

CHAPTER 1 FUNDAMENTAL OF COMBUSTION

Definition

Rapid oxidation of a fuel accompanied by the release of heat and/or light together with the formation of combustion products

Fuel + oxygen → Heat/light + combustion product

Fuel \rightarrow natural gas, fuel oil, coal and gasoline Oxygen $\rightarrow O_2$ (from air) Combustion product $\rightarrow CO_2$ and H₂O

Carbon monoxide (CO) Aldehydes (e.g. H) Unburned Fuel Radicals

Oxides of nitrogen (NO_x) and Oxides of Sulphur (SO_x)

Carbon + oxygen \Rightarrow heat + carbon dioxide C + O₂ \Rightarrow heat + CO₂

Combustion equations

 $CH_4 + 2O_2 ----> CO_2 + 2H_2O$ Reactants ----> Products + Heat

Combustion Requirement

Combustion triangle

Requirement for Successful Combustion

Categories of Combustion Process

3 types of combustion process which depend on the oxygen being supplied;

Stochiometric Combustion Excess Air or Oxygen Combustion (Fuel Lean Combustion) Excess Fuel Combustion (Fuel Rich Combustion)

Stoichiometric Combustion

- Stoichiometric or Theoretical Combustion is the ideal combustion process where fuel is burned completely
- <u>chemically-correct</u> proportion of fuel and air quantities
- no unburned fuel
- no residual oxygen present in combustion products
- combustion products CO₂, H₂O, N₂ (from air) and heat byproduct is absent

Stoichiometric Combustion

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + Heat$

Excess Air or Oxygen Combustion

- Also known as 'fuel lean' or 'positive excess air'
- Occurs when oxygen or air is supplied more than the stoichiometric proportion
- All fuel will react with O₂ however excess left over O₂ will remain in the product.
- Combustion products CO₂, H₂O, O₂ (from air), N₂ (from air) and heat

Excess Air or Oxygen Combustion

$CH_4 + 3O_2 + ignition \rightarrow CO_2 + 2H_2O + O_2 + Heat$

Excess Fuel Combustion

- Also known as 'fuel rich' or 'negative excess air'
- Occurs when fuel is supplied more than the stoichiometric proportion.
- Insufficient amount of oxygen or air available to burn in the fuel-rich mixture caused <u>incomplete</u> <u>combustion</u>
- All fuel not completely react with O₂ thus produce CO in the product
- Combustion products CO, H₂O (from air), N₂ (from air) and Heat

Excess Fuel Combustion

$CH_4 + O_2 + ignition \rightarrow CO + H_2O + H_2 + Heat$

Incomplete Combustion

Incomplete combustion should be avoided due to economy and safety factor;

<u>Economy</u> – Excess fuel which is not being used in combustion is wasted. This will **reduce the combustion efficiency** as it will use up the heat produce from the combustion reaction which is to be used in heating or other process.

<u>Safety</u> – CO is a toxic gas that is dangerous to health and environment

Excess air

- Usually combustion chamber incorporates a modest amount of excess air - about 10 to 20% more than what is needed to burn the fuel completely.
- 150% theoretical air = 50% excess air
- If an insufficient amount of air is supplied to the burner, unburned fuel, soot, smoke, and carbon monoxide exhausts from the boiler - resulting in heat transfer surface fouling, pollution, lower combustion efficiency, flame instability and a **potential for explosion**.

Combustion Terminology

- Reactants
- Fuels
- Oxidizer
- Products
- Complete combustion
- Inerts (Nitrogen, Argon)
- Modeling Combustion Air
- Fuel/Air Ratio
- Theoretical Air
- Dew point
- Adiabatic Flame Temperature

 $CH_4 + 2(O_2 + 3.76N_2) \Rightarrow CO_2 + 2H_2O + 7.52N_2$

Modeling Combustion Air

- Air consist N₂, O₂, CO₂, Argon and traces of other gas
- Only O₂ is reactive component in air, N₂ is inert (un-reactive)
- Molar basis, air consists of $79\% N_2$ and $21\% O_2$.
- 1 mole of air contain 0.79 mole of N_2 and 0.21 mole of O_2
- Thus each one mole of O_2 needed to oxidized hydrocarbon is accompanied by 79/21 = <u>3.76</u> moles of N_2

Combustion equations

$CH_4 + 2O_2 ----> CO_2 + 2H_2O$ \downarrow $CH_4 + 2(O_2 + 3.76N2) -----> CO_2 + 2H_2O + 7.52N_2$

