14-1) thus, amenable to ADMM.

KEIXKAR KEIXKEIX EI KOQO

ADMM

Total Variation Denoising

 \blacksquare The \mathcal{L}_A function for [\(11\)](#page-15-1) $\mathcal{L}_{\mathcal{A}}(\mathbf{x}, \mathbf{v}, \mu) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{v}\|_1 - \langle \mu, \mathbf{v} - \mathbf{D}\mathbf{x} \rangle + \frac{\rho}{2}$ 2 ∥**v**−**Dx**∥ 2 2 (12)

Alternate minimization

$$
\begin{cases}\n\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} - \langle \mu, \mathbf{v}^{k} - \mathbf{D}\mathbf{x} \rangle + \frac{\rho}{2} \|\mathbf{v}^{k} - \mathbf{D}\mathbf{x}\|_{2}^{2}, \\
\mathbf{v}^{k+1} = \arg\min_{\mathbf{v}} \frac{\rho}{2} \|\mathbf{v} - \mathbf{D}\mathbf{x}^{k+1}\|_{2}^{2} + \lambda \|\mathbf{v}\|_{1} - \langle \mu, \mathbf{v} - \mathbf{D}\mathbf{x}^{k+1} \rangle, \\
\mu^{k+1} = \mu^{k} + \rho \left(\mathbf{v}^{k+1} - \mathbf{D}\mathbf{x}^{k+1}\right).\n\end{cases}
$$
\n(13)

KEIXKAR KEIXKEIX E YOQO

ADMM

Total Variation Denoising

■ Complete ADMM total variation image denoising

Algorithm 2: ADMM for TV image denoising.

**Initialize: x⁰, v⁰,
$$
\mu^0
$$
, $k = 0$, $\rho > 0$, and $\lambda > 0$
\n**1 while not converged do**
\n**2**
$$
\begin{array}{|c|c|c|c|}\n\hline\nx^{k+1} = \arg \min_{\mathbf{x}} \frac{1}{2} ||\mathbf{x} - \mathbf{y}||_2^2 + \frac{\rho}{2} ||\mathbf{v}^k - \mathbf{D}\mathbf{x} + \frac{\mu^k}{\rho}||_2^2 / / \text{ solved} \\
&\text{via conjugate gradient (CG)} \\
\mathbf{v}^{k+1} = \arg \min_{\mathbf{v}} \lambda ||\mathbf{v}||_1 + \frac{\rho}{2} ||\mathbf{v} - \mathbf{D}\mathbf{x}^{k+1} + \frac{\mu^k}{\rho}||_2^2 \\
&\text{if } \mu^{k+1} = \mu^k + \rho \left(\mathbf{v}^{k+1} - \mathbf{D}\mathbf{x}^{k+1} \right) \\
&\text{if } k = k+1\n\end{array}
$$**

ADMM

Total Variation Denoising

-
- (a) Noisy, $\sigma = 20$ (b) Zoomed (c) ADMM denoised

KORKAR KERKER E VOQO

Figure: Noise level of $\sigma = 20$ and $\sigma = 40$ with regularization parameter $\lambda = 8$ and $\lambda = 25$ respectively. Value of $\rho = 0.3$

ADMM

Total Variation Denoising

KORKAR KERKER E VOQO

Figure: Noise level of $\sigma = 80$ with regularization parameter $\lambda = 50$. Value of $\rho = 0.3$

 $2QQ$

Time-series Smoothing

- **Applications in fields such as climatology,** macroeconomics, environmental science, and finance. In finance and economics, it is called trend filtering ¹³
- Given a time-series data point $f_t,~t=1,\cdots,n$ assumed to consist of two components, a slow varying trend *u^t* and a rapidly varying random component *z^t* , estimate the slowly varying component u_t such that $z_t = f_t - u_t$ i.e., the error is small as possible.
- The slow varying component u_t is estimated by the j^{th} order smoothing by solving the following optimization problem

¹³ R. Gencay, F. Selcuk, and B. J. Whitcher, An introduction to wavelets and [othe](#page-19-0)r [filt](#page-21-0)[eri](#page-19-0)[ng](#page-20-0) [me](#page-21-0)[th](#page-13-0)[o](#page-14-0)[ds](#page-21-0) [in](#page-22-0) [fi](#page-13-0)[n](#page-14-0)[an](#page-21-0)[ce](#page-22-0) [an](#page-0-0)[d](#page-28-0) *economics*. Elsevier, 2001

KEIXKAR KEIXKEIX EI KOQO

Time-series Smoothing

■ The time-series smoothing problem

$$
\underset{\mathbf{u}\in\mathbb{R}^{n}}{\text{minimize}}\ \frac{1}{2}||\mathbf{u}-\mathbf{f}||_{2}^{2}+\lambda||\mathbf{D}^{j+1}\mathbf{u}||_{1},\tag{14}
$$

where the scalar λ is the smoothing parameter, **D**^{*j*+1} ∈ $\mathbb{R}^{(n-j)\times n}$ is the *j*th order discrete difference operator.

