Chapter 8

Entropy

A Measure of Disorder or Randomness

Entropy Definition and Change

 DEFINE A PROPERTY S ENTROPY$$
\begin{aligned}
& \int_{1 \mathrm{rev}}^{2} \frac{\delta \mathrm{Q}}{\mathrm{~T}}=\mathrm{S}_{2}-\mathrm{S}_{1} \\
& \quad \int_{2 \text { irrev }}^{1} \frac{\delta \mathrm{Q}}{\mathrm{~T}}+\mathrm{S}_{2}-\mathrm{S}_{1} \leq 0
\end{aligned}
$$

$$
\int_{2 \text { inrev }}^{1} \frac{\delta \mathrm{Q}}{\mathrm{~T}}+\mathrm{ds} \leq 0
$$

$$
\mathrm{ds} \geq \int_{2 \text { intev }}^{1} \frac{\delta \mathrm{Q}}{\mathrm{~T}}
$$

$$
\begin{aligned}
& \mathrm{ds} \geq \int_{\text {irrev }} \frac{\delta \mathrm{Q}}{\mathrm{~T}} \\
& \quad \delta \mathrm{Q}=\int \mathrm{Tds}
\end{aligned}
$$

The temperature-entropy diagrams for water

Entropy for a Pure Substance

Values of specific entropy are given in tables of thermodynamic properties.
The tables are the same as for u, h and v

$$
\begin{aligned}
& s=(1-x) s_{f}+s_{g} \\
& O R \\
& s=s_{f}+x s_{f g}
\end{aligned}
$$

Example 8-1

Find the entropy and/or temperature of steam at the following states:

P	T	Region	$s \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$
5 MPa	$120^{\circ} \mathrm{C}$		
1 MPa	$50^{\circ} \mathrm{C}$		
1.8 MPa	$400^{\circ} \mathrm{C}$		
40 kPa		Quality, $x=0.9$	
40 kPa			7.1794

Answer to Example 8-1

P	T	Region	$s \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
5 MPa	$120^{\circ} \mathrm{C}$	Compressed Liquid and in the table	1.5233
1 MPa	$50^{\circ} \mathrm{C}$	Compressed liquid but not in the table	$s=s_{f}$ at $50^{\circ} \mathrm{C}$ $=0.7038$
1.8 MPa	$400^{\circ} \mathrm{C}$	Superheated	7.1794
40 kPa	$T=T_{\text {sat }}$	Quality, $x=0.9$ Saturated mixture	$s=s_{f}+x s_{f g}$ $=7.0056$
40 kPa	$T=T_{\text {sat }}$	$s_{f}<s<s_{g}$ at P Saturated mixture $X=\left(s-s_{f}\right) / s_{f g}$ $=0.9262$	7.1794

Temperature Entropy Property Diagrams

$$
\mathrm{dS}=\int \frac{\delta \mathrm{Q}}{\mathrm{~T}}
$$

The Thermodynamic Property Relation

From First Law for a closed system,

$$
\begin{aligned}
& \partial Q-\partial W=d U+d K E+d P E \\
& \partial Q-\partial W=d U
\end{aligned}
$$

For reversible process,
$\partial Q_{\text {rev }}=d U+\partial W_{\text {rev }}$
$T d S=d U+P d V$
$d U=T d S-P d V$

du = Tds-PdV (8.5)

From definition of enthalpy,

$$
\mathbf{H}=\mathbf{U}+\mathbf{P V}
$$

Differential,
$\mathbf{d H}=\mathbf{d U}+\mathbf{P d V}+\mathbf{V d P}$
Replaced into Eq(8.5),
$\mathbf{T d S}=\mathbf{d H} \mathbf{- V d P}$
OR

$$
\mathbf{d H}=\mathbf{T d S}+\mathbf{V d P}
$$

Entropy Change for Solid and Liquid

$$
\begin{aligned}
& \mathbf{d u}=\mathbf{T d s}-\mathbf{P d v} \\
& \mathbf{d h}=\mathbf{T d s}+\mathbf{v d P}
\end{aligned}
$$

For liquid and solid, v is almost negligible; $d v \approx 0$ for all process. If dP is small,
$\mathbf{d u}=\mathbf{T d s}$
$\mathbf{d h}=\mathbf{T d s}$
From Eq.(5.17) for solid and liquid, dh $\approx d u \approx C d T$ (no phase change)
And $\mathbf{C p} \approx \mathbf{C v} \approx \mathrm{C}$

- So,

$$
d s \approx C \frac{d T}{T}
$$

- If C is constant,

$$
\Delta s=s_{2}-s_{1}=C \ln \frac{T_{2}}{T_{1}}
$$

Entropy Change for Ideal Gas

- From du = Tds - Pdv
- For ideal gas,

$$
\begin{align*}
& C_{v o} d T=T d s-\frac{R T}{v} d v \\
& d s=C_{v o} \frac{d T}{T}+R \frac{d v}{v} \\
& \Delta s=\int C_{v o} \frac{d T}{T}+R \ln \frac{v_{2}}{v_{1}} \\
& \Delta \mathrm{~s}=\mathrm{C}_{\mathrm{vo}} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{v_{2}}{v_{1}}
\end{align*}
$$

- From dh = Tds +vdP
- For ideal gas,

$$
\begin{aligned}
& C_{p o} d T=T d s+R T \frac{d P}{P} \\
& d s=C_{p o} \frac{d T}{T}-R \frac{d P}{P}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta s=\int C_{p o} \frac{d T}{T}-R \ln \frac{P_{2}}{P_{1}} \\
& \Delta s=C_{p o} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}
\end{aligned}
$$

Reversible, adiabatic process (isentropic)

For ideal gas which is isentropic ($\mathrm{ds}=0$) $d u=T d s-P d v$ $\mathrm{du}=-\mathrm{Pdv}$

$$
k=C_{p} / C_{v} \quad C_{p}=C_{v}+R
$$

$C_{v}=R / k-1$

and

$$
C_{p}=k R / k-1
$$

$$
T_{2} / T_{1}=\left(P_{2} / P_{1}\right)^{(k-1) / k}=\left(v_{1} / v_{2}\right)^{k-1}
$$

Entropy Generation

$$
\begin{align*}
& d S=\frac{\partial Q}{T}+\partial S_{g e n} \tag{8.11}\\
& \text { where } \partial S_{\mathrm{gen}} \geq 0
\end{align*}
$$

$\partial \mathbf{S}_{\text {gen }}$ is a entropy generation due to irreversibility of the process. It is a path function.

$$
\begin{array}{ll}
\delta S_{g e n}=0 & \text { For reversible process } \\
\delta S_{\text {gen }}>0 & \text { For irreversible process }
\end{array}
$$

From Eq. (8.11), the conclusion can be drawn,

$\mathrm{dS}_{\text {sys }}$	Reason
Increased $(+)$	1. Heat is transferred into the system 2. Irreversible process
Decreased $(-)$	Heat is transferred from the system
Unchanged (0)	Adiabatic and reversible process

Entropy equation

$$
\begin{align*}
& d S=\frac{\partial Q}{T}+\partial S_{g e n} \tag{8.11}\\
& \text { where } \partial S_{\text {gen }} \geq 0
\end{align*}
$$

$$
S_{2}-S_{1}={ }_{\underline{1}} \frac{Q_{2}}{T_{0}}+{ }_{1} S_{2}
$$

Normally we need to calculate ${ }_{1} \mathbf{S}_{\mathbf{2}}$ (Sgen)

