CHAPTER 6 : VECTORS

6.1 Lines in Space
6.1.1 Angle between Two Lines
6.1.2 Intersection of Two lines
6.1.3 Shortest Distance from a Point to a Line

6.2 Planes in Space
6.2.1 Intersection of Two Planes
6.2.2 Angle between Two Planes
6.2.3 Angle between a Line and a Plane
6.2.4 Shortest Distance from a Point to a Plane

Review:

• Basic Concepts
• Vectors in Space
• The Dot Products
• The Cross Products
Basic Concepts

What is scalar?

✓ a quantity that has only magnitude

What is vector?

✓ a quantity that has magnitude and direction

A vector can be represented by a directed line segment where

✓ length of the line segment
 - the magnitude of the vector

✓ direction of the line segment
 - the direction of the vector
✓ A vector can be written as \overrightarrow{PQ}, or \mathbf{a}. The order of the letters is important. \overrightarrow{PQ} means the vector is from P to Q or the position vector Q relative to P, \overrightarrow{QP} means vector is from Q to P or the position vector P relative to Q.

✓ If $P\left(x_1, y_1\right)$ is the initial point and $Q\left(x_2, y_2\right)$ is the terminal point of a directed line segment, \overrightarrow{PQ} then **component form** of vector \mathbf{v} that represents \overrightarrow{PQ} is
\[\langle v_1, v_2 \rangle = \langle x_2 - x_1, y_2 - y_1 \rangle = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix} \]

and the **magnitude** or the **length** of \(v \) is

\[|v| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

\[= \sqrt{c_1^2 + c_2^2} \]

\[\overrightarrow{OP} = \langle x_1 - 0, y_1 - 0 \rangle = \langle x_1, y_1 \rangle \]

\[\overrightarrow{OQ} = \langle x_2 - 0, y_2 - 0 \rangle = \langle x_2, y_2 \rangle \]

- **Note**-

Any vector that has magnitude of 1 unit = **unit vector**.
Example:

Find the component form and length of the vector \(\mathbf{v} \) that has initial point \((3,-7)\) and terminal point \((-2,5)\).

Solution:

\[
\mathbf{v} = \langle -2 - 3, 5 + 7 \rangle = \langle -5, 12 \rangle
\]

\[
|\mathbf{v}| = \sqrt{(-5)^2 + (12)^2} = \sqrt{25 + 144} = 13
\]

Example:

Given \(\mathbf{v} = \langle -2, 5 \rangle \) and \(\mathbf{w} = \langle 3, 4 \rangle \), find each of the following vectors:

a) \(\frac{1}{2} \mathbf{v} \)
b) \(\mathbf{w} - \mathbf{v} \)
c) \(\mathbf{v} + 2\mathbf{w} \)

Answer:

a) \(\langle -1, 5/2 \rangle \)
b) \(\langle 5, -1 \rangle \)
c) \(\langle 4, 13 \rangle \)
Theorem:

If \(\mathbf{a} \) is a non-null vector and if \(\hat{\mathbf{a}} \) is a unit vector having the same direction as \(\mathbf{a} \), then

\[
\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}
\]

-Note-

To verify that magnitude is 1, \(|\hat{\mathbf{a}}| = 1 \)

Example:

Find a unit vector in the direction of \(\mathbf{v} = \langle -2, 5 \rangle \) and verify that it has length 1.

Solution:

\[
\mathbf{v} = \frac{\langle -2, 5 \rangle}{\sqrt{(-2)^2 + 5^2}} = \frac{1}{\sqrt{29}} \langle -2, 5 \rangle
\]

\[
|\mathbf{v}| = \sqrt{\left(\frac{-2}{\sqrt{29}}\right)^2 + \left(\frac{5}{\sqrt{29}}\right)^2} = \sqrt{1} = 1
\]
Standard Unit Vectors

✓ Three standard unit vectors are: \(\mathbf{i}, \mathbf{j} \) dan \(\mathbf{k} \)

✓ Vectors \(\mathbf{i}, \mathbf{j} \) and \(\mathbf{k} \) can be written in components form:

\[
\mathbf{i} = \langle 1, 0, 0 \rangle,
\]

\[
\mathbf{j} = \langle 0, 1, 0 \rangle \quad \text{and}
\]

\[
\mathbf{k} = \langle 0, 0, 1 \rangle
\]

and can interpreted as

\[
\mathbf{a} = \langle x, y, z \rangle
\]

\[
= xi + yj + zk
\]
The vector \(\overrightarrow{PQ} \) with initial point \(P(x_1, y_1, z_1) \) and terminal point \(Q(x_2, y_2, z_2) \) has the standard representation

\[
\overrightarrow{PQ} = (x_2 - x_1)i + (y_2 - y_1)j + (z_2 - z_1)k
\]

or

\[
PQ = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle
\]

Example:

Let \(\mathbf{u} \) be the vector with initial point \((2, -5)\) and terminal point \((-1, 3)\), and let \(\mathbf{v} = 2i - j \).

