Thermodynamics: An Engineering Approach
Seventh Edition in SI Units
Yunus A. Cengel, Michael A. Boles
McGraw-Hill, 2011

Chapter 3
PROPERTIES OF PURE SUBSTANCES

Mehmet Kanoglu

 University of GaziantepCopyright \odot The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CHAPTER 4 - THERMAL-FLUID SCIENCES TEXTBOOK

Properties of Pure Substances

Objectives

- Introduce the concept of a pure substance.
- Discuss the physics of phase-change processes.
- Illustrate the $P-v, T-v$, and $P-T$ property diagrams and $P-v-T$ surfaces of pure substances.
- Demonstrate the procedures for determining thermodynamic properties of pure substances from tables of property data.
- Describe the hypothetical substance "ideal gas" and the ideal-gas equation of state.
- Apply the ideal-gas equation of state in the solution of typical problems.
- Introduce the compressibility factor, which accounts for the deviation of real gases from ideal-gas behavior.
- Present some of the best-known equations of state

PURE SUBSTANCE

- Pure substance: A substance that has a fixed chemical composition throughout.
- Air is a mixture of several gases, but it is considered to be a pure substance

FIGURE 3-1
Nitrogen and gaseous air are pure substances.

(a) $\mathrm{H}_{2} \mathrm{O}$

FIGURE 3-2
A mixture of liquid and gaseous water is a pure substance, but a mixture of liquid and gaseous air is not.

b) Air
\qquad

PHASES OF A PURE SUBSTANCE

 In a solid, the repulsive forces between the molecules tend to maintain them at relatively distances from each other 5

PHASE-CHANGE PROCESSES OF PURE SUBSTANCES \qquad

- Compressed liquid (subcooled liquid): A substance that it is not about to vaporize.
- Saturated liquid: A liquid that is about to vaporize.
\qquad

State 1	At 1 atm and $20^{\circ} \mathrm{C}$, water exists in the liquid phase (compressed liquid).	State 2
\square		-
$P=1 \mathrm{~atm}$ $T=20^{\circ} \mathrm{C}$	and $100^{\circ} \mathrm{C}$, water exists as a liquid	$\begin{aligned} & P=1 \mathrm{~atm} \\ & T=100^{\circ} \mathrm{C} \end{aligned}$
Heat at	that is ready to vaporize (saturated liquid)	

Saturated vapor: A vapor that is about to condense.
Saturated liquid-vapor mixture: The state at which the liquid and vapor phases coexist in equilibrium.
Superheated vapor: A vapor that is not about to condense (i.e., not a saturated vapor).
State 3

If the entire process between state 1 and 5 described in the figure is reversed by cooling the water while maintaining the pressure at the same value, the water will go back to state 1 , retracing the same path and in so doing, the amount of heat released will exactly match the amount of heat added during the heating process.

Saturation Temperature and Saturation Pressure
The temperature at which water starts boiling depends on the pressure; \qquad therefore, if the pressure is fixed, so is the boiling temperature.
Water boils at $100^{\circ} \mathrm{C}$ at 1 atm pressure.
Saturation temperature $T_{\text {sat }}$: The temperature at which a pure substance changes phase at a given pressure
Saturation pressure $P_{\text {sat }}$: The pressure at which a pure substance changes phase at a given temperature

\qquad
\qquad
\qquad
\qquad
\qquad

Latent heat: The amount of energy absorbed or released during a phasechange process.

- Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing.
Latent heat of vaporization: The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation

The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs
At 1 atm pressure, the latent heat of fusion of water is $333.7 \mathrm{~kJ} / \mathrm{kg}$ and the latent heat of vaporization is $2256.5 \mathrm{~kJ} / \mathrm{kg}$ The atmospheric pressure, and thus the boiling temperature of water, decreases with elevation.

