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1. INTRODUCTION
The tension stiffening effect has been widely used in
predicting the tensile behaviour of reinforced concrete
prisms (Beeby and Scott 2005; Chan et al. 1992; Goto
1971; Gupta and Maestrini 1990; Hegemier et al. 1985;
Jiang et al. 1984; Lee and Kim 2008; Marti et al. 1998;
Mirza and Houde 1979; Rizkalla and Hwang 1984;
Somayaji and Shah 1981; Yankelevsky et al. 2008). It
is not only important in controlling the deflection of
beams (Bischoff 2005; Gilbert 2007) but also can be
utilised for predicting multiple crack spacings and
crack widths (Bischoff et al. 2003; Kong et al. 2007;
Wu et al. 2009). The tension stiffening effect allows the
stress transfer from the reinforcement to the
surrounding concrete through the interface bond stress
slip property (τ−δ ). Hence, the concrete stress is
gradually increasing due to this process and also vice
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versa for stress in the reinforcement. This stress transfer
process continues until the tensile capacity of the
concrete is reached after which cracks occur. Therefore,
the tension stress carried by the concrete at any section
is important in determining the location of cracks.

This tensile concrete stress is directly related to the
interface bond stress slip property which shows that the
bond stress is significant in modelling (Cosenza et al.
1997; Elighausen et al. 1983) or deriving a governing
equation for predicting these behaviours (Mohamed Ali
et al. 2008a; Oehlers et al. 2005; Oehlers et al. 2011b).
An interface bond stress τ distribution along the
reinforcement rather than an interface bond slip material
property τ−δ for predicting the crack spacing and crack
width has been used (Chan et al. 1992; Somayaji and
Shah 1981). This was a good starting position in the
analysis of tension stiffening. However, as the bond
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stress distribution depends on the bond slip properties
τ−δ which can vary considerably (Seracino et al. 2007)
as well as the size and type of reinforcement (Mohamed
Ali et al. 2008a; Oehlers et al. 2005; Oehlers et al.
2011a) this approach will not provided generic
solutions.

A more advanced approach is to use a specific bond
slip property τ−δ. The concept of tension stiffening
has been used by Marti et al. (1998) and Warner et al.
(2007) and is referred to as the tension chord model.
In their model, the following very simplistic
assumptions are made to obtain a solution. A stepped-
rigid plastic τ−δ model is proposed to describe the slip
between the reinforcement and concrete in which
there is a uniform bond stress slip in the unyielded
region and a reduced uniform bond stress slip in the
yielded region; this change in bond strength suggests
that the bond properties are not just a material
property. Also they made the assumption that the
strain in the concrete between cracks is relatively
small and can be ignored which limits the accuracy of
the model as the strain in the concrete is no longer
related to the formation of cracks. Other researchers
have proposed that the bond stress slip is uniform
(Choi and Cheung 1996; Gupta and Maestrini 1990;
Wu et al. 1991) which is probably better than
assuming it is dependent on yield as it is now a
material property but still an over simplification.

Extensive experimental investigations into simulating
the tension stiffening effects of reinforced concrete
prisms have been carried out (Bischoff 2003; Jiang et al.
1984; Lee and Kim 2008; Mirza and Houde 1979;
Rizkala and Hwang 1984; Somayaji and Shah 1981;
Tastani and Pantazopoulou 2010; Wu et al. 2008;
Yankelevsky et al. 2008). These tests provide a range of
data that has been used to analyse the crack spacings and
crack widths in order to develop empirical formulae
used in CEB-FIP Model Code 90 (CEB 1992),
Eurocode-2 (2004) and by Marti et al. (1998) as shown
in Table 1.

The next step in this research is to develop generic
closed form mechanics solutions for crack spacings,
crack widths and the loads to cause multiple cracking
that is based on bond-slip τ−δ material characteristics
that simulate those from tests. This is the subject of this
paper. The governing equations are first presented.
Later, these governing equations are solved using the
following four wide ranging types of interface bond
stress slip τ−δ characteristics to provide closed form
solutions: (1) A linear ascending bond-slip variation
which is ideally suited for the early stages of
serviceability and which provides nice and simple
closed form solutions that clearly illustrate the

importance of specific parameters at serviceability; 
(2) A non-linear bond-slip which gives complex
solutions but closely simulates the shapes of typical
experimentally determined bond slip shapes; (3) A
bond-slip model based on the same exponential shape as
the well accepted CEB-FIB Model Code 90 (CEB 1992)
and by Eligehausen et al. (1983) and finally (4) A linear
descending bond-slip variation that is suitable at the
ultimate limit state such as in the formation of hinges
(Haskett et al. 2009a; Mohamed Ali et al. 2008b) and
which also gives simple closed form solutions and
illustrates the parameters that govern at the ultimate
limit state.

The aim of this paper is to develop the fundamental
mechanics that govern the tension stiffening behaviour
for short term loads as it is realised that the short term
deflection of reinforced concrete members is the starting
position for long term deflection. Hence the accuracy of
the long term deflection depends on the accuracy of the
short term deflection. Hence this paper is on short term
loading. However it will be shown in this paper how
time dependent effects can be included.