Write each of the following vectors as a linear combination of \(\mathbf{i} \) and \(\mathbf{j} \).

a) \(\mathbf{u} \)

b) \(\mathbf{w} = 2\mathbf{u} - 3\mathbf{v} \)
-Note-

If θ is the angle between \vec{v} and the positive x–axis then we can write

$$x = |\vec{v}| \cos \theta \text{ and } y = |\vec{v}| \sin \theta \; ; \; |\vec{v}| = \sqrt{x_1^2 + y_2^2}.$$

Example:

The vector \mathbf{v} has a length of 3 and makes an angle of $30^\circ = \frac{\pi}{6}$ with the positive x-axis.

Write \mathbf{v} as a linear combination of the unit vectors \mathbf{i} and \mathbf{j}.

Vectors in Space

Properties of Vectors in Space

Let \(\mathbf{v} = \langle v_1, v_2, v_3 \rangle \) and \(\mathbf{w} = \langle w_1, w_2, w_3 \rangle \) be vectors in 3 dimensional space and \(k \) is a constant.

1. \(\mathbf{v} = \mathbf{w} \) if and only if
 \[v_1 = w_1, v_2 = w_2, v_3 = w_3. \]

2. The magnitude of \(\mathbf{v} \) is \(|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} \)

3. The unit vector in the direction of \(\mathbf{v} \) is
 \[\frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle v_1, v_2, v_3 \rangle}{|\mathbf{v}|} \]

4. \(\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle \)

5. \(k\mathbf{v} = \langle kv_1, kv_2, kv_3 \rangle \)

6. Zero vector is denoted as \(\mathbf{0} = \langle 0, 0, 0 \rangle \).

7. \(\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \)
8. Let \(\mathbf{u} = (u_1, u_2, u_3) \),

then \((\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \).

9. \(\mathbf{u} + 0 = \mathbf{u} \)

10. \(\mathbf{u} + (-\mathbf{u}) = 0 \)

11. \((c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u} \)

12. \(c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v} \)

13. \(c(d\mathbf{u}) = (cd)\mathbf{u} \)

14. \(1(\mathbf{u}) = \mathbf{u} \) and \(0(\mathbf{u}) = 0 \)

15. \(|c\mathbf{u}| = c|\mathbf{u}| \)

Example:

Express the vector \(\overrightarrow{PQ} \) if it starts at point \(P = (6,5,8) \) and stops at point \(Q = (7,3,9) \) in components form.
Solution:

\[\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle \]

\[\overrightarrow{PQ} = \langle 7 - 6, 3 - 5, 9 - 8 \rangle \]

\[\overrightarrow{PQ} = \langle 1, -2, 1 \rangle \]

Example:

Given that \(\mathbf{a} = \langle 3, 1, -2 \rangle \), \(\mathbf{b} = \langle -1, 6, 4 \rangle \). Find

(a) \(\mathbf{a} + 3\mathbf{b} \)
(b) \(|\mathbf{b}| \)

(c) a unit vector which is in the direction of \(\mathbf{b} \).

(d) find the unit vector which has the same direction as \(\mathbf{a} + 3\mathbf{b} \).

Answer:

(a) \(\langle 0, 19, 10 \rangle \)
(b) \(\sqrt{53} \)
(c) \(\langle -2, \frac{41}{6}, \frac{23}{3} \rangle \)

(d) 1
(e) \(\frac{1}{\sqrt{53}} \langle -1, 6, 4 \rangle \)
(f) \(\frac{1}{\sqrt{461}} \langle 0, 19, 10 \rangle \)
Parallel Vector

- have same slopes
- \(\nu_1 = \lambda \nu_2 \); \(\lambda \) constants

So, there are multiples of each other.

Example:

Vector \(\mathbf{w} \) has initial point \((2, -1, 3)\) and terminal point \((-4, 7, 5)\). Which of the following vectors is parallel to \(\mathbf{w} \)?

