
Construction and Building Materials 49 (2013) 974–984
Contents lists available at SciVerse ScienceDirect

Construction and Building Materials

journal homepage: www.elsevier .com/locate /conbui ldmat
Serviceability flexural ductility of FRP RC beams: A discrete rotation
approach
0950-0618/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.conbuildmat.2012.10.001

⇑ Corresponding author. Tel.: +61 8 8303 4314; fax: +61 8 8303 4359.
E-mail address: doehlers@civeng.adelaide.edu.au (D.J. Oehlers).
Deric John Oehlers a,⇑, Rahimah Muhamad b, M.S. Mohamed Ali a

a School of Civil, Environmental and Mining Engineering, University of Adelaide, South Australia 5005, Australia
b UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia International Campus, Kuala Lumpur 54100, Malaysia

h i g h l i g h t s

" Closed form solutions for quantifying concentrations of rotation at serviceability.
" A mechanics based discrete rotation approach for quantifying deflection.
" Can cope with any type of FRP reinforcement with any type of bond characteristic.
" Can also predict gradual development of cracks and their widening and spacing.
" Precursor of hinge development.
a r t i c l e i n f o

Article history:
Available online 17 November 2012

Keywords:
Deflection
FRP reinforcement
FRP reinforcing bars
Serviceability
RC beams
RC slabs
RC bond
a b s t r a c t

Flexural ductility in reinforced concrete members may be defined as concentrations of rotation at discrete
points. As such, flexural ductility affects the serviceability deflection of RC beams once flexural cracking,
in which there is a discrete rotation between the crack faces, has occurred and which is the subject of this
paper. Design rules for quantifying the deflection of steel reinforced RC beams and slabs are generally
based on a full-interaction moment–curvature (M/v) approach that requires the flexural rigidity to be
calibrated empirically. Being empirically based, these design rules should only be applied within the
bounds of the tests from which they were derived that is for steel reinforcement in which the modulus
is fairly constant and with ribbed bars which have a very good bond with the concrete. These bounds do
not apply to FRP reinforcing bars where the modulus can vary enormously depending on the type and
density of fibre and where the bond between the FRP reinforcement and concrete can also vary widely
depending on the manufacturing process. Hence it is both difficult and expensive to quantify empirically,
using the M/v approach, the deflection of RC beams with FRP reinforcement due to the very wide range of
these variables. In this paper, an alternative mechanics based discrete rotation approach for the non-time
dependent deflection is developed for FRP reinforced flexural members and which is validated by FRP RC
beam tests. Being mechanics based, this discrete rotation approach can cope with any type of FRP rein-
forcing bar with any type of bond characteristic. As with the M/v approach, the material properties are
determined by tests but unlike the M/v approach in which the flexural rigidity, which is a major compo-
nent of the model, has to be calibrated through tests, no component of this discrete-rotation model has to
be determined experimentally. As this is a generic approach and can be used for any type of reinforce-
ment and bond, this mechanics approach should speed up the development of new FRP products and
the development of accurate design rules for deflection for these new FRP products.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The use of FRP reinforcing bars in reinforced concrete flexural
members is gaining wider acceptance in reinforced concrete due
in particular to the corrosion resistance properties of the FRP rein-
forcement [1–7]. This has necessitated as part of the design process
the need for quantifying the deflection of these members [8,9].
Much of the research on quantifying the deflection of RC members
has used as a starting point the design rules for steel reinforced RC
beams or slabs which are based on effective flexural rigidities that
can only be determined empirically [10–13]. Being empirically
based they are limited to the bounds of the tests from which they
were calibrated, which in general is a reinforcing bar of a high and
constant elastic modulus and with very good bond between the
reinforcement and the concrete. This in effect precludes the direct
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Nomenclature

Ar cross-sectional area of FRP reinforcing bar
Ac cross-sectional of concentrically loaded prism
d depth of beam
dpri depth of prism
Er modulus of FRP reinforcing bar
Ec modulus elasticity of concrete
F load in reinforcing bar
Fli-pr load to induce primary crack based on s–d linear

ascending
Fli-sec load to induce secondary crack based on s–d linear

ascending
Fli-ter load to induce tertiary crack based on s–d linear ascend-

ing
Fpa-pr load to induce primary crack based on s–d parabolic

ascending
Fpa-sec load to induce secondary crack based on s–d parabolic

ascending
Fpa-ter load to induce tertiary crack based on s–d parabolic

ascending
fct tensile strength of the concrete
(Lcr)pr length of primary crack region
(Lcr)sec length of secondary cracks region
Lu length of uncracked region
Lp perimeter length of FRP bar
Mapp applied moment
Mpr moment to cause a primary cracks
Msec moment to cause a secondary cracks
Mserv serviceability moment
Pc concrete force
Pr reinforcement force
Pli-1 force in reinforcing bar for infinitely long element based

on s–d of linear ascending
Pli-sp force in reinforcing bar for element length Sp based on

s–d of linear ascending
Pli-sp/2 force in reinforcing bar for element length Sp/2 based on

s–d of linear ascending
Pli-sp/4 force in reinforcing bar for element length Sp/4 based on

s–d of linear ascending

Ppa-1 force in reinforcing bar for infinitely long element based
on s–d of parabolic ascending