2. GOVERNING EQUATIONS FOR TENSION
STIFFENING

The fundamental governing equation for closed form
solutions can be derived from the equilibrium equations
for any bonded joint such as a reinforced concrete prism
under pure tension as shown in Figure 1(a) in which
shear lag is ignored as is the usual practice. The
derivation of the governing equation for this stress
transfer problem involves four unknown fields which
are: the axial stresses σr = σr (x) in the reinforcement and
σc = σc(x) in the concrete; the axial strains εr = εr (x) in
the reinforcement and εc = εc(x) in the concrete; the
interface shear stress across the bonded length τ = τ (x);
and the interface slip δ = δ(x) which is the difference
between the axial displacement ur of the reinforcement
and uc of the concrete (Mohamed Ali et al. 2008a;
Muhamad et al. 2011a; Wu et al. 2002; Yuan et al.
2004).

From Figures 1(b) and 1(c), the generic equilibrium
equations for a reinforced prism under pure tension can
be written as

(1a)

and

(1b)d

dx
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c p
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σ τ
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and from Figure 1(a), the equation of equilibrium for the
prism can be written as

(2)

where Ar and Ac are the cross-sectional areas of the
reinforcement and the concrete respectively and Lp is
the circumference of the reinforcement as shown in
Figure 1(a). The concrete force Pc = 0 as assuming
that there is an initial crack. The axial tension force Pr in
Eqn 2 will induce a slip at the interface (δ) between the
concrete and reinforcement

(3)

Differentiating Eqn 3 gives the following slip strain 

(4)

which for long term loads can be increased by the

shrinkage strain. As is simply the reinforcement

strain, from the steel and concrete moduli Er and Ec

respectively

(5)

and

(6)

where Er and Ec are the elastic modulus of
reinforcement and concrete respectively where the latter

σ εc c c c
cE E

du

dx
= =

σ εr r r r
rE E

du

dx
= =

du

dx
r

d

dx

du

dx

du

dx
r cδ

= −

d

dx

δ

δ = −u ur c

σ σc c r r r cA A P P+ = +

can be modified to allow for creep under long term loads
if required. Substituting Eqns 5 and 6 into 4 yields

(7)

Differentiating Eqn 7, we get

(8)

and substituting Eqns 1(a) and 1(b) into Eqn 8 yields the
following governing equation

(9a)

where

(9b)

The governing Eqn 9(a) can be solved using the
interfacial bond-slip characteristic τ = f(δ) along with
the boundary conditions for this specific tension
stiffening problem that is shown in Figure 2.
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Figure 1. Free body diagrams for: (a) equilibrium of prism; 

(b) equilibrium at concrete interface; and (c) equilibrium at

reinforcement interface

Pc /2

Pr1

Pc /2

Pc /2

Pr1

Pc /2

Pr

Ss = Sp /2

St = Sp /4

Pb = τLpdx

Pr

Pb = τLpdx

PrPr

Secondary crack face

(b) Prism length Sp

(c) Prism length Ss

Primary crack face

(a) Infinitely long prism

Initial crack face

Concreter_p =   (0)

Full interaction

δ

   = 0δ

Sp

Pc /2Pb = τLbdx

Pr 1

Pc /2

Steel reinforcement bar

x

Pr

Pc /2

Pc /2

Pr1

dδ
dx

δ= 0 and    = 0
∆

r_s =   (0)δ∆

r_t =   (0)δ∆

Figure 2. Tension stiffening for concrete prism



Figure 2(a) shows the boundary conditions for the
formation of primary cracks. Let us assume that there is
an initial crack at x = 0 beyond which there are no
further cracks so it is a question of determining the first
series of cracks or primary cracks. At x = 0 the strain in
the concrete is zero so that the slip strain is simply the
strain in the reinforcement, hence

(10)

Sp in Figure 2(a) is defined as a position beyond
which the slip-strain tends to zero that is the start of
where the behaviour tends towards full-interaction as
shown. Hence

(11)

As full-interaction is first achieved at x = Sp, the
maximum stress in the concrete is first achieved at Sp.
Hence the primary crack can occur anywhere in the full-
interaction region so that Sp is the minimum crack
spacing for the primary cracks. As beams are normally
subjected to a moment gradient Sp is also the primary
crack spacing.

Primary cracks will occur at a spacing of Sp along the
length of the prism. Once these primary cracks have
formed, the problem now changes to that shown in
Figure 2(b) which is that of a symmetrically loaded
prism of length Sp. By symmetry, the boundary
condition at the mid-length of the prism is given by

(12)

where Ss in Eqn 12 and Figure 2(b) is a secondary crack
spacing

Once secondary cracks have formed, the prism length
now changes to that shown in Figure 2(c). By symmetry,
the cracks occurs at a crack spacing of Sp/4 whenever
the bond is adequately strong, the boundary condition at
this stage can be written as

(13)

where St in Eqn 13 and Figure 2(c) is a tertiary crack
spacing

Figures 2(a), (b) and (c) also illustrate the random
nature of cracking. It has already been explained that
the first primary crack can occur anywhere in the full
interaction region in Figure 2(a) but will probably