Solution:

\[
\bar{w} = \langle 4 - 2, 7 + 1, 5 - 3 \rangle
\]

\[
\bar{w} = \langle -6, 8, 2 \rangle
\]

One example: \(2\langle -6, 8, 2 \rangle = \langle -12, 16, 4 \rangle \)

Another is \(\frac{1}{2} \langle -6, 8, 2 \rangle = \langle -3, 4, 1 \rangle \).
Example: (Collinear Points)

Determine whether the point \(P(1,-2,3), Q(2,1,0) \)
and \(R(4,7,-6) \) lie on the same line.

Solution:

\[
\overrightarrow{PQ} = \langle 2-1, 1+2, 0-3 \rangle = \langle 1, 3, -3 \rangle
\]

\[
|\overrightarrow{PQ}| = \sqrt{1^2 + 3^2 + (-3)^2} = \sqrt{19}
\]

\[
\overrightarrow{QR} = \langle 4-2, 7-1, -6-0 \rangle = \langle 2, 6, -6 \rangle
\]

\[
|\overrightarrow{QR}| = \sqrt{2^2 + 6^2 + (-6)^2} = 2\sqrt{19}
\]

\[
\overrightarrow{PR} = \langle 4-1, 7+2, -6-3 \rangle = \langle 3, 9, -9 \rangle
\]

\[
|\overrightarrow{PR}| = \sqrt{3^2 + 9^2 + (-9)^2} = 3\sqrt{19}
\]

Thus, \(\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR} \). Since one vector is a multiple of the other, the two vectors are
parallel and since they share a common point \(Q \), they must be the same line.

The Dot Product

Theorem

If \(\mathbf{v} = \langle v_1, v_2, v_3 \rangle \) and \(\mathbf{w} = \langle w_1, w_2, w_3 \rangle \), then the scalar product \(\mathbf{v} \cdot \mathbf{w} \) is

\[
\mathbf{v} \cdot \mathbf{w} = \langle v_1, v_2, v_3 \rangle \cdot \langle w_1, w_2, w_3 \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3
\]

Note

The dot product is also called
- the scalar product
- the inner product

The dot product of two vectors is a scalar.
The Angle between Vectors

Refer to the figure below, let

\[\vec{u} = \vec{u}(OP) = \langle u_1, u_2, u_3 \rangle, \]

\[\vec{v} = \vec{v}(OQ) = \langle v_1, v_2, v_3 \rangle \]

be two vectors and let \(\theta \) be the angle between them, with \(0 \leq \theta \leq \pi \).

Compute the distance, \(c \) between points \(P \) and \(Q \) in two ways.
1) Using the Distance formula

\[c^2 = (u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2 \]

\[= u_1^2 + u_2^2 + u_3^2 + v_1^2 + v_2^2 + v_3^2 - 2(u_1 v_1 + u_2 v_2 + u_3 v_3) \]

\[= |\vec{u}|^2 + |\vec{v}|^2 - 2(u_1 v_1 + u_2 v_2 + u_3 v_3) \quad ---(1) \]

2) Using the Law of Cosines

\[c^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}| \cos \theta \quad ---(2) \]

Equating equation (1) and (2), we get

\[\cos \theta = \frac{u_1 v_1 + u_2 v_2 + u_3 v_3}{|\vec{u}||\vec{v}|} = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \]

Example:

If \(\vec{v} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \), \(\vec{w} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \) and the angle between \(\vec{v} \) and \(\vec{w} \) is 60°, find \(\vec{v} \cdot \vec{w} \).
Solution:

\[
\vec{v} \cdot \vec{w} = \sqrt{2^2 + (-1)^2 + 1^2} \cdot \sqrt{1^2 + 1^2 + 2^2} \cos(\pi/3)
\]

\[
= \sqrt{6} \cdot \sqrt{6} \cos(\pi/3) = 6(1/2) = 3
\]

Example:

Given that \(\mathbf{u} = \langle 2, -2, 3 \rangle \), \(\mathbf{v} = \langle 5, 8, 1 \rangle \) and \(\mathbf{w} = \langle -4, 3, -2 \rangle \), find

(a) \(\mathbf{u} \cdot \mathbf{v} \)

(b) \((\mathbf{u} \cdot \mathbf{v})\mathbf{w} \)

(c) \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) \)

(d) the angle between \(\mathbf{u} \) and \(\mathbf{v} \)

(e) the angle between \(\mathbf{v} \) and \(\mathbf{w} \).