Ppa-sp force in reinforcing bar for element length Sp based on
s–d of parabolic ascending

Ppa-sp/2 force in reinforcing bar for element length Sp/2 based on
s–d of parabolic ascending

Ppa-sp/4 force in reinforcing bar for element length Sp/4 based on
s–d of parabolic ascending

Sli-pr primary crack spacing for element length Sp based on s–
d of linear ascending

Sli-sec secondary crack spacing for element length Sp/2 based
on s–d of linear ascending

Sli-ter tertiary crack spacing for element length Sp/4 based on
s–d of linear ascending

Spa-pr primary crack spacing for element length Sp based on s–
d of parabolic ascending

Spa-sec secondary crack spacing for element length Sp/2 based
on s–d of parabolic ascending

Spa-ter tertiary crack spacing for element length Sp/4 based on
s–d of parabolic ascending

wcr width of the crack at the level of the reinforcement
smax peak shear stress
Dli-1 slip at crack face for infinitely long element based on s–

d of linear ascending
Dli-sp slip at crack face for element length Sp based on s–d of

linear ascending
Dli-sec slip at crack face for element length Sp/2 based on s–d of

linear ascending
Dli-ter slip at crack face for element length Sp/4 based on s–d of

linear ascending
Dpa-1 slip at crack face for infinitely long element based on s–

d of parabolic ascending
Dpa-sp slip at crack face for element length Sp based on s–d of

parabolic ascending
Dpa-sec slip at crack face for element length Sp/2 based on s–d of

parabolic ascending
Dpa-sec slip at crack face for element length Sp/4 based on s–d of

parabolic ascending
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use of FRP reinforcing bars in these empirical design rules as: FRP
reinforcing bars have a very wide range of moduli Er from 40 GPa to
140 GPa depending on the density of the fibre and the type of fibre
such as GFRP, CFRP, and AFRP [14,2,4]; and furthermore, FRP rein-
forcing bars have a very wide range of bond characteristics
depending on the manufacturing process such as reinforcing
bar surfaces that are grain covered, ribbed, braided or smooth
[14–18].

To help in the more rapid development and acceptance of FRP
reinforced RC members, a mechanics based tension-stiffening ap-
proach [29] is used to quantify the deflection of RC flexural mem-
bers with FRP reinforcing bars [19]. This mechanics based discrete
rotation approach can be summarised as follows:

(1) Of fundamental importance is the bond–slip (s/d) character-
istic between the reinforcement and the concrete.

(2) The bond–slip properties (s/d) are used directly to quantify
the reinforcement-load crack-widening (P/D) relationship
at a discrete crack which itself depends on the reinforcement
FRP modulus.

(3) The (P/D) relationship is then used to determine the
moment discrete rotation (M/h) at each individual crack
and consequently.
(4) From which the applied load deflection of a beam at service-
ability can be determined.

Hence this mechanics based approach for the non time-
dependent deflection of reinforced members can cope with any
bond characteristic and any reinforcement modulus and conse-
quently is ideally suited for RC members with FRP reinforcing
bars.

This discrete rotation approach has been applied to steel rein-
forced RC beams and slabs and has been found to have good cor-
relation with test results [20] when using the well established
and accepted CEB model for the bond–slip characteristics [21]
and in which the modulus of the steel reinforcement remains un-
changed. In this paper, the discrete rotation approach is applied to
a very wide range of FRP reinforcement moduli and a very wide
range of FRP bond–slip characteristics at serviceability. To cater
for the range of bond–slip properties, the discrete rotation deflec-
tion approach is given for both a serviceability linear ascending
bond–slip characteristic and for a parabolic ascending bond–slip
characteristic. The mechanics deflection model is then compared
with FRP RC test results in which there is a variety of reinforce-
ment moduli. Finally, the mechanics deflection model is used to
illustrate the effects of varying the moduli and bond–slip charac-



Fig. 1. Deflection of RC beam.

Fig. 2. Discrete rotation at a single crack.

Fig. 3. Tension stiffening analysis.
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teristics over the range currently available in FRP reinforcement
not only on the deflection but also on the crack spacing and crack
widths.
2. Discrete rotation deflection analysis

Consider the simply supported flexural member in Fig. 1a of
span L in which the length of the cracked region is (Lcr)pr and that
of the uncracked region is 2Lu. The member is subjected to an ap-
plied moment Mapp that has a maximum moment of Mserv. The first
crack to form in the beam in Fig. 1a is referred to as the initial crack
and can be derived from the elementary moment–curvature beam
theory of an uncracked section. After the initial crack has formed,
the full-interaction moment–curvature approach can no longer
be used to predict subsequent cracking. Instead the following par-
tial-interaction discrete rotation approach [19] can be used.
2.1. Discrete rotation approach