Fuel/Air Ratio

- The standard measure of the amount of air used in a combustion process is the **Fuel/Air Ratio (FA)**
- Defined as

FA = mass of fuel/mass of air

 $CH_4 + 2(O_2 + 3.76N_2) \leftrightarrow$ Reactants fuel 2 kmol air

$$FA = \underline{m_{fuel}} = \frac{1 \ [kmol](12+4)[kg/kmol]}{m_{air}} = 0.058 \ \underline{kg-fuel} \\ gamma kg-air$$

*M_{air} = 29kg/kmol

Theoretical air

- The minimum amount of air for complete combustion
- Product contain no oxygen
- If supply is less, CO may be present in product
- Normal practice to supply more than the theoretical air
- Excess air will result in O₂ appear in products

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

- 1 molecule CH₄ requires 2 molecules O₂
- Theoretical O₂ is 2Nm³ per 1 Nm³ of CH₄

Theoretical air requirement

Because oxygen proportion in air is about 21 percent at volume basis, theoretical air requirement is calculated as follows.

Combustion equation:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

So theoretical air requirement for 1 Nm^3 of CH_4 is

 $2Nm^3 \times 100/21 = 9.52 Nm^3/Nm^3$

Problem 1

Air/gas Ratio

Air/gas ratio is defined as the proportion of actual air volume to theoretical air volume, as follows:

Air/gas ratio = A_a / A_t where

 A_a is actual air volume of combustion A_t is theoretical air requirement of fuel

Excess air ratio is calculated as follows:

Excess air ratio

= (air/gas ratio) – 1
=
$$(A_a / A_t)$$
-1

Dew point

- Minimum temperature below which the water vapour in the combustion products will condense
- Dew temperature of natural gas $\sim 60^{\circ}$ C

Adiabatic Flame Temperature

- The **maximum achievable temperature** is reached when the furnace or combustion chamber is well insulated
- Typical $T_{ad} \sim 1950^{\circ}C$
- T_{ad} is calculated from energy balance

Combustion Stoichiometry

CH₄ + 2(O₂ + 3.76 N₂) → CO₂ + 2H₂O + 7.52 N₂ C₂H₆ + a(O₂ + 3.76 N₂) → bCO₂ + cH₂O + dN₂ C₃H₈ + a(O₂ + 3.76 N₂) → bCO₂ + cH₂O + dN₂ C₄H₁₀ + 6.5(O₂ + 3.76 N₂) → 4CO₂ + 5H₂O + 24.4N₂

Find the theoretical air requirement for propane combustion

Equation : Theoretical O_2 : Theoretical air :

Calculations of theoretical oxygen and air requirements for natural gas supplied before '95 shown below;

Symbol	Combustion equation	Component (Vol %) (A)	O ₂ Required (m ³ / m ³) (B)	Total O ₂
CH ₄	$CH_4 + 2 O_2 = CO_2 + 2 H_2O$	84.75	2.0	1.695
C ₂ H ₆	$C_2H_6 + 3.5 O_2 = 2 CO_2 + 2 H_2O$	10.41	3.5	0.364
C ₃ H ₈	$C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2O$	0.98	5.0	0.049
C ₄ H ₁₀	$C_4H_{10} + 6.5 O_2 = 4 CO_2 + 5 H_2O$	0.11	6.5	0.007
N ₂	Non combustion (no effect)	0.19	0.0	-
CO ₂	Non combustion (no effect)	3.36	0.0	-
TOTAL		100.00	-	2.115

Theoretical oxygen requirement per unit of volume is $2.115 \text{ m}^3/\text{m}^3$.

Air requirement is calculated using 21 per cent of oxygen content in air as follows:

 $2.115 \text{ m}^3 \text{ x } 100/21 = 10.07 \text{ m}^3/\text{m}^3$

Calculations of theoretical oxygen and air requirements for LPG

Symbol	Combustion equation	Component (Vol %) (A)	O ₂ Required (m ³ / m ³) (B)	Total O ₂
C ₃ H ₈	$C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2O$	30.00	5.0	1.500
C ₄ H ₁₀	$C_4 H_{10} + 6.5 O_2 = 4 CO_2 + 5 H_2 O$	70.00	6.5	4.550
N ₂	Non combustion (non effect)	0.19	0.0	-
CO ₂	Non combustion (non effect)	3.36	0.0	-
TOTAL		100.00	-	6.050

Theoretical oxygen required is $6.050 \text{ m}^3/\text{m}^3$ Theoretical air required is $28.810 \text{ m}^3/\text{m}^3$

Exercises

Now please complete the solution for Example 4 (page 13)

Thank You for the Attention