δ
δ

= ≠ = =0 0 4and at
d

dx
x S Sp t/

δ
δ

= ≠ = =0 0 2and at
d

dx
x S Sp s/

δ
δ

= = =0 0and at
d

dx
x Sp

d

dx

P

A E
xr

r r
r

δ
δ= =and at = 0∆

occur closer to Sp due to the moment gradient in the
beam. Hence cracks can occur in any position beyond
Sp from the initial crack and tests on beams would
suggest that the crack spacing can be as large as 2Sp.
If, for example, the crack spacing is 2Sp, then the
prism in Figure 2(b) would be 2Sp long so by
symmetry the next crack would occur at 2Sp/2 and the
next in Figure 2(c) at 2Sp/4. If, as a further example,
the crack spacing is 1.4Sp, then the next crack would
occur at 1.4Sp/2 and the next at 1.4Sp/4. In the
following analyses, it has been assumed that the initial
crack spacing is the minimum crack spacing Sp but
this could be adjusted to a factor of Sp and applied
using the same boundary condition as in Figure 2(b).
It is also worth noting at this stage, that it will be
shown that the formation of primary, secondary and
tertiary cracks, as in Figures 2(a), (b) and (c), depends
on the bond strength. For example the bond may be
sufficient to form primary cracks in Figure 2(a) but
not sufficient to form secondary cracks as in Figure
2(b) as the bonded length in Figure 2(b) is less than
that in Figure 2(a). This further adds to the random
nature of cracking.

In this paper, the primary and secondary crack
spacings, crack widths as well as the load to cause
cracks have been derived for the four different types
of interfacial bond stress slip characteristics τ−δ as
shown in Figure 3 and which consist of the following.
Firstly a linear ascending bond slips property
represented by O-B in Figure 3 that has a stiffness ke.
Secondly a non-linear bond slip property represented
by O-B’-E which is characterised by an ascending
nonlinear curve with a peak shear stress of τmax at a
slip of δ2 and a descending non-linear curve. Thirdly
the bond slip property of CEB-FIP Model Code 90
(CEB 1992) and Eligehausen et al. (1983) for an
ascending non-linear curve with a peak shear stress of
τmax at a slip of δ1 represented by O-B. And finally the
linear descending bond slip property with a peak
shear stress of τmax at a slip of zero and a peak slip of
δmax at a zero shear stress τ represented by O-A-C in
Figure 3.
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3. SOLUTIONS FOR LINEAR ASCENDING
BOND SLIP CHARACTERISTIC

The bond stress slip for a linear ascending characteristic
(Mohamed Ali et al. 2008a; Wu et al. 2002; Yuan et al.
2004), as depicted by O-B in Figure 3, can be written as
follows

(14)

where ke is the stiffness of the bond slip property τ−δ.
Substituting Eqn 14 into the governing equation of

Eqn 9(a) yields

(15)

Solving the differential equation of Eqn 15 gives the
slip variation

(16a)

where

(16b)

Differentiating Eqn 16(a) yields

(17)

Substituting Eqn 16(a) into the linear ascending bond
stress slip τ−δ of Eqn 14 results in

(18)

in which the constants c1 and c2 in Eqns 16(a)-18 can be
solved through the substitution of boundary conditions
as follows.

3.1. Analysis of Infinitely Long Prism [see
Figure 2(a)]

3.1.1. Linear ascending crack spacings and load
to cause a crack for infinitely long prism

The boundary condition at the initial crack face in
Figure 2(a) is given by Eqn 10. Applying this boundary
condition into Eqn 17 yields

(19)c
P

A E
r

r r
2

1
=

λ

τ λ λ( ) cosh( ) sinh( )x k c x c xe= +[ ]1 1 2 1

d

dx
c x c x

δ
λ λ λ λ= +1 1 1 1 2 1sinh( ) cosh( )

λ β1 2= ke

δ λ λ( ) cosh( ) sinh( )x c x c x= +1 1 2 1

d

dx
ke

2

2 2
δ

β δ=

τ δ= ke

For the boundary condition in Eqn 11 that is δ = 0
and dδ /dx = 0 at x = Sp [refer Figure 2(a)]. Applying
these boundary conditions and Eqns 19 into 16(a) and
17 gives

(20)

(21)

Solving both Eqns 20 and 21 gives the primary crack
spacing, Sp as

(22)

where Spλ1 = 2 is based on an assumption that the bond
stress is resisted by 97% of the applied load, Pr (Yuan
et al. 2004).

Further substitution of Eqns 22 into 21 yields

(23)

The relationship between the force in the bar, Pr at
the initial crack at x = 0 and the forces in reinforcement
and concrete, Pr1 and Pc at the initiation of a primary
crack at x = Sp in Figure 2(a), can be written in the
following form

(24)

and

(25)

where the definite integral in Eqn 24 yields

the bond force between the concrete and the
reinforcement over the length Sp.