The crack faces of the initial crack in Fig. 1a are assumed to ro-
tate through a rigid body displacement as in Fig. 2a where the
effective depth of the beam is d and where the crack apex, at hcr

from the tension reinforcement, can be determined from trans-
formed sections.
The rigid body rotation in Fig. 2a induces a triangular deforma-
tion in the compression zone that has a maximum value of D as
shown and, consequently, a linear variation in strain in the com-
pression zone as in Fig. 2b. As this analysis is at serviceability,
the concrete can be considered to remain linear elastic so the posi-
tion of the resultant compressive force Pc in Fig. 2c is known. Fur-
thermore, as the force in the tension reinforcement Pr in Fig. 2a
depends on the slip of the reinforcement at the crack face Dr which
depends on the bond–slip (s/d) properties, the force Pr can be
determined, as will be shown later, so that the moment is

Mt ¼ Pr d� dc

3

� �
ð1Þ

The rotation of a crack face h in Fig. 2a is directly proportion to
the crack face slip Dr

h ¼ Dr

hcr
ð2Þ

and the width of the crack at the level of the reinforcement wcr is
equal to the sum of Dr at each crack face as shown.

It is common practise to determine the relationship between Pr

and Dr in Fig. 2a from the partial-interaction tension stiffening
analysis of concentrically loaded prisms of width b/2 and depth dpri

as in Fig. 3a and in which Ar and Ac and Er and Ec are the cross-
sectional areas and moduli of the reinforcement and concrete prism
respectively and Lp is the bonded perimeter as shown [22–24,19].
The same partial-interaction analysis can used to determine the
position Sp and reinforcement force Pr to cause cracking after the
initial crack has formed, should the bond be strong enough, as
illustrated in Fig. 3c. These subsequent cracks at spacing Sp are re-
ferred to as the primary cracks. The same analysis can also be used
to predict when the concrete element of length Sp and depth dpri

between the crack faces in Fig. 3c cracks to form secondary cracks
at a spacing of Sp/2, should the bond be strong enough. Further-
more if the bond is strong enough, to predict the formation of ter-
tiary cracks at a crack spacing of Sp/4. These P/D relationships are
given in the following sub-section for different bond–slip charac-
teristics. Once the P/D relationship is known, the moment–rotation
(M/h) at a crack face can be determined from Eqs. (1) and (2).

2.2. Crack formation

After the initial crack has formed in Fig. 1a, the P/D analyses can
be used to determine the force in the reinforcement to cause a pri-
mary crack Fpr (Eqs. (6) or (19) in the following sub-section
depending on the bond–slip characteristics) and from Eq. (1) the
moment to cause a primary crack Mpr in Fig. 1a. Hence, where
the applied moment Mapp in Fig. 1a exceeds Mpr, flexural cracks will
form at a spacing Sp (Eqs. (9) or (20) over the region (Lcr)pr as
shown. The P/D analysis can also be used to determine the rein-
forcement force to cause secondary cracks Fsec (Eqs. (10) or (23))



Fig. 4. Serviceability bond–slip.
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and, consequently, the moment to cause secondary cracks Msec and,
consequently, the region (Lcr)sec over which the cracks are spaced at
Sp/2 (Eqs. (11) or (24)). The same can be done for tertiary cracks
should the bond be strong enough for them to form. Hence the dis-
tribution of the flexural cracks in Fig. 1(a) can be determined.

2.3. Deflection due to discrete rotation

Having now formed the cracks as in Fig. 1a, the deflection due to
the rotation of each individual crack within the cracked region
(Lcr)pr needs to be determined. For example, consider the crack
marked A–B in Fig. 1a which is at a distance of LL from the left sup-
port and in which the segment to the left marked A is of length Sp

and that to the right marked B is of length Sp/2. The serviceability
moment at that crack is MA–B in Fig. 1a. Hence from Eq. (1) can be
determined the reinforcement force Pr. This reinforcement force
can be substituted into Eqs. (15) or (28), which are for an element
of length Sp, for Psp to derive the slip Dsp and from Eq. (2) the rota-
tion of the left crack face. For the right crack face, the element has a
length Sp/2 so that Eqs. (16) or (29) applies to derive the rotation of
the right face. The sum of both of these rotations is 2hA–B in Fig. 1b
so that the contribution to the deflection of the beam from this
individual crack is as shown in Fig. 1b. It can be seen from the
geometry in Fig. 1b that from the rigid body displacement, the con-
tribution of this crack to the mid-span deflection is simply LLhA–B.

For the crack marked C–D in Fig. 1a, no cracks form to the right
so the element to the right marked D can be considered as infi-
nitely long so that Eqs. (14) or (27) apply. It is simply a question
of summing the deflections due to each individual crack to obtain
the total deflection due to the discrete rotation of each individual
cracks.

