Thermodynamics: An Engineering Approach Seventh Edifion in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Mehmet Kanoglu
University of Gaziantep

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 4 – THERMAL-FLUID SCIENCES TEXTBOOK

· Properties of Pure Substances

Objectives

- Introduce the concept of a pure substance.
- Discuss the physics of phase-change processes.
- Illustrate the *P-v*, *T-v*, and *P-T* property diagrams and *P-v-T* surfaces of pure substances.
- Demonstrate the procedures for determining thermodynamic properties of pure substances from tables of property data.
- Describe the hypothetical substance "ideal gas" and the ideal-gas equation of state.
- Apply the ideal-gas equation of state in the solution of typical problems.
- Introduce the compressibility factor, which accounts for the deviation of real gases from ideal-gas behavior.
- · Present some of the best-known equations of state.

3

Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance.

FIGURE 3–1 Nitrogen and gaseous air are pure substances.

A mixture of liquid and gaseous water is a pure substance, but a mixture of liquid and gaseous air is not.

PHASE-CHANGE PROCESSES OF PURE SUBSTANCES				
Compressed liquid (subcooled liquid): A substance that it is not about to vaporize. Saturated liquid: A liquid that is about to vaporize.				
State 1	At 1 atm and 20°C, water exists in the liquid phase (compressed liquid).	State 2		
P = 1 atm $T = 20$ °C	At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (saturated liquid).	P = 1 atm T = 100°C		

Saturation Temperature and Saturation Pressure The temperature at which water starts boiling depends on the pressure; therefore, if the pressure is fixed, so is the boiling temperature. Water boils at 100°C at 1 atm pressure. Saturation temperature T_{sat}: The temperature at which a pure substance changes phase at a given pressure. Saturation pressure P_{sat}: The pressure at which a pure substance changes phase at a given temperature. TABLE 3-1 P_{sat}, kPa 0.26 0.40 0.61 0.87 1.23 1.71 2.34 3.17 4.25 7.39 12.35 101.4 476.2 1555 3976 8588 600 5 10 15 20 25 30 40 50 100 150 200 250 300 The liquid-vapor saturation curve 400 of a pure 200 (numerical 200 r_{sat},°C water). 50 100 150

- Latent heat: The amount of energy absorbed or released during a phasechange process.
- Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing.
- Latent heat of vaporization: The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation.
- The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs.
- At 1 atm pressure, the latent heat of fusion of water is 333.7 kJ/kg and the latent heat of vaporization is 2256.5 kJ/kg.
- The atmospheric pressure, and thus the boiling temperature of water, decreases with elevation.

TABLE 3–2 Variation of the standard atmospheric pressure and the boiling (saturation) temperature

Elevation m	pressure, kPa	tempera- ture, °C
0	101.33	100.0
1,000	89.55	96.5
2,000	79.50	93.3
5,000	54.05	83.3
10,000	26.50	66.3
20,000	5.53	34.7

10

Some Consequences of

Temperature

Temperature

Start of cooling
(25°C, 100 kPa)

The variation of the temperature of fruits and vegetables with pressure during vacuum cooling from 25°C to 0°C.

The temperature of liquid nitrogen exposed to the atmosphere remains constant at -196°C, and thus it maintains the test chamber at -196°C.

In 1775, ice was made by evacuating the air space in a water tank.

COMPRESSIBILITY FACTOR—A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR pressibility factor Z The farther away Z is from unity, the more the A factor that accounts for gas deviates from ideal-gas behavior. the deviation of real gases from ideal-gas behavior at Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature). a given temperature and Question: What is the criteria for low pressure and high temperature? pressure. Answer: The pressure or temperature of a gas Z =is high or low relative to its critical temperature Videal RTor pressure. gas gases Z = 1FIGURE 3-50 FIGURE 3-48 At very low pressures, all gases The compressibility factor is unity approach ideal-gas behavior (regardless of their temperature). for ideal gases.

Summary

- Pure substance
- Phases of a pure substance
- · Phase-change processes of pure substances
 - ✓ Compressed liquid, Saturated liquid, Saturated vapor, Superheated vapor
 ✓ Saturation temperature and Saturation pressure
- Property diagrams for phase change processes
 - ✓ The *T*-v diagram, The *P*-v diagram, The *P*-*T* diagram, *The P*-v-*T* surface
- Property tables

 - ✓ Enthalpy
 ✓ Saturated liquid, saturated vapor, Saturated liquid vapor mixture, Superheated vapor, compressed liquid
 ✓ Reference state and reference values
- The ideal gas equation of state
- · Compressibility factor
- · Other equations of state
 - ✓ van der Waals Equation of State, Beattie-Bridgeman Equation of State
 - ✓ Benedict-Webb-Rubin Equation of State, Virial Equation of State