Answer:

(a) -3

(b) \(\langle 12, -9, 6 \rangle \)

(c) -23
(d) 94°24'
(e) 87°46'

Example:

Let $A=(4,1,2)$, $B=(3,4,5)$ and $C=(5,3,1)$ are the vertices of a triangle. Find the angle at vertex A.

Answer:

79°12'

-Theorem-

The nature of an angle θ, between two vectors u and v.

✓ θ is an acute angle if and only if $u \cdot v > 0$

✓ θ is an obtuse angle if and only if $u \cdot v < 0$

✓ $\theta = 90^\circ$ if and only if $u \cdot v = 0$. The Vectors u and v are orthogonal / perpendicular.
Example:

Show that the given vectors are perpendicular to each other.

(a) i and j

(b) 3i-7j+2k and 10i+4j-k

-Theorem-

(Properties of Dot Product)

If u, v and w are nonzero vectors and k is a scalar,

1. \(u \cdot v = v \cdot u \)

2. \(u \cdot (v + w) = u \cdot v + u \cdot w \)

3. \(ku \cdot v = u \cdot kv \)

4. \(v \cdot v = |v|^2 \)

5. \(u \cdot 0 = 0 \cdot u = 0 \)
The Cross Products

- The cross product (vector product) $\mathbf{u} \times \mathbf{v}$ is a vector perpendicular to \mathbf{u} and \mathbf{v}. (illustrated in figure below)
- The direction is determined by the right hand rule.

\[\mathbf{u} \times \mathbf{v} \]

✓ If the first two fingers of the right hand point in the directions of \mathbf{u} and \mathbf{v} respectively, then the thumb points in the direction of $\mathbf{u} \times \mathbf{v}$.

Ex: $\mathbf{i} \times \mathbf{j} = \mathbf{k}$
- The length is determined by the lengths of u and v and the angle between them.

- If we change the order informing the cross product, then we change the direction.

Ex:

$$\vec{v} \times \vec{u} = - (\vec{u} \times \vec{v})$$

-**Theorem**-

If $u = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ and $v = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, then,

$$u \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \mathbf{i} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

$$= (u_2v_3 - u_3v_2)\mathbf{i} - (u_1v_3 - u_3v_1)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}$$
Properties of Cross Product

(a) \(\mathbf{u} \times \mathbf{u} = 0 \)

(b) \(\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u}) \)

(c) \(\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w} \)

(d) \((k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v}) = k(\mathbf{u} \times \mathbf{v}) \)

(e) \(\mathbf{u} \parallel \mathbf{v} \) if and only if \(\mathbf{u} \times \mathbf{v} = 0 \)

(f) \(\mathbf{u} \times 0 = 0 \times \mathbf{u} = 0 \)

Example:

1) Given that \(\mathbf{u} = \langle 3,0,4 \rangle \) and \(\mathbf{v} = \langle 1,5,-2 \rangle \),

 find

 (a) \(\mathbf{u} \times \mathbf{v} \)

 (b) \(\mathbf{v} \times \mathbf{u} \)

2) Find two unit vectors that are perpendicular to the vectors \(\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \)

 and \(\mathbf{v} = \mathbf{i} + 3\mathbf{j} + \mathbf{k} \).
Answer:

1) (a) $-20i + 10j + 15k$ (b) $20i - 10j - 15k$

2) $\pm \frac{1}{\sqrt{162}} \langle 11, -5, 4 \rangle$ (The unit vector in the opposite direction is also a unit vector perpendicular to both \vec{u} and \vec{v})

Further geometry interpretation of the cross product comes from computing its magnitude.

$$|\vec{u} \times \vec{v}|^2 = (u_2 v_3 - u_3 v_2)^2 + (u_3 v_1 - u_1 v_3)^2 + (u_1 v_2 - u_2 v_1)^2$$

$$|\vec{u} \times \vec{v}|^2 = \left(u_1^2 + u_2^2 + u_3^2 \right) \left(v_1^2 + v_2^2 + v_3^2 \right)$$

$$- (u_1 v_1 + u_2 v_2 + u_3 v_3)^2$$

$$= |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2$$

$$= |\vec{u}|^2 |\vec{v}|^2 - |\vec{u}|^2 |\vec{v}|^2 \cos^2 \theta$$

$$= |\vec{u}|^2 |\vec{v}|^2 \left(1 - \cos^2 \theta \right)$$

$$= |\vec{u}|^2 |\vec{v}|^2 \sin^2 \theta$$
with θ is the angle between \vec{u} and \vec{v}.

Therefore, $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin \theta$.