2.4. Deflection due to curvature

Outside the cracked region (Lcr)pr in Fig. 1a that is within the un-
cracked regions of lengths Lu, the deflection can be visualised as
that in Fig. 1c where the deflection due to curvature dv can be de-
rived by integrating the curvature over this uncracked region using
the uncracked flexural rigidity. As an example, for a simply sup-
ported beam subjected to a uniformly distributed load, the length
of the uncracked region Lu can be derived by solving the following
equation

Mpr ¼ �
4Mserv

L2 L2
u

� �
þ 4Mserv

L
Lu ð3Þ

and the deflection due to curvature at Lu from the supports as
shown in Fig. 1c is given by

dvu ¼
Mpr

LuL� L2
u

� �
EI

ðLuÞ4

4
� ðLuÞ3L

3

 !
ð4Þ

where EI is the flexural rigidity of the uncracked section.
3. P/D from linear ascending s/d characteristic

Two shapes of bond–slip characteristics will be considered in
this serviceability analysis. The linear ascending bond–slip varia-
tion in Fig. 4 [19] which gives relatively simple closed form solu-
tions and will be dealt with first. This is followed by the
parabolic ascending characteristic which gives a range of bond slip
properties that more closely resemble test results [16–18] but
which give more complex closed form solutions. The equations re-
quired to determine the distribution of cracks will be given first
and this is then followed by the equations required to determine
the deflection for a given crack distribution. All the derivations of
the fundamental equations have been given in Appendices A, B
and C.

3.1. Linear-ascending bond–slip characteristic

The linear ascending bond–slip characteristic in Fig. 4 is given
by

s ¼ ked ð5Þ

where ke is the stiffness as shown.

3.2. Linear ascending crack formation

The load in a reinforcing bar to induce a primary crack is given
by

Fli�pr ¼
ArErk

2
1fctAc

keLp
ð6Þ

where as defined in Fig. 3a: Ar and Er are the cross-sectional area
and modulus of the FRP reinforcing bar; Lp is the perimeter length
of the FRP bar; Ac is the cross-sectional area of the concentrically
loaded prism; fct is the tensile strength of the concrete; and where

k1 ¼
ffiffiffiffiffiffiffiffiffiffi
keb2

q
ð7Þ

in which

b2 ¼
Lp

Ar

1
Er
þ Ar

EcAc

� �
ð8Þ

The primary crack spacing is given by

Sli�pr ¼
2
k1

ð9Þ

The load in the reinforcing bar to cause a secondary crack is gi-
ven by

Fli sec ¼
ArErk

2
1fctAc

0:35keLp
ð10Þ

The secondary cracks occur midway between the primary cracks, so
that the crack spacing in the region where secondary cracks occur,
that is (Lcr)sec in Fig. 1a, is half that of the primary crack spacing in
Eq. (9), that is

Sli�sec ¼
Sli�pr

2
ð11Þ

The load in the reinforcing bar to cause a tertiary crack is given
by

Fli�ter ¼
ArErk

2
1fctAc

0:27keLp
ð12Þ

which will cause the crack spacing to reduce to

Sli�ter ¼
Sli�pr

4
ð13Þ
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3.3. Linear ascending deflection

The P/D relationships required to quantify the deflections are
given below. They depend on the length of the prism being
analysed.

When the prism length is greater than Sli-pr as in region D in
Fig. 1a, then the P/D relationship is given by

Pli�1 ¼ Dli�1ArErk1 ð14Þ

When the prism length is equal to Sli-pr as in region C in Fig. 1a
then

Pli�sp ¼
Dli�spArErk1

tanh 2
ð15Þ

When the prism length is equal to Sli-pr/2 as in region B in Fig. 1a
then

Pli�sp=2 ¼
Dli�sp=2ArErk1

tanh 1
ð16Þ

And finally when the prism length is equal to Sli-pr/4 then

Pli�sp=4 ¼
Dli�sp=4ArErk1

tanh 0:5
ð17Þ
4. P/D from parabolic ascending s/d characteristic

4.1. Parabolic bond–slip characteristic

The parabolic ascending bond–slip relationship in Fig. 4 is given
by

s ¼ smax
d
d1

� �a

ð18Þ

where d1 is the slip at the maximum shear stress smax as in Fig. 4
and a can be varied to match the shape with test results.

4.2. Parabolic ascending crack formation

The force in the reinforcing bar to cause a primary crack is

Fpa�pr ¼
fct

Ec
ArEr þ fctAc ð19Þ

The primary crack spacing is

Spa�pr ¼
ð1þ aÞfctAcd

a
1

smaxLp
ffiffiffiffiffiffiffiffi
2c9
p� �a

" # 1
1þa

ð20Þ

where the coefficient c9 can be derived from

c9 �
ffiffiffiffiffiffiffiffi
2c9
p

fctAck2d
a
1

smaxLp
¼ �0:5

fct

Ec
þ fctAc

ArEr

� �2

ð21Þ

in which

k2 ¼
b2smax

da
1

ð22Þ

and in which b2 is given by Eq. (8).
The force in the reinforcing bar to cause a secondary crack is

Fpa�sec ¼ArEr

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

1þa
ðSpa�secÞ1þa ð1þaÞfctAcd

a
1

smaxLpðSpa�secÞ1þa

 !1þa
a

þ ð1þaÞfctAcd
a
1

smaxLpðSpa�secÞ1þa

 !2
a

vuut
ð23Þ

where the spacing is now
Spa�sec ¼
Spa�pr

2
ð24Þ

The force in the reinforcing bar to cause a tertiary crack is

Fpa ter ¼ArEr

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

1þa
ðSpa�terÞ1þa ð1þaÞfctAcd

a
1

smaxLpðSpa�terÞ1þa

 !1þa
a

þ ð1þaÞfctAcd
a
1

smaxLpðSpa�terÞ1þa

 !2
a

vuut
ð25Þ

and the spacing is now

Spa�ter ¼
Spa�pr

4
ð26Þ
4.3. Parabolic ascending deflection

The P/D relationships that are required for the deflection calcu-
lations depend on the prism encompassed by the cracks as follows.