TABLE 3-2
Variation of the standard
atmospheric pressure and the boiling (saturation) temperature of water with altitude

Elevation m	Atmospheric pressure, kPa	Boiling temperature ${ }^{\circ} \mathrm{C}$
0	101.33	100.0
1,000	89.55	96.5
2,000	79.50	93.3
5,000	54.05	83.3
10,000	26.50	66.3
20,000	5.53	34.7

Some Consequences of $T_{\text {sat }}$ and $P_{\text {sat }}$ Dependence

The variation of the temperature
of fruits and of fruits and vegetables with
pressure during pressure during
vacuum cooling from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

In 1775, ice was made by evacuating the air

 space in a water tank.PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES
The variations of properties during phase-change processes are best studied and understood with the help of property diagrams such as the $T-v, P-v$, and $P-T$ diagrams for pure substances. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad Passing from the solid phase directly into the vapor phase

\qquad
\qquad
\qquad
\qquad
\qquad

The $P-v$ - T surfaces present a great deal of information at once, but in a thermodynamic analysis it is more convenient to work with two-dimensional diagrams, such as the $P-v$ and T-v diagrams \qquad

FIGURE 3-24 $P-v-T$ surface of a substance that contracts on freezing

FIGURE 3-25
$P-V-T$ surface of a substance that expands on freezing (like water).
\qquad
\qquad
\qquad
\qquad
\qquad

PROPERTY TABLES

For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations
Therefore, properties are frequently presented in the form of tables
Some thermodynamic properties can be measured easily, but others cannot and are calculated by using the relations between them and measurable properties. The results of these measurements and calculations are presented in tables in a convenient format.
Enthalpy-A Combination Property
$h=u+P v$
($\mathrm{kJ} / \mathrm{kg}$)
$H=U+P V$
(kJ)

Saturated Liquid and Saturated Vapor States

- Table A-4: Saturation properties of water under temperature.

Table A-5: Saturation properties of water under pressure
A partial list of Table A-4.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Saturated Liquid-Vapor Mixture

Quality, x : The ratio of the mass of vapor to the total mass of the mixture. Quality is between 0 and $1 \rightarrow 0$: sat. liquid, 1 : sat. vapor.
The properties of the saturated liquid are the same whether it exists alone or in

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$v_{\mathrm{avg}}=v_{f}+x v_{f g} \quad(\mathrm{~m} / \mathrm{kg})$
$x=m_{g} / m_{t} \quad x=\frac{v_{\mathrm{avg}}-v_{f}}{v_{f g}}$
$u_{\mathrm{avg}}=u_{f}+x u_{f g} \quad(\mathrm{~kJ} / \mathrm{kg})$
$h_{\mathrm{avg}}=h_{f}+x h_{f g} \quad(\mathrm{~kJ} / \mathrm{kg})$
Por $T \xlongequal[A]{c}$
FIGURE 3-34
Quality is related to the horizontal
The v value of a saturated
The v value of a saturated
liquid-vapor mixture lies betwee liquid-vapor mixture lies between
the v_{f} and v_{B} values at the specified
\qquad

Examples: Saturated liquid-vapor
mixture states on $T-v$ and $P-v$ diagrams
Example 3-4 Example 3-5

\qquad
\qquad
\qquad
\qquad
\qquad 23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The compressed liquid properties depend on temperature much more strongly than they do on pressure
$y \equiv y_{f @ T} \quad \boldsymbol{y} \rightarrow \boldsymbol{v}, \boldsymbol{u}$, or h
A more accurate relation for h
$h \equiv h_{f \omega T}+V_{f \oplus T}\left(P-P_{\text {sat } \oplus T}\right)$

Given: P and T
$v \cong v_{f} @ T$
$u \cong u_{f} @ T$
$h \cong h_{f} @ T$
A compressed liquid
may be approximated as a saturated liquid the given temperature.