Solving Eqns 24 and 25 lead to the relationship
between the bond force and concrete force as shown
below

(26)τL dx f Ap
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At x = Sp in Figure 2(a), the slip-strain between the
concrete and reinforcement bar is zero which means that
the strain in the reinforcement, εr1, and strain in the
concrete, εc, are equal from which

(27)

Substituting Eqns 26 and 27 into 24 yields the load to
cause a primary crack based on full interaction. Once the
tensile stress of the concrete in Eqn 27 reach the tensile
strength capacity of the concrete which σc = fct, the crack
will occur and load to cause the crack can be rewritten as

(28)

The load to cause a primary crack for infinitely long
prism based on partial interaction for linear ascending
bond stress slip can be obtained by solving the
relationship between the bond force and concrete force
as shown in Eqn 26. Substituting bond stress of Eqns 18
into 26 which the constants c1 and c2 as shown in Eqns 23
and 19 yield the load to cause a primary crack for
infinitely long prism

(29)

3.1.2. Linear ascending load slip behaviour for
infinitely long prism

The load Pr and slip at the crack face ∆r _ p for infinitely
long prism in Figure 2(a) can be obtained by substituting
Eqns 23 and 19 into slip variation of Eqn 16(a), the slip
at the initial crack face, x = 0

(30)

As the crack width, wr_ p is twice the slip, ∆ r_ p hence
the crack width for infinitely long prism as

(31)

3.2. Analysis of Prism Length Sp [see Figure 2(b)]
3.2.1. Linear ascending crack spacing and load

to cause a crack for prism length Sp
The prism length Sp as shown in Figure 2(b) will be
analysed in this section. As the bar of the prism is pulled

w
P

A Er p
r

r r
_ =

2

1λ

∆r p
r

r r

P

A E_ =
λ1

P
A E f A

k Lr cr p
r r ct c

e p
_ _ =

λ1
2

P
f

E
A E f Ar cr fi

ct

c
r r ct c_ _ = +

P
E

A Er
c

c
r r1 =

σ

out, a secondary crack will occur. By symmetry in
Figure 2(b), the secondary crack spacing Ss = Sp/2 =
1/λ1 can be obtained. Substituting Eqns 19 and 12 into
16(a) will leads to the constant c1_s that corresponds to
the prism length Sp as

(32)

Substituting Eqns 32 and 19 into 18 and further into
Eqn 26 for boundary limit x = 0 and x = Ss yield the load
to cause a secondary crack for prism length Sp

(33)

3.2.2. Linear ascending behaviour of prism
length Sp

The load Pr and slip at the primary crack face ∆r_s for
prism length Sp in Figure 2(b) can be obtained by
substituting constants c2 and c1_s as shown in Eqns 19
and 32 respectively into Eqn 16(a) at x = 0 to give

(34)

As the crack width wr_s = 2 ∆r_s hence the crack
width for the prism length Sp as

(35)

3.3. Analysis of Prism Length Ss [see Figure 2(c)]
3.3.1. Linear ascending crack spacing and load

to cause a crack for prism length Ss
The prism length Ss in Figure 2(c) can be analysed in this
section. By symmetry of the prism, a further tertiary crack
will occur at the mid-length of the prism that is St = Sp/4
= 1/2λ1. Applying the boundary conditions of Eqn 13 and
the constant c2 of Eqns 19 into 16(a) yields the unknown
constant c1_t that corresponds to the boundary conditions
of Eqn 13 as

(36)c
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Substituting Eqns 36 and 19 into 18 and further into
Eqn 26 for boundary limit x = 0 and x = St, will gives the
load to cause a tertiary crack for prism length Ss as

(37)

3.3.2. Linear ascending behaviour of prism
length Ss

The load Pr and slip ∆ r_t at the secondary crack face for
the prism length Ss in Figure 2(c) can be obtained by
substituting constant c2 and c1_t as shown in Eqns 19 and
36 respectively into Eqn 16(a) at x = 0 to give

(38)

As the crack width wr_t = 2 ∆ r_t hence the crack
width for the prism length Ss as

(39)

4. SOLUTIONS FOR NON-LINEAR BOND
SLIP CHARACTERISTIC

The non-linear bond slip characteristic shown as O-B’-E
in Figure 3 was proposed by Dai et al. (2006) and can be
written as

(40a)

where

(40b)

Substituting Eqn 40(a) into the governing equation of
Eqn 9(a) leads to

(41)

As

(42a)
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where

(42b)

using Eqn 42(a) and substituting into Eqn 41 leads to

(43)

Rearranging Eqn 43 and integrating both side of the
equation yields

(44a)

where

(44b)

and c3 is a constant of integration.
For the boundary conditions of Eqn 11 which 

and δ = 0 at x = Sp, unknown constant c3 in 

Eqn 44(a) can be determined. Thus, Eqn 44(a) can be
written as

(45)

Rearranging Eqn 45 yields

(46)

Integrating both side of Eqn 46 will gives the
variation of slip

(47)

where c4 is a constant of integration.
Differentiating Eqn 47 will lead to the following

variation of slip strain as

(48)
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and variation of bond stress as

(49)

The unknown c4 in Eqns 47 and 48 can be solved
through substitution of boundary conditions as in
following section.

4.1. Analysis of Infinitely Long Prism [see
Figure 2(a)]

4.1.1. Non-linear primary crack spacing and load
to cause a crack

At the initial crack face of the prism, x = 0 in Figure 2(a),
applying the boundary condition of Eqns 10 into 48
yields

(50)

At x = Sp in Figure 2(a), applying the boundary
condition of Eqn 11 that is the behaviour tends to full
interaction (δ = 0 and dδ /dx = 0) and Eqns 50 into 47
and 48 gives the primary cracks spacing as

(51)

In solving both Eqns 47 and 48 for boundary
conditions δ = 0 and dδ/dx = 0, eAkSp cannot be zero
hence an assumption (eAkSp = 0.135) has to be made to
obtain the crack spacing.