When the prism length is greater than Spa-pr then

Ppa�1 ¼ ArEr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2D

1þa
pa�1

1þ a

s
ð27Þ

When the prism length equals Spa-pr then

Ppa�sp ¼ ArEr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2D

1þa
pa�sp

1þ a
þ Dpa�sp

Spa�pr

� �2
s

ð28Þ

When the prism length Spa-sec equals Spa-pr/2 then

Ppa�sp=2 ¼ ArEr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2D

1þa
pa�sp=2

1þ a
þ Dpa�sp=2

Spa�sec

� �2
s

ð29Þ

and finally when the prism length Spa-ter equals Spa-pr/2 then

Ppa�sp=4 ¼ ArEr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2D

1þa
pa�sp=4

1þ a
þ Dpa�sp=4

Spa�ter

� �2
s

ð30Þ
5. Validation

The discrete rotation deflection analysis described above for
deriving the deflection has been compared with twelve specimens
tested by [2] in Figs. 5–8. The simply supported beams had a span
of 1.8 m, depth of 190 mm and those in Figs. 5 and 6 had a width of
160 mm and those in Figs. 7 and 8 a width of 140 mm. The speci-
mens were tested with a constant moment region of 600 mm. All
the specimens had GFRP reinforcing bars of modulus 60 GPa. The
specimens in Figs. 5–8 are identified as C-abc-Dx, where: abc
stands for the amount of reinforcement (for example, three bars
of diameter 16 mm is 316); x stands for the cover of the GFRP bars
(which for D1 is 20 mm and that for D2 is 40 mm); and C1 and C2
are the concrete properties which for C1 had a mean cylinder
strength of 32.1 MPa and mean modulus of 25.7 GPa and for C2 a
strength of 58.7 MPa and modulus of 26.0 GPa respectively. The
pull tests to determine the bond–slip properties are reported [15]
and show the linear ascending bond–slip characteristic in Fig. 4.
From these results and allowing for the axial extension of the rein-
forcing bar on the measured slip, the bond–slip stiffness ke was cal-
culated as 43 N/mm3. The test results in Figs. 5–8 have also been
compared with the deflections from [8] and, furthermore, as we
are dealing with a serviceability analysis, the load–deflections have
been plotted at up to half the measured failure load.

The specimens in Figs. 5 and 6 had a cover of 40 mm so that the
depth of the prism used in the analysis, that is dpri in Fig. 3a, was
either 92 mm or 96 mm. In these analyses, the discrete rotation



Fig. 5. Load mid span deflection for beams with cover of 40 mm.

Fig. 6. Load–mid span deflection for beams with a cover of 40 mm.

Fig. 7. Load–mid span deflection for beams with a cover of 20 mm.

Fig. 8. Load–mid span deflection for beams with a cover of 20 mm.
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Fig. 9. Load mid-span deflection for varying Er.

Fig. 10. Primary crack spacing for varying Er.

Fig. 11. Load crack width in constant moment region.

Table 1
Bond–slip characteristic.

Type of outer surface a smax (MPa) d1 (mm) Spa-pr (mm)

Grain covered 0.067 12.05 0.13 40
Indented and braided 0.177 10.2 2.14 78
Ribbed type 0.283 11.61 1.23 81

Fig. 12. Load–deflection with varying bond.

Fig. 13. Crack width with varying bond.
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approach predicted that only primary cracks would occur and the
step changes that can be seen are at the formation of additional
primary cracks as the load is increased. In general, the theoretical
discrete rotation approach would appear to have good correlation
with the test results and in particularly with the ACI approach.

The specimens in Figs. 7 and 8 had a cover of 20 mm so that the
depth of the prism used in the tension stiffening component of the
analysis was either 52 mm or 56 mm. Hence in these specimens,
the cross-sectional area of the prism Ac in Fig. 3a was about 57%
of those in the specimens in Figs. 5 and 6. Let us first consider
Fig. 7b. At the point marked A(5), there are five primary cracks
and then four secondary cracks form to cause the beam to deflect
to A0(9). This increase in deflection does not appear to occur in
the tests specimens which would suggest that secondary cracks
do not occur. If secondary cracks are suppressed in the discrete
rotation analysis then there would appear to be continuing good
correlation with the test results and the ACI approach in all of
the specimens in Figs. 7 and 8. It would appear that the choice of
Ac is important in determining the onset of secondary cracks.

