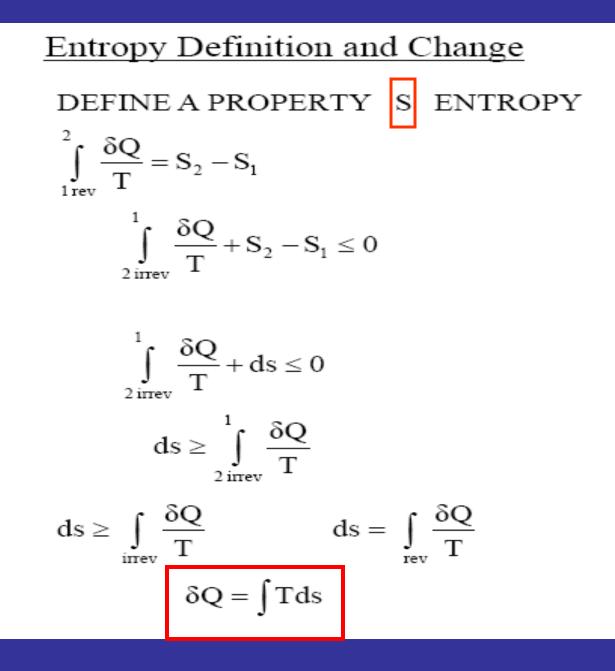
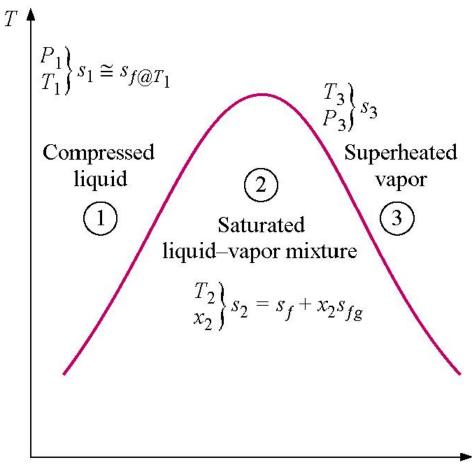
Chapter 8

Entropy

A Measure of Disorder or Randomness



The temperature-entropy diagrams for water



Entropy for a Pure Substance

Values of specific entropy are given in tables of thermodynamic properties.

The tables are the same as for u, h and v

$$s = (1 - x)s_f + s_g$$
$$OR$$
$$s = s_f + xs_{fg}$$

Example 8-1

Find the entropy and/or temperature of steam at the following states:

Р	Т	Region	s kJ/(kg K)
5 MPa	120°C		
1 MPa	50°C		
1.8 MPa	400°C		
40 kPa		Quality, $x = 0.9$	
40 kPa			7.1794

Answer to Example 8-1

Р	Т	Region	s kJ/kg·K
5 MPa	120°C	Compressed Liquid and in the table	1.5233
1 MPa	50°C	Compressed liquid but not in the table	$s = s_f \text{ at } 50^{\circ}\text{C}$ = 0.7038
1.8 MPa	400°C	Superheated	7.1794
40 kPa	$T=T_{sat}$ =75.87°C	Quality, $x = 0.9$ Saturated mixture	$s = s_f + x s_{fg}$ = 7.0056
40 kPa	$T=T_{\rm sat}$ =75.87°C	$s_f < s < s_g$ at P Saturated mixture $X = (s - s_f)/s_{fg}$ = 0.9262	7.1794

Temperature Entropy Property Diagrams

$$dS = \int \frac{\delta Q}{T}$$

for constant T, $Q = T \int dS = T_{constant} \Delta S$
 T_{H}
 T_{L}
 T_{L}
 T_{L}
 M_{net}
 T_{L}
 M_{net}
 M_{net}

The Thermodynamic Property Relation

From First Law for a closed system,

 $\partial Q - \partial W = dU + dKE + dPE$ $\partial Q - \partial W = dU$

For reversible process, $\partial Q_{rev} = dU + \partial W_{rev}$ TdS = dU + PdVdU = TdS - PdV

(8.5)

du = Tds - PdV (8.5)

From definition of enthalpy, H = U + PV

Differential,

 $\mathbf{dH} = \mathbf{dU} + \mathbf{PdV} + \mathbf{VdP}$

Replaced into Eq(8.5),

 $\mathbf{TdS} = \mathbf{dH} - \mathbf{VdP}$

OR

dH = TdS + VdP

Entropy Change for Solid and Liquid

du = Tds - Pdv

dh = Tds + vdP

For liquid and solid, v is almost negligible; dv≈0 for all process. If dP is small,

 $\mathbf{du} = \mathbf{Tds}$

dh = Tds

From Eq.(5.17) for solid and liquid, dh≈du≈CdT (no phase change) And Cp≈Cv≈C • So,

$$ds \approx C \frac{dT}{T}$$

• If C is constant,

$$\Delta s = s_2 - s_1 = C \ln \frac{T_2}{T_1}$$

8.20

Entropy Change for Ideal Gas

- From du = Tds Pdv
- For ideal gas,

$$C_{vo}dT = Tds - \frac{RT}{v}dv$$
$$ds = C_{vo}\frac{dT}{T} + R\frac{dv}{v}$$
$$\Delta s = \int C_{vo}\frac{dT}{T} + R\ln\frac{v_2}{v_1}$$
$$\Delta s = C_{vo}\ln\frac{T_2}{T_1} + R\ln\frac{v_2}{v_1}$$

8.22

- From dh = Tds + vdP
- For ideal gas,

$$C_{po}dT = Tds + RT \frac{dP}{P}$$
$$ds = C_{po} \frac{dT}{T} - R \frac{dP}{P}$$

$$\Delta s = \int C_{po} \frac{dT}{T} - R \ln \frac{P_2}{P_1}$$
$$\Delta s = C_{po} \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

Reversible, adiabatic process (isentropic)

For ideal gas which is isentropic (ds = 0) du = Tds - Pdv du = -Pdv $k = C_p/C_v$ $C_p = C_v + R$ $C_v = R/k-1$ and $C_p = kR/k-1$

$$T_2/T_1 = (P_2/P_1)^{(k-1)/k} = (v_1/v_2)^{k-1}$$

Entropy Generation

$$dS = \frac{\partial Q}{T} + \partial S_{gen} \qquad (8.11)$$

where $\partial S_{gen} \ge 0$

∂S_{gen} is a entropy generation due to irreversibility of the process. It is a path function.

From Eq. (8.11), the conclusion can be drawn,

dS _{sys}	Reason	
Increased (+)	 Heat is transferred into the system Irreversible process 	
Decreased (-)	Heat is transferred from the system	
Unchanged (0)	Adiabatic and reversible process	

Entropy equation

$$dS = \frac{\partial Q}{T} + \partial S_{gen}$$
(8.11)
where $\partial S_{gen} \ge 0$

$$\mathbf{s_2} \cdot \mathbf{s_1} = \underline{\mathbf{Q_2}}_{\mathbf{T_o}} + \mathbf{S_2}_{\mathbf{T_o}}$$

Normally we need to calculate ${}_{1}S_{2}$ (Sgen)