Substituting Eqns 50 into 47 and further into Eqn 49
yields the bond stress variation. Furthermore,
substituting the bond stress variation into the
relationship between the bond force and concrete force
of Eqn 26 yields the following load to cause a primary
crack for infinitely long prism

(52a)

where
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4.1.2. Non-linear load slip behaviour for
infinitely long prism

The load Pr will induce a slip ∆ r_ p at the initial crack
face in Figure 2(a). Slip ∆r_ p can be obtained by
substituting Eqns 50 into 47 at x = 0 as follows

(53)

As the crack width wr_ p is twice the slip ∆ r_ p hence
the crack width for primary cracks

(54)

4.2. Analysis of Prism Length Sp [see Figure 2(b)]
4.2.1. Non-linear crack spacing and load to

cause a crack for prism length Sp
The prism length Sp in Figure 2(b) will be considered in
this subsection. As the bar of the prism is further pulled
out, secondary cracks will occur. By symmetry, the
secondary crack spacing Ss = Sp/2 in Figure 2(b) where
the slip is zero is given in Eqn 12. As the slip strain
dδ /dx is not zero at x = Ss, rearranging Eqn 44(a) yields

(55)

Integrating both sides of Eqn 55 will gives

(56)

Applying the boundary conditions in Eqn 12 to Eqns
56 and 44(a) yields the unknown constant c7_s

(57)

and the slip strain
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Applying the boundary conditions in Eqns 10 that is
δ = ∆r at x = 0 to Eqn 56 yields

(59a)

where

(59b)

Substituting Eqns 59(a) into 44(a) for the boundary
condition of Eqn 10 in which dδ /dx = Pr/ArEr and δ = ∆r

at x = 0 yields

(60)

As slip strain dδ/dx of Eqn 58 is the difference in
strain between the strain in the reinforcement εr1 and
strain in the concrete εc, thus Eqn 58 can be rewritten as

(61)

Substituting Eqns 61 into 25 at the stage the concrete
is reaches the tensile capacity Pc = fctAc, yields the
following load to cause a secondary crack for the prism
length Sp

(62)

Substituting Eqns 62 into 60 gives the value of
constant c3_s that corresponds to the boundary
conditions of Eqn 12

4.2.2. Non-linear behaviour of prism length Sp
The relationship of load-slip P−∆ for the prism length Sp

in Figure 2(b) can be obtained by rearranging Eqn 59(a)

(63)
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and further substituting the resulting equation into Eqn
60 to give

(64)

Thus the crack width for prism length Sp can be
obtained by wr_s = 2 ∆r_s.

4.3. Analysis of Prism Length Ss [see Figure 2(c)]
4.3.1. Non-linear behaviour with crack spacing

Ss and load to cause a crack
Consider the prism of length Ss in Figure 2(c). By
symmetry, the tertiary crack spacing is St = Sp /4 in
Figure 2(c) where the slip is zero as given in Eqn 13.
The boundary condition of Eqn 13 in which δ = 0 at
x = St = Sp /4 when applied to Eqn 56 will give the
unknown constant c7_t that corresponds to the
boundary condition of Eqn 13

(65)

Substituting Eqns 65 into 56 for the boundary
condition δ(x) = ∆r at x = 0 yields

(66a)

where

(66b)

Substituting Eqn 66(a) into Eqn 44(a) for the
boundary condition of Eqn 10 in which dδ/dx = Pr /ArEr

and δ = ∆r at x = 0 yields

(67)

Substituting Eqn 62 into Eqn 67 gives the value of
constant c3_t that corresponds to the boundary conditions
of Eqn 13
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The load to cause a tertiary crack for prism length Ss

is given by Eqn 62 with c3 = c3_t from Eqn 68.

4.3.2. Non-linear behaviour of prism length Ss
The relationship of load-slip P−∆ for the prism length Ss

in Figure 2(c) is given in Eqn 64 where c3_t is
corresponding to the boundary conditions of Eqn 13 as
shown in Eqn 68. Thus the crack width for prism length
Ss can be obtained by wr_t = 2 ∆r_t .

5. SOLUTIONS FOR NONLINEAR CEB-FIP
BOND SLIP CHARACTERISTIC

The ascending non-linear curve of bond stress for the
CEB-FIP Code Model 90 (CEB 1992) and Eligehausen
et al. (1983) shown as O-B in Figure 3 can be written as

(69)

Substituting bond stress of Eqn 69 into governing
equation of Eqn 9(a) leads to

(70)

Using Eqn 42(a), Eqn 70 can be rewritten as

(71)

Rearranging Eqn 71 and integrating both sides of the
equation yields

(72a)

where

(72b)

and c9 is a constant of integration.
Rearranging Eqn 72(a) and further integrating the

equation yields
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where Hyp2F1 represents a 2F1 hypergeometric function
and it is a series of slip function. Solving that slip series
functions in mathlab, an assumption has been made that
this series is approximately 1.0 hence the slip variation
in Eqn 73(a) can be rewritten as