The aim of this paper is to provide the mechanics tools for
researchers to quantify the deflection of RC beams with any type
FRP reinforcing bars and with any bond–slip characteristic. From
the above comparisons, it would appear that a better estimate of
Ac than that based on the cover would help as already exist [25].
6. Parametric study

The two major parameters that distinguish FRP RC from steel RC
are the reinforcement moduli and the reinforcement bond–slip
characteristics. Let us first consider the effect of varying the FRP
reinforcement moduli on the deflection.

To illustrate the effect of varying the reinforcement moduli on
the deflection, Specimen C1-212-D2 in Fig. 5a was analysed with
three values of Er of 40 GPa, 80 GPa and 120 GPa; all other variables
remained the same as those described in the previous section. The
results are shown in Fig. 9. The first crack to form, which is referred
to as the initial crack in Fig. 1a, occurs at load level A in Fig. 9 and
can be determined from the standard moment–curvature analysis
of an uncracked section. Hence in region O–A the deflection is
purely due to curvature. In region A–B, the deflection is due to
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curvature along the length of the beam and the discrete rotation of
the single initial crack. The primary cracks first form at load level B
in the constant moment region of the test specimen causing very
large increases in the deflection, to C, C0 and C00, due to discrete
rotation of the cracks and which depends on the moduli of the
reinforcement. At this stage most of the deflection is due to dis-
crete rotation. The next primary cracks form at D, D0 and D00 outside
the constant moment region and so on. It can be seen that the rein-
forcement moduli has a major effect on the deflection and mostly
through the discrete rotation of the cracks.

The dependence of the primary crack spacing Sli-pr on the rein-
forcement moduli can be determined from Eqs. (7)–(9) and is
shown in Fig. 10; increasing the reinforcement moduli increases
the crack spacing but not in a linear fashion. The effect of the rein-
forcement moduli on the average crack width in the constant mo-
ment region is shown in Fig. 11 where the reduction in the
reinforcement moduli increases the deflection. In summary reduc-
ing the reinforcement moduli: increases crack spacing (Fig. 10) and
therefore reduces the number of cracks and the points at which
discrete rotation occurs; however this is offset by causing wider
cracks (Fig. 11) and, therefore, greater discrete rotations at the
cracks which do occur; with the net effect of greater deflections
(Fig. 9).

To illustrate the effect of bond on the deflection due to the dis-
crete rotation, the parabolic ascending bond–slip characteristic in
Fig. 4 has been fitted to test results for grain covered, ribbed and
indented and braided specimens [16]. The results are given in Ta-
ble 1 where the bond slip exponent a and the slip d1 had very wide
ranges for a fairly constant smax. Hence comparing deflection
analyses with these results will be comparing the shapes of the
bond–slip characteristics for fairly constant shear capacities smax.
Specimen C1-212-D2 was also used to illustrate the effect of the
variation in bond on the deflection.

The load–deflection plots for Specimen C1-212-D2 but with the
different bond characteristics in Table 1 are shown in Fig. 12. It can
clearly be seen that the bond properties have little effect on the
deflection. The effect of the bond properties on the primary crack
spacing Spa-pr is shown in Table 1 where it can be seen that it can
cause large changes in the crack spacing. The effect of the bond
on the average crack width in the constant moment region is
shown in Fig. 13 where its effect can also be major. The step change
at 15 kN where the average crack width in the constant moment
region reduces is caused by cracking beyond the constant moment
region which initially causes the cracks within the constant mo-
ment region to contract but it is worth noting the total crack width
increases. In conclusion, the bond characteristics affect crack spac-
ing and crack widths but have little effect on the deflection. For
example, increasing the bond stiffness will reduce the crack spac-
ing but this will be offset by narrower cracks so the effect on
deflection is negligible.

7. Conclusions

This paper presents a mechanics approach for quantifying the
serviceability discrete rotation of RC beams with FRP reinforcing
bars in a generic form that will allow researchers to refine the com-
ponents of the mechanics model to achieve close correlation with
tests results. A partial-interaction discrete rotation mechanics
based analysis for quantifying the short-term discrete rotation at
cracks and consequently the deflection of RC beams with FRP rein-
forcement has been described. The model allows for the bond–slip
characteristics between the reinforcement and the concrete and so
can cope with any type of surface preparation of FRP reinforcing
bars. The model also allows for the reinforcing bar force and slip
at the crack face and so can cope with any type of FRP reinforce-
ment model.
As part of the analysis procedure, the model also predicts the
crack widening and crack spacing and the gradual development
of discrete cracks such as initial, primary and secondary cracks
should they occur. Hence the model can be used with any type
of FRP reinforcement with any type of bond characteristics and is
shown to have good agreement with test results. It may also be
worth noting that individual cracks or concentrations of cracks
continue to rotate causing very wide cracks which are often attrib-
uted to hinges and which may be further increased in size through
concrete softening. Hence this research on the serviceability ductil-
ity is a precursor to the ultimate ductility of RC members.
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Appendix A. Fundamental governing equation

The fundamental governing equation for basic tension stiffening
can be derived from the equilibrium equations for any bonded joint
such as a reinforced concrete prism under pure tension as shown in
Fig. 14a. The derivation of the governing equation for this stress
transfer problem involves four unknown fields which are: the axial
stresses rr = rr(x) in the reinforcement and rc = rc(x) in the con-
crete; the axial strains er = er(x) in the reinforcement and ec = ec(x)
in the concrete; the interface shear stress across the bonded length
s = s(x); and the interface slip d = d(x) which is the difference be-
tween the axial displacement ur of the reinforcement and uc of
the concrete [26–28].