Compressed Liquid

Compressed liquid is characterized by
Higher pressures $\left(P>P_{\text {st }}\right.$ at a given $\left.T\right)$ Lower tempreatures ($T<T_{\mathrm{st}}$ at a given P) Lower specific volumes ($v<v$, at a given P or T) Lower internal energies ($u<u_{\text {f }}$ at a given P or T) Lower enthalpies ($h<h_{f}$ at a given P or T

Reference State and Reference Values

The values of u, h, and s cannot be measured directly, and they are calculated from
measurable properties using the relations between properties.
However, those relations give the changes in properties, not the values of properties at specified states
ore, we need to choose a convenient reference state and assign a value of zero for The reference staperty or properties at that state.
Some properties may have negative values as a result of the reference state chosen Sometimes different tables list different values for some properties at the same state as a result of using a different reference state.
However, In thermodynamics we are concerned with the changes in properties, and the reference state chosen is of no consequence in calculations. Example 3-9 Saturated water-Temperature tatie

${ }_{T}^{\text {Teme. }}$		$\begin{aligned} & \text { set } \\ & \text { liquid, } \\ & \text { on, } \end{aligned}$		Senter 4	$\begin{aligned} & \text { Evapa. } \\ & u_{1} \end{aligned}$		$\begin{aligned} & \text { Sat } \\ & \text { hiquid. } \\ & h_{i} \end{aligned}$	$\begin{aligned} & \text { Evap., } \\ & \text { A* } \end{aligned}$	$\begin{aligned} & \text { Sot } \\ & \substack{\text { neat } \\ 0} \end{aligned}$		Erae.	$\sin _{x}^{\infty}$
${ }_{5}^{001}$	-0.6.17	$\begin{aligned} & 0.001000 \\ & 0.001000 \end{aligned}$	$\begin{gathered} 20600 \\ 147000 \end{gathered}$	$\begin{array}{r} 0.000 \\ 21.019 \end{array}$		23318	${ }_{21000}^{0.001}$	$\begin{aligned} & 2500.9 \\ & 2489.1 \end{aligned}$	${ }^{3} 28509$	${ }_{1}^{0.0000}$	2.1586	2,196
Saturated refrigerant-1342-Temperature table												
		$\begin{aligned} & \text { Specific volume, } \\ & \mathrm{m}^{3} k g \mathrm{k} \end{aligned}$		$\begin{aligned} & \text { Internal energy, } \\ & \mathrm{kJ} / \mathrm{kg} \end{aligned}$			$\begin{aligned} & \text { Enthalpy, } \\ & \text { kJlk } \end{aligned}$			Entropy,$\mathrm{kJjkg} \cdot \mathrm{K}$		
$\begin{aligned} & \text { Temp., } \\ & T^{\circ} \mathrm{C} \end{aligned}$	Sat. $P_{\text {sat }} \mathrm{kPa}$	Sat. liquid. v_{t}	Sat. vapor, v_{s}	$\begin{aligned} & \text { Sat. } \\ & \text { lituid, } \\ & u_{i}, \end{aligned}$ 4	$\begin{aligned} & \text { Evap., } \\ & u_{u_{s,}} \end{aligned}$	$\begin{aligned} & \text { S} \\ & \text { vapor, } \end{aligned}$ u_{s}	$\begin{aligned} & \text { Sat, } \\ & \text { liauid, } \\ & h_{i} \\ & h_{i}, \end{aligned}$	$\text { Evap.. } \frac{s}{s}$	$\begin{aligned} & \substack{\text { sat. } \\ \text { vapor, } \\ h_{s}} \end{aligned}$	$\begin{aligned} & \text { Sat. } \\ & \text { liquid, } \\ & \text { liqu } \\ & s_{t} \end{aligned}$	$\begin{aligned} & \text { Evap.,., } \\ & s_{s} \end{aligned}$	$\begin{aligned} & \text { Sat. } \\ & \text { vapor, } \\ & s_{g} \end{aligned}$
-40	51.25	0.0007054	0.36081	-0.036	207.40	207.37	0.0002	25.86	225.86	0.00000	0.98866	0.96866

THE IDEAL-GAS EQUATION OF STATE
Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance.
The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the $P-v-T$ behavior of a gas quite accurately within some properly selected region.

