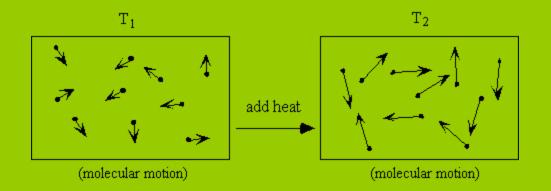


1st Law of Thermodynamics

Chapter 5


- Law of conservation of energy
- E is the energy of the system

$\mathbf{E} = \mathbf{U} + \mathbf{K}\mathbf{E} + \mathbf{P}\mathbf{E}$

- **E** energy of the system
- U Internal energy
- **KE Kinetic energy**
- **PE Potential energy**

Internal energy, U

• Let's focus on the internal energy, u. It is associated with the random or disorganized motion of the particles.

u is a function of the state of the system

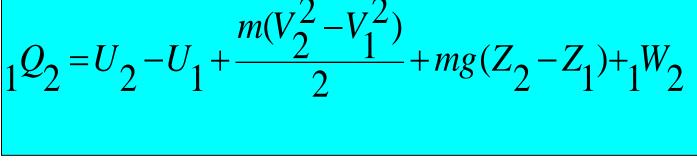
The change in energy of a system is equal to the difference between the heat *added to* the system and the work *done by* the system.

 $\Delta E = Q - W$ (units are Joules)

dE = dU + d(KE) + d(PE)

- It represents all the energy of the system at the given state (E)
 - Kinetic energy of the system (KE)
 - Potential energy of the system (PE)
 - Internal energy (U) such as kinetic energy of the molecules

$\mathbf{Q} - \mathbf{W} = \mathbf{d}\mathbf{U} + \mathbf{d}(\mathbf{K}\mathbf{E}) + \mathbf{d}(\mathbf{P}\mathbf{E})$


KE and PE

• KE =
$$\frac{1}{2}mV^2$$
 or $\Delta KE = \frac{1}{2}m(V_2^2 - V_1^2)$

• PE = mgZ or $\Delta PE = mg(Z_2 - Z_1)$

Substitute into equation Q - W = dU + d(KE) + d(PE)

$$\Delta KE = \frac{1}{2}m(V_2^2 - V_1^2)$$
$$\Delta PE = mg(Z_2 - Z_1)$$
$$m(V^2 - V^2)$$

In many situations the potential energy and the kinetic energy of the system are constant.

• Then $\Delta e = \Delta u$,

•
$$\Delta u = q - w \text{ or } \Delta U = Q - W$$

• Can also write the first law in differential form: $dU = \delta Q - \delta W$ or $du = \delta q - \delta W$

Enthalpy

- $\bullet \quad \mathbf{H} = \mathbf{U} + \mathbf{PV}$
- $\bullet \quad \mathbf{h} = \mathbf{u} + \mathbf{P}\mathbf{v}$
- For saturation condition ;
 h = h_f + x h_{fg}

$$Q = (U_2 - U_1) + W$$

= (U_2 - U_1) + p(V_2 - V_1)

since $p_1 = p_2 = p$ (constant P)

Q =
$$(U_2 + pV_2) - (U_1 + pV_1)$$

= $H_2 - H_1$

Example

 Consider adiabatic throttling of a gas (gas passes through a flow resistance). What is the relation between conditions before and after the resistance?

$$\rightarrow \boxed{p_1, V_1} p_2, V_2 \rightarrow p_1, V_1 \boxed{p_2, V_2} \rightarrow p_1, V_1$$

Q = 0 therefore $\Delta U = -\Delta W$

or $U_2 - U_1 = -(p_2V_2 - p_1V_1)$

so
$$U_2 + p_2 V_2 = U_1 + p_1 V_1$$

 $H_2 = H_1$

First Law in terms of enthalpy

- dU = $\delta Q \delta W$ (for any process, $\Delta KE = \Delta PE = 0$)
- $\mathbf{dU} = \mathbf{\delta Q} \mathbf{pdV}$

Known H = U + pV

```
Therefore

dH = dU + pdV + Vdp

dH = \delta Q - \delta W + pdV + Vdp (any process)

OR

dH = \delta Q + Vdp
```

Lets do some exercises

Quiz 1 Quiz 2

Specific Heats and Heat Capacity

• $\mathbf{Q} = \mathbf{C} \Delta \mathbf{T}$

where C is a heat capacity constant that depends on the substance.

• Specific heat :

The amount of heat required per unit mass to raise the temperature by one degree.

$$C = \frac{1}{m} \frac{\partial Q}{\partial T}$$

• For a constant pressure process:

$$C_{p} = \left(\frac{\delta Q}{\partial T}\right)_{p} \qquad c_{p} = \left(\frac{\delta q}{\partial T}\right)_{p}$$

For a constant volume process:

$$C_{v} = \left(\frac{\delta Q}{\partial T}\right)_{v} \qquad c_{v} = \left(\frac{\delta q}{\partial T}\right)_{v}$$

use c_p and c_v to relate u and h to the temperature for an ideal gas

- First Law for a quasi-static process $du = \delta q - pdv$
- If the process is constant volume: $du = \delta q$

$$C_v = \frac{1}{m} \left(\frac{dU}{dT} \right)$$

• Substitute into Equation (5.14)

dU = $mC_v dT$ (For constant volume only) $U_2 - U_1 = mC_v (T_2 - T_1)$ $Q = U_2 - U_1 = mC_v (T_2 - T_1)$

- If the process is constant pressure, $dh = \delta q$
- Note: dh = du + dpv = du + pdv + vdp

$$C_p = \frac{1}{m} \left(\frac{dH}{dT} \right)$$

dH = mC_pdT (for constant pressure)

 $H_2-H_1 = mC_p(T_2-T_1)$

 $Q = H_2 - H_1 = mC_p(T_2 - T_1)$

exercise

QUIZ 11

More exercise

Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9