(73b)

5.1. Analysis of Infinitely Long Prism [see
Figure 2(a)]

5.1.1. CEB model primary crack spacing and load
to cause for infinitely long prism

For the boundary conditions of Eqn 11, in which δ = 0
at x = Sp, the constant c10 in Eqn 73(b) can be obtained
as

(74)

Substituting Eqn 74 into the slip variation of Eqn
73(b) and further into the bond force and concrete force
relationship of Eqn 26 gives the primary crack spacing

(75)

Substituting the boundary conditions of Eqn 10 into
the slip strain variation of Eqn 72(a) and slip variation
of Eqn 73(b), will lead to the constant c9_ p

(76)

where Pr in Eqn 76 is the load to cause the primary
crack spacing Sp that is Pr = Pr_cr Substituting the load
to cause a primary crack Pr_cr from Eqns 28 into 76 will
give the constant c9_ p

(77)

5.1.2. CEB model load slip behavior for infinitely
long prism

The load Pr and the slip ∆r at the initial crack face in
Figure 2(a) can be obtained by applying the boundary
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conditions of Eqn 10 in which dδ/dx = Pr /ArEr and 
δ = ∆r at x = 0 into the slip strain of Eqn 72(a)

(78)

Thus the crack width for prism length Sp can be
obtained by wr_ p = 2 ∆r_ p.

5.2. Analysis of Prism Length Sp [see Figure
2(b)]

5.2.1. CEB-FIP model crack spacing and load to
cause a crack for prism length Sp

The prism length Sp in Figure 2(b) will be analysed. As
the bar of the prism is further pulled out, secondary
cracks will occur. By symmetry in Figure 2(b), the
secondary crack spacing Ss = Sp /2 and applying the
boundary condition of Eqns 12 into 73(b) will leads to
the constant c10_s corresponding to the prism length Sp

(79)

Substituting Eqn 79 into the slip variation of Eqn
73(b) and further into the bond force and concrete force
relationship of Eqn 26 gives the constant c9_s that
corresponds to the prism of length Sp

(80)

Substituting the constant c9_ s of Eqn 80 and also Eqn 79
into the slip variation of Eqn 73(b) at x = 0 yields the
following slip at the occurrence of the secondary crack
for the prism of length Sp

(81)

Applying the boundary conditions of Eqn 10 and also
Eqn 81 into Eqn 72(a) yields the following load to cause
a secondary crack for the prism length Sp
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5.2.2. CEB model load slip behavior of prism
length Sp

The load Pr and the slip ∆r_s at the primary crack faces
in Figure 2(b) can be obtained by substituting the
boundary conditions of Eqn 10 in which dδ /dx =
Pr /ArEr and δ = ∆r at x = 0 into the slip strain of Eqn
72(a). This gives the load-slip relationship as well as
crack width as shown in Eqn 78 with replace Sp = Ss.

5.3. Analysis of Prism Length Ss [see Figure 2(c)]
5.3.1. CEB model crack spacing and load to

cause a crack for prism length Ss
The prism length Ss in Figure 2(c) will be used in this
subsection. By symmetry of the prism, the crack will
occur at the mid-length of the prism that is St = Sp/4.
These boundary conditions of Eqn 13 in which δ = 0 at
x = Sp/4 can be applied and give the load to cause a
tertiary crack for prism length Ss as shown in Eqn 82
with replace Ss = St.

5.3.2. CEB model load slip behaviour of prism
length Ss

The load Pr and the slip ∆r_t at the secondary crack face
as well as crack widths in Figure 2(c) can be obtained as
shown in Eqn 78 with replace Sp = St.

6. SOLUTIONS FOR LINEAR DESCENDING
BOND SLIP CHARACTERISTIC

The bond stress for a linear descending bond stress slip
characteristic (Haskett et al. 2009b) O-A-C in Figure 3
can be written as

(83)

Substituting Eqn 83 into the governing equation of
Eqn 9(a) leads to

(84a)

where

(84b)

Solving the differential equation of Eqn 84(a) gives
the slip variation
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Differentiating Eqn 85 yields the slip strain variation

(86)

Further substituting Eqn 85 into the bond stress slip
τ−δ of the linear descending bond-slip in Eqn 83 result
in the bond stress variation

(87)

where the constants c11 and c12 in Eqns 85 to 87 can be
solved through substitution of the boundary conditions
as follows.