From Fig. 14b and c, the generic equilibrium equations for a
reinforced prism under pure tension can be written as

drr

dx
¼ sLp

Ar
ðA:1aÞ

and
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drc

dx
¼ � sLp

Ac
ðA:1bÞ

and from Fig. 14a, the equation of equilibrium for the prism can be
written as

rcAc þ rrAr ¼ Pr ðA:2Þ

The axial tension force Pr in Eq. (A.2) will induce a slip at the inter-
face (d) between the concrete and reinforcement

d ¼ ur � uc ðA:3Þ

Differentiating Eq. (A.3) gives the following slip strain dd
dx

dd
dx
¼ dur

dx
� duc

dx
ðA:4Þ

As dur
dx is simply the reinforcement strain, from the steel and concrete

moduli Er and Ec respectively

rr ¼ Erer ¼ Er
dur

dx
ðA:5Þ

and

rc ¼ Ecec ¼ Ec
duc

dx
ðA:6Þ

where Er and Ec are the elastic modulus of reinforcement and con-
crete respectively. Substituting Eqs. (A.5) and (A.6) into (A.4) yields

dd
dx
¼ rr

Er
� rc

Ec
ðA:7Þ

Differentiating Eq. (A.7), we get

d2d

dx2 ¼
1
Er

drr

dx

� �
� 1

Ec

drc

dx

� �
ðA:8Þ

and substituting Eqs. (A.1a) and (A.1b) into Eq. (A.8) yields the fol-
lowing governing equation

d2d

dx2 � b2s ¼ 0 ðA:9aÞ

where

b2 ¼
Lp

Ar

1
Er
þ Ar

EcAc

� �
ðA:9bÞ

The governing Eq. (A.9a) can be solved using the interfacial bond–
slip characteristic s = f(d) along with the boundary conditions for
this specific tension stiffening problem. In this paper, the bond
stress slip s = f(d) in Fig. 4 has been used to derive the basic tension
stiffening equations in the main text.

Appendix B. Derivation of basic tension stiffening for s–d of
linear ascending

Solving the differential equation in Eq. (A.9a) which the bond
stress slip of linear ascending s–d as shown in Fig. 4, gives

dðxÞ ¼ c1 coshðk1xÞ þ c2 sinhðk1xÞ ðB:1Þ

and further differentiating Eq. (B.1) yields

dd
dx
¼ k1c1 sinhðk1xÞ þ k1c2 coshðk1xÞ ðB:2Þ

and substituting the slip variation of Eq. (B.1) into the bond stress
slip of linear ascending s–d will gives the bond stress variation

sðxÞ ¼ ke½c1 coshðk1xÞ þ c2 sinhðk1xÞ� ðB:3Þ

in which the constants c1 and c2 in the equations above can be
solved through the substitution of boundary conditions as follows.
dd
dx
¼ Pr

ArEr
and d ¼ Dr at x ¼ 0; ðB:4Þ

and

d ¼ 0 and
dd
dx
¼ 0 at x ¼ Sli�pr ðB:5Þ

where Sli-pr in Eq. (B.5) is defined as a position beyond which the
slip–strain tends to zero.

Solving both Eqs. (B.1) and (B.2) with applying the boundary
conditions in Eqs. (B.4) and (B.5) yields

c2 ¼
Pr

ArErk1
ðB:6Þ

and

c1 ¼ �
Pr

ArErk1 tanh 2
ðB:7Þ

and Sli-pr

Sli�pr ¼
2
k1

ðB:8Þ

where Sli-prk1 = 2 is based on an assumption that the bond stress is
resisted by 97% of the applied load, Pr [28].

Relationship between the bond force and concrete force are
shown belowZ x¼Sp

x¼0
sLp dx ¼ fctAc ðB:9Þ

Substituting the variation of bond stress in Eq. (B.3) into Eq. (B.9)
will gives the load in the reinforcing bar to cause a primary crack

Fli�pr ¼
ArErk

2
1fctAc

keLp
ðB:10Þ

The boundary condition to form secondary crack spacing Sli-sec is
given by

d ¼ 0 and
dd
dx

– 0 at x ¼ Sli�pr=2 ¼ Sli�sec ðB:11Þ

Solving Eq. (B.1) by using the boundary condition in Eq. (B.11) and
constant of c2 in Eq. (B.6) gives

c1�sec ¼ �
Pr

ArErk1
ðtanh 1Þ ðB:12Þ

Thus the load in the reinforcing bar to induce secondary crack can
be obtained through the substitution of Eqs. (B.12) and (B.6) into
Eq. (B.3) and further into Eq. (B.9)