 $2Q$

Tseng's Alternating Minimization Algorithm

(AMA)

- For time-series smoothing, we can use Tseng's Alternating Minimization Algorithm¹⁴ (AMA).
- One advantage, does not need to solve a linear system, unlike ADMM.
- Different from ADMM, in each iteration, AMA minimizes both the Lagrangian and the augmented Lagrangian.

¹⁴P. Tse[ng](#page-22-0), "Applications of a splitting algorithm to decomposition in convex programming [an](#page-23-0)[d](#page-21-0) [v](#page-22-0)[ari](#page-25-0)[at](#page-26-0)[io](#page-21-0)[na](#page-22-0)[l](#page-25-0) inequalities," *SIAM Journal on Control and Optimization*, vol. 29, no. 1, pp. 11[9–13](#page-21-0)[8, 1](#page-23-0)[99](#page-21-0)[1](#page-22-0)

KEIXKAR KEIXKEIX E YOQO

AMA

Time-series Smoothing

■ The AMA also solves optimization problems of the form [\(10\)](#page-14-1). For the time-series smoothing, the complete AMA algorithm is

Algorithm 3: AMA (Time-series smoothing)

Initialize:
$$
\lambda > 0
$$
, $\tau > 0$, \mathbf{u}_0 , \mathbf{v}_0 , $\rho_0 > 0$, $k = 0$
while not converged do

$$
\begin{array}{c}\n\mathbf{u}_{k+1} = \underset{\mathbf{u} \in \mathbb{R}^m}{\arg\min} \frac{1}{2} \|\mathbf{u} - \mathbf{f}\|_2^2 + \langle \rho_k, \mathbf{v}_k - \mathbf{D}^2 \mathbf{u} \rangle, \\
\mathbf{v}_{k+1} = \underset{\mathbf{v} \in \mathbb{R}^n}{\arg\min} \lambda \|\mathbf{v}\|_1 + \langle \rho_k, \mathbf{v} - \mathbf{D}^2 \mathbf{u}_{k+1} \rangle + \frac{\beta}{2} \|\mathbf{v} - \mathbf{D}^2 \mathbf{u}_{k+1}\|_2^2, \\
\mathbf{v}_{k+1} = \rho_k + \tau \left(\mathbf{v}_{k+1} - \mathbf{D}^2 \mathbf{u}_{k+1}\right).\n\end{array}
$$

K ロ X K (日 X K E X X E X Y B V 9 Q O

AMA

Time-series Smoothing

Malaysia Covid19 death per day (17/2/2020 - 2/12/2023)

K ロ X K (日 X K E X X E X X E X Y Q Q O

AMA

Time-series Smoothing

Malaysia Covid19 death per day (17/2/2020 - 2/12/2023)

KORKAR KERKER DRA

Summary

- Reviewed some popular mathematical optimization algorithm
	- Gradient Descent (GD) and some of its variants.
	- Alternating Direction Method of Multipliers (ADMM)
	- Tseng's Alternating Minimization Algorithm (AMA)
- Mathematical optimization is used in various applications in signal processing and image processing. Simple examples in this talk
	- Image denoising
	- Time-series smoothing

 $2Q$

Summary

■ Other mathematical optimization algorithms worth knowing (not discussed)

- Proximal Gradient (PG) and accelerated PG methods¹⁵.
- Primal-Dual Hybrid Gradient (PDHG) methods^{16 17}.
- Other applications (outside signal & image processing) not touched in this talk
	- Mesh processing in computer graphics 18
	- Deep algorithm unrolling 1920 (provable deep learning)

¹⁵A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," *SIAM journal on imaging sciences*, vol. 2, no. 1, pp. 183–202, 2009

¹⁶L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, "Proximal splitting algorithms for convex optimization: A tour of recent advances, with new twists," *SIAM Review*, vol. 65, no. 2, pp. 375–435, 2023

¹⁷N. Komodakis and J.-C. Pesquet, "Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems," *IEEE Signal Processing Magazine*, vol. 32, no. 6, pp. 31–54, 2015

18T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker, "Compressed manifold modes for mesh processing," in *Computer Graphics Forum*, vol. 33, no. 5. Wiley Online Library, 2014, pp. 35–44

¹⁹Y. Yang, J. Sun, H. Li, and Z. Xu, "Admm-csnet: A deep learning approach for image compressive sensing," *IEEE transactions on pattern analysis and machine intelligence*, vol. 42, no. 3, pp. 521–538, 2018

²⁰ V. Monga, Y. Li, and Y. C. Eldar, "Algorithm unrolling: Interpretable, efficient de[ep l](#page-28-0)[ea](#page-26-0)[rnin](#page-27-0)[g](#page-28-0) [fo](#page-25-0)[r s](#page-26-0)[igna](#page-28-0)[l](#page-25-0) [an](#page-26-0)[d im](#page-28-0)[ag](#page-0-0)[e](#page-28-0) processing," *IEEE Signal Processing Magazine*, vol. 38, no. 2, pp. 18–44, 202[1](#page-26-0)包

Thank You ! Q&A Codes to reproduce the figures can be obtained at my Github: [https://github.com/tarmiziAdam2005/2023-Workshop-on-](https://github.com/tarmiziAdam2005/2023-Workshop-on-Metaverse)[Metaverse](https://github.com/tarmiziAdam2005/2023-Workshop-on-Metaverse)