6.1. Analysis of Infinitely Long Prism [see
Figure 2(a)]

6.1.1. Linear descending crack spacing and load
to cause a crack for infinitely long prism

The boundary condition at x = Sp in Figure 2(a) is given
in Eqn 11. Substituting these boundary condition into
Eqns 85 and 86 yields

(88)

and

(89)

Substituting both Eqns 88 and 89 into Eqn 86 and
further substituting into Eqn 10 will lead to

(90)

where Pr in Eqn 90 is the load to cause the primary
crack spacing Sp that is Pr = Pr_cr. Substituting both
constants of Eqns 88 and 89 into the relationship of the
bond force and concrete force as given in Eqn 26 results
the load to cause a primary crack

(91)

Substituting Eqns 91 into 90 gives the primary crack
spacing
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6.1.2. Linear descending load slip behavior for
infinitely long prism

The load Pr and slip ∆r_ p can be obtained by
substituting the constants c11 and c12 in Eqns 88 and 89
into 85 at x = 0 as follows

(93)

Substituting Eqn 93 into wr = 2 ∆r yields the crack
width for infinitely long prism as

(94)

6.2. Analysis of Prism Length Sp [see Figure 2(b)]
6.2.1. Linear descending crack spacing and load

to cause a crack for prism length Sp
As the bar of the prism length Sp in Figure 2(b) is pulled
out, secondary cracks will occurs. By symmetry, the
secondary crack spacing Ss = Sp /2. Substituting the
boundary conditions of Eqns 10 and 12 into Eqns 86 and
85 respectively gives the constants c11_s and c12_s that
corresponds to a prism of length Sp

(95)

and

(96)

Substituting both constants of Eqns 95 and 96 into 87
and further substituting into Eqn 26 gives the load to
cause a secondary crack

(97)

6.2.2. Linear descending load slip behavior of
prism length Sp

The load Pr and slip ∆r_s relationship for a prism length
Sp can be obtained by substituting Eqns 95 and 96 into
85 at x = 0
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As the crack width wr_s is twice the slip ∆r_s hence the
crack width for a prism length Sp as
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6.3. Analysis of Prism Length Ss [see Figure 2(c)]
6.3.1. Linear descending crack spacing and load

to cause a crack for prism length Ss

By symmetry of the prism of length Ss, the tertiary crack
will occur at the mid-length of the prism that is St = Sp /4.
Substituting the boundary condition of Eqns 13 into 85
gives the constant c12_t that corresponds to a prism
length Ss as shown in Eqn 96 with replace Ss = St.

Substituting Eqn 95 and the constant c12_t into bond
stress variation of Eqn 87 and further into Eqn 26 for the
boundary limit from x = 0 to x = St yields the load to
cause a tertiary crack for the prism length Ss as shown in
Eqn 97 with replace Ss = St.

6.3.2. Linear descending load slip behavior of
prism length Ss

The load Pr and slip ∆r_t relationship for the prism of
length Ss can be obtained by substituting Eqn 95 and the
constant c12_t into the slip variation of Eqn 85 at x = 0 as
shown in Eqn 98 with replace Ss = St. As the crack width
wr is twice the slip ∆r hence the crack width for the prism
length Ss is given in Eqn 99 with replace Ss = St.

7. SUMMARY AND COMPARISONS
The results of this mechanics based analysis of tension-
stiffening have been used to derive the short term
deflection of steel reinforced beams (Muhamad et al.
2011b), FRP reinforced beams (Oehlers et al. 2011b)
and the behaviour of hinges (Visintin et al. 2012) and
give good correlation with test results. However, it is
felt that a strength of this mechanics based approach is
to isolate the parameters that affect tension-stiffening
and this will be studied in this section.

7.1. Parametric Comparison
Table 1 lists published crack spacings Srm which, in
general, have been derived empirically. It can be seen
that the main empirically derived parameters that
control crack spacing are: bond properties such as k1;
bar diameter db; ratio of reinforcement area to that of
concrete ρ; steel stress at crack σs2; and the tensile
strength of concrete fct. These empirically identified
parameters are also those identified in the mechanics
models that have been developed in this paper. Take for
example the analysis based on the linear ascending bond
characteristic in Figure 3 where crack spacing is given
by Eqn 22 which can be written as follows
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Comparing the parameters in the mechanics model
of Eqn 100 with the empirical parameters listed
above: ke in the mechanics model is the bond stiffness
and equivalent to the bond property k1 in the
empirical model, Lp is the bar circumference used in
the mechanics model as opposed to the bar diameter
db in the empirical model, and Ar /Ac is the
reinforcement ratio ρ in the empirical model. The
crack spacing of Eqn 100 is the crack spacing of
primary cracks which is simply twice the spacing
after secondary cracks occur. As the reinforcement
bar load to cause primary cracks is given by Eqn 29
and that to cause secondary cracks by Eqn 33, it can
be seen that the crack spacing is also dependent on
the stress in the bar at the crack that is the parameter
σs2 in the empirical model. The crack spacing of Eqn
100 for the linear ascending bond slip properties as
well as that for the non-linear bond slip properties of
Eqn 51 is not dependent on the tensile strength of the
concrete fct. In contrast, that for the CEB-FIP Model
Code 90 (CEB 1992), Eqn 75, and that for the linear
descending bond properties, Eqn 92, is dependent on
fct which explains why some of the empirical models
in Table 1 show a dependence on fct (Marti et al.
1998) and others (Eurocode 2 2004; CEB-FIP Model
Code 90 1992) do not.

There is a remarkably good agreement on the
parameters that control the crack width in the empirical
rules in Table 1 where it can be seen that in all three
empirical rules the crack width depends on the crack
spacing Srm and the reinforcement strain εsm. The crack
width for the linear ascending bond-slip properties is
given by Eqn 31 which can be written as

(101)

This mechanics model also depends on the crack
spacing Sp and reinforcement strain Pr/ArEr and is
virtually the same equation as that in Eurocode 2 (2004)
in Table 1.