Fli sec ¼
ArErk

2
1fctAc

0:35keLp
ðB:13Þ

The P–D relationship in Eqs. (15)–(17) in the main text can be de-
rived through substitution of particular constants and the boundary
conditions in Eq. (B.4) into Eq. (B.1). Let say, for P–D relationship of
prism length that is equal to Sli-pr, substituting both constants of
Eqs. (B.6) and (B.7) into (B.1) will gives

Pli�sp ¼
Dli�spArErk1

tanh 2
ðB:14Þ
Appendix C. Derivation of basic tension stiffening for s–d of
parabolic ascending

Substituting the bond stress of parabolic ascending into govern-
ing equation of Eq. (A.9a) leads to

d2d

dx2 ¼ b2smax
d
d1

� �a

ðC:1Þ
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As

d2d

dx2 ¼
d
dx

dd
dx

� �
¼ dm

dx
¼ dm

dd
dd
dx

� �
¼ m

dm
dd

ðC:2aÞ

where

m ¼ dd
dx

ðC:2bÞ

Eq. (C.1) can be rewritten as

m
dm
dd
¼ b2smax

d
d1

� �a

ðC:3Þ

Integrating both sides of the equation yields

dd
dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2d

1þa

1þ a
þ 2c9

s
ðC:4Þ

and c9 is a constant of integration.
Further integrating Eq. (C.4) yields

d Hyp2F1
1
2
;

1
1þ a

;1þ 1
1þ a

;� k2d
1þa

c9

" # !
¼ ðxþ c10Þ

ffiffiffiffiffiffiffiffi
2c9

p
ðC:5Þ

where Hyp2F1 represents a 2F1 hypergeometric function and it is a
series of slip function. Solving that slip series functions in mathlab,
an assumption has been made that this series is approximately 1.0
hence the slip variation in Eq. (C.5) can be rewritten as

d ¼ ðxþ c10Þ
ffiffiffiffiffiffiffiffi
2c9

p
ðC:6Þ

For the boundary conditions of Eq. (B.5), in which d = 0 at x = Spa-pr,
the constant c10 in Eq. (C.6) can be obtained as

c10 ¼ �Spa�pr ðC:7Þ

Substituting Eq. (C.7) into the slip variation of Eq. (C.6) and further
into the bond force and concrete force relationship of Eq. (B.9) gives
the primary crack spacing

Spa�pr ¼
ð1þ aÞfctAcd

a
1

smaxLp
ffiffiffiffiffiffiffiffi
2c9
p� �a

" # 1
1þa

ðC:8Þ

Substituting the boundary conditions of Eq. (B.4) into Eqs. (C.4) and
(C.6) will lead to the constant c9

c9 �
ffiffiffiffiffiffiffiffi
2c9
p

fctAck2d
a
1

smaxLp
¼ �0:5

Pr

ArEr

� �2

ðC:9Þ

where Pr is the load to cause the primary crack spacing Spa-pr that is
Fpa-pr = (fct/Ec)ArEr + fctAc

Thus the constant c9 can be rewritten as

c9 �
ffiffiffiffiffiffiffiffi
2c9
p

fctAck2d
a
1

smaxLp
¼ �0:5

fct

Ec
þ fctAc

ArEr

� �2

ðC:10Þ

As the bar in the element is further pulled out, secondary cracks will
occur. By symmetry, the secondary crack spacing Spa-sec = Spa-pr/2
and applying this boundary condition into (C.6) will leads to the
constant c10_s

c10 s ¼ �Spa�sec ðC:11Þ

Substituting Eq. (C.11) into the slip variation of Eq. (B.11) and fur-
ther into the bond force and concrete force relationship of Eq.
(B.9) gives the constant c9_s

c9 s ¼ 0:5
ð1þ aÞfctAcd

a
1

smaxLpðSpa�secÞ1þa

" #2
a

ðC:12Þ

Substituting the constant c9_s and also Eq. (C.11) into the slip vari-
ation of Eq. (C.6) at x = 0 yields the following slip at the occurrence
of the secondary crack for the prism of length Spa-pr
Dr cr sec ¼ Spa�sec
Acfctd

a
1ð1þ aÞ

smaxLpðSpa�secÞ1þa

 !1
a

ðC:13Þ

Applying the boundary conditions of Eq. (B.4) and also Eq. (C.13)
into Eq. (C.4) yields the following load to cause a secondary crack

Fpa�sec ¼ArEr

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

1þa
ðSpa�secÞ1þa ð1þaÞfctAcd

a
1

smaxLpðSpa secÞ1þa

 !1þa
a

þ ð1þaÞfctAcd
a
1

smaxLpðSpa�secÞ1þa

 !2
a

vuut
ðC:14Þ

For P–D relationship shows in Eq. (28), substituting the constants of
Eq. (C.7) and the boundary conditions of (B.4) into Eqs. (C.4) and
(C.6) yields

Ppa�sp ¼ ArEr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2D

1þa
pa�sp

1þ a
þ Dpa�sp

Spa�pr

� �2
s

ðC:15Þ
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