$P=R\left(\frac{T}{V}\right) P V=R T$| Ideal gas equation |
| :--- |
| of state |

$R=\frac{R_{u}}{M} \quad\left(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right.$ or $\left.\mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{K}\right)$
$R:$ gas constant

Mass $=$ Molar mass \times Mole number $\underline{P_{1} V_{1}}=\underline{P_{2} V_{2}}$ Ideal gas equation at two $m=M N \quad(\mathrm{~kg}) \quad \overline{T_{1}}=\frac{T_{2}}{T_{2}}$ states for a fixed mass $V=m V \longrightarrow P V=m R T$
$m R=(M N) R=N R_{u} \longrightarrow P V=N R_{u} T \quad \begin{aligned} & \text { Various expressions } \\ & \text { of ideal gas equation }\end{aligned}$
$V=N \bar{V} \longrightarrow P \bar{V}=R_{u} T$
Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature)

Per unit mass	Per unit mole
$\mathrm{v}, \mathrm{m}^{3} / \mathrm{kg}$	$\overline{\mathrm{V}, \mathrm{m}^{3} / \mathrm{kmol}}$
u, kJ/kg	$\bar{u}, \mathrm{k} / \mathrm{lkmol}$
h, kJ/kg	$\bar{\pi}$, kJ/kmol

Properties per unit mole are

FIGURE 3-45

FIGURE 3-45
The ideal-gas relation often is not applicable to real gases; thus, care should be exercised when using it.

Is Water Vapor an Ideal Gas?

\qquad
\qquad
\qquad

COMPRESSIBILITY FACTOR-A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR

FIGURE 3-48
The compressibility factor is unity
for ideal gases.

The farther away Z is from unity, the more the gas deviates from ideal-gas behavior Gases behave as an ideal gas at low densities (i.e., low pressure, high temperature).

Question: What is the criteria for low pressure and high temperature?
Answer: The pressure or temperature of a gas is high or low relative to its critical temperature or pressure.

FIGURE 3-50 At very low pressures, all gases approach ideal-gas behavior (regardless of their temperature)

OTHER EQUATIONS OF STATE

Several equations have been proposed to represent the $P-v-T$ behavior of substances accurately over a larger region with no limitations.

Van der Waals
Equation of State

Critical isotherm	${ }^{P \uparrow}\left(\frac{\partial V}{\partial V}\right)_{T=T}=0$
$\left(P+\frac{a}{v^{2}}\right)(v-b)=R T$ of a pure substance has an inflection	$\frac{(\partial V)_{T=T_{\mathrm{a}}=\text { cons }}}{\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T=T_{\mathrm{o}}=\text { cons }}=0}$
$a=\frac{27 R^{2} T_{\mathrm{cr}}^{2}}{64 P_{\mathrm{cr}}} b=\frac{R T_{\mathrm{cr}}}{8 P_{\mathrm{cr}}}$ point at the critical state.	
This model includes two effects not considered in the ideal-gas model: the intermolecular attraction forces and the volume occupied by the molecules themselves. The accuracy of the van der Waals equation of state is often inadequate.	

Beattie-Bridgeman Equation of State

$P=\frac{R_{u} T}{\bar{v}^{2}}\left(1-\frac{c}{\bar{V} T^{3}}\right)(\overline{\mathrm{V}}+B)-\frac{A}{\bar{V}^{2}}$| The constants are given in |
| :--- |
| Table 3-4 for various
 substances. It is known to be |
| reasonably accurate for |
| densities up to about $0.8 \rho_{\text {cr }}$. |

Benedict-Webb-Rubin Equation of State
$P=\frac{R_{-} T}{\bar{v}}+\left(B_{0} R_{s} T-A_{0}-\frac{C_{0}}{T^{2}}\right) \frac{1}{\bar{v}^{2}}+\frac{b R_{\sim} T-a}{\vec{v}^{3}}+\frac{a \alpha}{\bar{v}^{6}}+\frac{c}{\bar{v}^{3} T^{2}}\left(1+\frac{\gamma}{\bar{v}^{2}}\right) e^{-\gamma / v^{2}}$
The constants are given in Table 3-4. This equation can handle substances at densities up to about $2.5 \rho_{\text {cr }}$

Virial Equation of State \qquad $P=\frac{R T}{v}+\frac{a(T)}{v^{2}}+\frac{b(T)}{v^{3}}+\frac{c(T)}{v^{4}}+\frac{d(T)}{v^{5}}+\ldots$

The coeficients $a(T), b(T), c(T)$, and so on, that are functions of temperature alone are called virial coefficients.