7.2. Analysis of Concentrically Loaded Prism
The mechanics based solutions are now used to analyse
a concentrically loaded prism, such as that shown
in Figure 1, with the steel reinforcement properties of
Ar = 1385 mm2, Er = 200 GPa and Lp = 132 mm, concrete
prism properties of Ac = 2215 mm2, Ec = 25 GPa fc = 30
MPa and fct = 2.74 MPa, and bond-slip properties of 
τmax = 6.85 MPa, δ1 = 1.5 mm and δ2 = 2.59 mm as
shown in Figure 4. The CEB-FIP Model Code 90
(CEB.1992) bond-slip property O-B in Figure 4 is Eqn 69
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with the code recommended value for the exponent α in
Eqn 69 of 0.4. As the exponent α increases from 0.4 to
unity, the CEB-FIB Model Code 90 (CEB 1992)
variation approaches that of the linear ascending Eqn 14
with the stiffness ke as shown in Figure 4. The bond
stiffness ke used in Figure 4 is therefore a lower bound to
the CEB-FIB Model Code 90 (CEB 1992) stiffness’s.

The results of the analysis depicted in Figure 2(a) to
determine the crack spacing Sp is shown in Figure 5 for the
linear ascending bond characteristics in Figure 4. It can be
seen in Figure 5 that the concrete stress builds up along the
length of the bar and peaks at a distance of 554 mm from
the crack face. It can also be seen that the shape of this
distribution remains unchanged, that is, it peaks at 
Sp = 554 mm which is independent of the applied load Pr.
Hence the crack spacing is independent of fct as Eqn 100
suggests. In contrast for the CEB-FIB Model Code 90
(CEB 1992) bond in Figure 6, the distance from the crack
face at which the stress in the concrete peaks is a function
of the reinforcement force so that the crack spacing is now
a function of the tensile strength of the concrete. Hence it
can be seen that the shape of the bond-slip property
determines the dependence of the crack spacing on the
tensile strength of the concrete which explains why some

empirical models in Table 1 include the dependence on fct

and others do not.
The results of analysing a concentrically loaded

prism using both the mechanics models developed in
this paper and the empirical models in Table 1 are listed
in Table 2. The linear ascending results are given in
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Table 2. Results from structures mechanics models

Bond model Primary crack Primary crack load Secondary
spacing* (mm) (kN) crack load (kN)

(1) Linear ascending 554 36 103
(2) Non-linear 438 42 104
(3) CEB-FIP (α = 0.4) 72 [36]** 447
(4) CEB-FIP (α = 0.5) 106 [36]** 323
(5) CEB-FIP (α = 0.6) 151 [36]** 246
(6) CEB-FIP (α = 0.99) 596 [36]** 90
(7) Full interaction — [36]** —
(8) Eurocode 2 (2004) 54 — —
(9) CEB-FIP Model 

Code 90 
(CEB.1992) 93 — —

(10) Marti et al. 1998 27 — —

* If secondary cracks occur, they will have half this crack spacing
** [ ] values from full interaction value

CEB-FIP
Linear ascending
Non-linear
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Figure 4. Different value of bond stress material properties
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Row 1. The primary crack spacing is 554 mm and the
load to cause this crack is 36 kN which is virtually the
same load as that from the full interaction analysis Eqn
28 given in Row 7. The reinforcement load has to
increase substantially from 36 kN to 103 kN to form
secondary cracks. The non-linear results in Row 2 are
similar to the linear ascending results in Row 1. The
CEB-FIP Model Code 90 (CEB 1992) bond-slip model
recommends at value of α = 0.4 as plotted in Figure 4.
The results are given in Row 3 where the primary
crack spacing is 72 mm, the primary crack load is 36 kN
(as this analysis uses the full-interaction results in Eqn
28 and the secondary crack load is 447 kN. The value of
α is gradually increased in Rows 4 and 5 where it can be
seen that this reduction in bond stiffness causes an
increase in the primary crack spacing but a reduction in
the secondary crack load. When α → 1 in Row 6, the
bond-slip properties tend to that of the linear ascending
in Figure 4 so the results in Row 6 in Table 2 tend to the
linear ascending results in Row 1. The empirical crack
spacing in Rows 8 and 9 are similar to that in Row 3
which uses the recommended CEB-FIB Model Code 90
(CEB.1992) bond model. These results emphasise the
importance of the bond properties on crack spacing and
widths.

8. CONCLUSIONS
Generic mechanics based models have been developed
for various idealised bond characteristics to predict
crack spacings, crack widths and the load to cause
primary cracks, secondary cracks and subsequent cracks
for short term loads. A comparison between the
controlling parameters from the mechanics models and
those from empirical models shows that the empirical
research has identified the major parameters that affect
tension stiffening but that the mechanics equations are
too complex to be derived empirically. It is suggested
that this research provides an in-depth understanding of
tension stiffening and the random nature of cracking and
provides the fundamental mechanics parameters that
could be calibrated experimentally to develop more
accurate design rules. The research also shows how the
formation and behavior of primary cracks and
subsequent cracks are different due to different
boundary conditions.
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