

1st Law of Thermodynamics

Chapter 5

- Law of conservation of energy
- E is the energy of the system

$$
\mathrm{E}=\mathrm{U}+\mathrm{KE}+\mathrm{PE}
$$

E - energy of the system
U - Internal energy
KE - Kinetic energy
PE - Potential energy

Internal energy, U

- Let's focus on the internal energy, u. It is associated with the random or disorganized motion of the particles.

\mathbf{u} is a function of the state of the system
The change in energy of a system is equal to the difference between the heat added to the system and the work done by the system.

$$
\Delta E=Q-W \text { (units are Joules) }
$$

$\mathrm{dE}=\mathrm{dU}+\mathrm{d}(\mathrm{KE})+\mathrm{d}(\mathrm{PE})$

- It represents all the energy of the system at the given state (ㄹ)
- Kinetic energy of the system (Kㄹ)
- Potential energy of the system (PE)
- Internal energy (U) such as kinetic energy of the molecules

$$
\mathbf{Q}-\mathbf{W}=\mathbf{d U}+\mathbf{d}(\mathbf{K} \mathbf{E})+\mathbf{d}(\mathbf{P} \mathbf{D})
$$

KE and PE

- $\mathrm{KE}=\frac{1}{2} m V^{2}$ or $\Delta \mathrm{KE}=\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right)$
- $\mathrm{PE}=\mathrm{mgZ}$ or $\triangle P E=m g\left(Z_{2}-Z_{1}\right)$

Substitute into equation

$Q-W=d U+d(K E)+d(P E)$

$$
\begin{gathered}
\Delta \mathrm{KE}=\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right) \\
\Delta P E=m g\left(Z_{2}-Z_{1}\right)
\end{gathered}
$$

$$
{ }_{1} Q_{2}=U_{2}-U_{1}+\frac{m\left(V_{2}^{2}-V_{1}^{2}\right)}{2}+m g\left(Z_{2}-Z_{1}\right)+W_{2}
$$

In many situations the potential energy and the kinetic energy of the system are constant.

Then $\quad \Delta \mathrm{e}=\Delta \mathrm{u}$,
$\Delta \mathrm{u}=\mathrm{q}-\mathrm{W}$ or $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$

Can also write the first law in differential form:

$$
\mathrm{dU}=\delta \mathrm{Q}-\delta \mathrm{W} \quad \text { or } \mathrm{du}=\delta \mathrm{q}-\delta \mathrm{W}
$$

Enthalpy

- $\mathbf{H}=\mathbf{U}+\mathbf{P V}$
- $\mathbf{h}=\mathbf{u}+\mathbf{P v}$
- For saturation condition ;

$$
\begin{aligned}
& \quad \mathbf{h}=\mathbf{h}_{\mathbf{f}}+\mathbf{x} \mathbf{h}_{\mathrm{fg}} \\
\mathbf{Q} & =\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)+\mathbf{W} \\
& =\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)+\mathbf{p}\left(\mathbf{V}_{2}-\mathbf{V}_{1}\right)
\end{aligned}
$$

since $\mathbf{p}_{1}=\mathbf{p}_{\mathbf{2}}=\mathbf{p}$ (constant \mathbf{P})

$$
\begin{aligned}
\mathbf{Q} \quad & =\left(\mathrm{U}_{2}+\mathrm{p} V_{2}\right)-\left(\mathrm{U}_{1}+\mathrm{p} V_{1}\right) \\
& =\mathrm{H}_{2}-\mathbf{H}_{1}
\end{aligned}
$$

Example

- Consider adiabatic throttling of a gas (gas passes through a flow resistance). What is the relation between conditions before and after the resistance?

First Law in terms of enthalpy

$\mathrm{dU}=\mathbf{\delta Q}-\mathbf{\delta W}($ for any process, $\triangle \mathrm{KE}=\Delta \mathrm{PE}=\mathbf{0})$
$\mathbf{d U}=\mathbf{\delta} \mathbf{Q} \mathbf{- p d V}$

$$
\text { Known } \mathbf{H}=\mathbf{U}+\mathbf{p V}
$$

Therefore

$$
\begin{aligned}
& d H=d U+p d V+V d p \\
& d H=\delta Q-\delta W+p d V+V d p \quad \text { (any process) }
\end{aligned}
$$

OR

$$
\mathbf{d H}=\boldsymbol{\delta} \mathbf{Q}+\mathbf{V d p}
$$

Lets do some exercises

Quiz 1
 Quiz 2

Specific Heats and Heat Capacity

- $\mathbf{Q}=\mathbf{C} \Delta \mathbf{T}$
where C is a heat capacity constant that depends on the substance.
- Specific heat :

The amount of heat required per unit mass to raise the temperature by one degree.

$$
C=\frac{1}{m} \frac{\partial Q}{\partial T}
$$

- For a constant pressure process:

$$
\mathrm{C}_{\mathrm{p}}=\left(\frac{\delta \mathrm{Q}}{\partial T}\right)_{\mathrm{p}} \quad c_{p}=\left(\frac{\delta q}{\partial T}\right)_{p}
$$

- For a constant volume process:

$$
C_{V}=\left(\frac{\delta Q}{\partial T}\right)_{v} \quad c_{V}=\left(\frac{\delta q}{\partial T}\right)_{v}
$$

use c_{p} and c_{v} to relate u and h to the temperature for an ideal gas

- First Law for a quasi-static process

$$
d u=\delta q-p d v
$$

- If the process is constant volume:

$$
\begin{gathered}
\mathrm{du}=\delta \mathrm{q} \\
C_{v}=\frac{1}{m}\left(\frac{d U}{d T}\right)
\end{gathered}
$$

- Substitute into Equation (5.14)

$$
\begin{gathered}
d U=m C_{v} d T \quad \text { (For constant volume only) } \\
U_{2}-U_{1}=m C_{v}\left(T_{2}-T_{1}\right) \\
Q=U_{2}-U_{1}=m C_{v}\left(T_{2}-T_{1}\right)
\end{gathered}
$$

- If the process is constant pressure,

$$
\mathrm{dh}=\delta \mathrm{q}
$$

- Note: $\mathrm{dh}=\mathrm{du}+\mathrm{dpv}=\mathrm{du}+\mathrm{pdv}+\mathrm{vdp}$

$$
C_{p}=\frac{1}{m}\left(\frac{d H}{d T}\right)
$$

$\mathbf{d H}=\mathbf{m C}_{\mathrm{p}} \mathbf{d T} \quad$ (for constant pressure)

$$
\begin{gathered}
\mathbf{H}_{2}-H_{1}=\mathrm{mC}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
\mathbf{Q}=\mathrm{H}_{2}-\mathrm{H}_{1}=\mathrm{mC}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
\end{gathered}
$$

exercise

QUIZ 11

More exercise

Quiz 4
Quiz 5
Quiz 6
Quiz 7
Quiz 8
Quiz 9