TABLE 3-4								
Constants that appear in the Beatti- Bridgeman and the Benedic-Web--Rubin equations of st								
(a) When P is in $\mathrm{KPa}, \overline{\mathrm{v}}$ is in $\mathrm{m}^{3} / \mathrm{kmol}, T$ is in K , and $R_{u}=8.314 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kmol} \cdot \mathrm{K}$, the five constants in the BeattieBridgeman equation are as follows:								
Gas		A_{0}	a		B_{0}	b		c
Air		131.8441	0.01931		0.04611			4.34×10^{4}
Argon, Ar		130.7802	0.02328		0.03931	-0.00.0		4.34×10^{4} 5.99×10^{4}
Carbon dioxide, CO_{2}Helium, He		507.2836		7132	0.10476			$\frac{6.60 \times 10^{9}}{40}$
		2.1886	- $\begin{array}{r}0.05984 \\ -0.00506\end{array}$		0.01400			
Hydrogen, H_{2}		20.0117			0.0209600.05046	-0.04359-0.006910		504
Nitrogen, N_{2}		136.2315	a0.026170.02562					$4.20 \times 10^{4}$$4.80 \times 10^{4}$
Oxysen, O_{2}		151.0857			0.04624	0.004		
Source Gordon J. Van Wylen and Richord E. Sonntoe, Fundamentals of Clossical Thermodynamics, Enelish/SI Version, 3rd ed. (New York: John Wiley \& Sons, 1986), p. 46, table 3.3								
(b) When P is in kPa, \bar{v} is in $\mathrm{m}^{9} / \mathrm{kmol}, T$ is in K , and $R_{q}=8.314 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kmol} \cdot \mathrm{K}$, the eight constants in the Benedict-Webb-Rubin equation are follows:								
Gas	a	A_{0}	b	B_{0}	c	C_{0}	α	γ
n-Butane,	190.68	. 21.6	0.039998	0.12436	3.205×10^{7}	1.006×10^{80}	1.101×10^{-3}	. 0.0340
${ }_{\text {Carbon }}{ }_{\text {Cibxide, }}$ CO2	13.86	277.30	0.007210	0.04991	1.511×10^{0}	1.404×10^{7}	8.470×10^{-8}	0.00539
Carbon								
monoxide, Co	3.71	135.87	0.002632		1.054×10^{5}	8.673×10^{5}		
Methane, CH_{4}	5.00	187.91	0.003380	0.04260	2.578×10^{5}	2.286×10^{6}	1.244×10^{-4}	
Nitrogen, N_{2}	2.54	106.73	0.002328	0.04074	7.379×10^{4}	8.164×10^{8}	1.272×10^{-4}	0.0053

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- Pure substance

Phases of a pure substance
Phase-change processes of pure substances
\checkmark Compressed liquid, Saturated liquid, Saturated vapor, Superheated vapor

- Property diagrams for phase change processes
\checkmark The T-v diagram, The P-v diagram, The $P-T$ diagram, The $P-v-T$ surface
Property tables
\checkmark Enthalpy
\checkmark Saturated liquid, saturated vapor, Saturated liquid vapor mixture, Superheated
vapor, compressed liquid
Reference state and reference values
- The ideal gas equation of state
\checkmark Is water vapor an ideal gas?
Compressibility factor
Other equations of state
\checkmark van der Waals Equation of State, Beattie-Bridgeman Equation of State
Benedict-Webb-Rubin Equation of State, Virial Equation of State