From the figure above, we can see that the magnitude of the cross product is the area of the parallelogram of which arrows representing the two vectors are adjacent sides.

\[
\begin{align*}
\text{Area of a parallelogram} &= |\vec{u}||\vec{v}|\sin \theta = |\vec{u} \times \vec{v}|
\end{align*}
\]

\[
\begin{align*}
\text{Area of triangle} &= \frac{1}{2}|\vec{u} \times \vec{v}|
\end{align*}
\]
Example:

(a) Find an area of a parallelogram that is formed from vectors \(u = i + j - 3k \) and \(v = -6j + 5k \).

(b) Find an area of a triangle that is formed from vectors \(u = i + j - 3k \) and \(v = -6j + 5k \).

Answer:

(a) \(\sqrt{230} \) (b) \(\frac{\sqrt{230}}{2} \)

Scalar Triple Product

- Theorem -

If \(\mathbf{a} = \langle x_1, y_1, z_1 \rangle \), \(\mathbf{b} = \langle x_2, y_2, z_2 \rangle \) and \(\mathbf{c} = \langle x_3, y_3, z_3 \rangle \),

then
Properties of The Scalar Triple Product

1) \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \)

2) \((\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \)

3) \(\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = -\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \)

4) \(\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0 \)

5) \((\mathbf{a} + \mathbf{d}) \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{d} \cdot (\mathbf{b} \times \mathbf{c}) \)

Example:

If \(\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - \mathbf{k} \), \(\mathbf{b} = -6\mathbf{j} + 5\mathbf{k} \) and \(\mathbf{c} = \mathbf{i} + \mathbf{j} - \mathbf{k} \), evaluate

(a) \(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \)

(b) \((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \)

(c) \((\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} \)

(d) \(\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) \)
6.1 Lines in Space

In this section we use vectors to study lines in three-dimensional space.

How Lines Can Be Defined Using Vectors?

The most convenient way to describe a line in space is to give a point on it and a nonzero vector parallel to it.

Suppose L is a straight line that passes through $P(x_0, y_0, z_0)$ and is parallel to the vector $v = ai + bj + ck$.
Thus, a point $Q(x, y, z)$ also lies on the line if
\[
\overrightarrow{PQ} = tv .
\]
Let,
\[
\overrightarrow{r_0} = \overrightarrow{OP} \quad \text{and} \quad \overrightarrow{r} = \overrightarrow{OQ} ,
\]
Then
\[
\therefore \overrightarrow{PQ} = \overrightarrow{r} - \overrightarrow{r_0} .
\]
\[
\overrightarrow{r} - \overrightarrow{r_0} = tv \\
\overrightarrow{r} = \overrightarrow{r_0} + tv
\]
\[
\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t < a, b, c >
\]
**-Theorem-

(Parametric Equations for a Line)

The line through the point $P(x_0, y_0, z_0)$ and parallel to the nonzero vector $\mathbf{A} = \langle a, b, c \rangle$ has the **parametric equations**,

\[x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct. \]

If we let \(\mathbf{R}_0 = \langle x_0, y_0, z_0 \rangle \) denote the position vector of \(P(x_0, y_0, z_0) \) and \(\mathbf{R} = \langle x, y, z \rangle \) the position vector of the arbitrary point \(Q(x, y, z) \) on the line, then we write equation (1) in the vector form,

\[\mathbf{R} = \mathbf{R}_0 + t\mathbf{A}. \]

Example:

Give the parametric equations for the line through the point \((6,4,3)\) and parallel to the vector \(\langle 2,0,-7 \rangle \).

-Theorem-

(Symmetric Equations for a line)
The line through the point \(P(x_0, y_0, z_0) \) and parallel to the nonzero vector \(\mathbf{A} = \langle a, b, c \rangle \) has the symmetrical equations,

\[
\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}.
\]

Example:

Given that the symmetrical equations of a line in space is

\[
\frac{2x + 1}{3} = \frac{3 - y}{4} = \frac{z + 4}{2}.
\]

Find,

(a) a point on the line.

(b) a vector that is parallel to the line.
6.1.1 Angle between Two Lines

Consider two straight lines

\[l_1 : \frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c} \]

and

\[l_2 : \frac{x-x_2}{d} = \frac{y-y_2}{e} = \frac{z-z_2}{f} \]

The line \(l_1 \) parallel to the vector \(\mathbf{u} = ai + bj + ck \)
and the line \(l_2 \) parallel to the vector \(\mathbf{v} = di + ej + fk \). Since the lines \(l_1 \) and \(l_2 \) are parallel to the vectors \(\mathbf{u} \) and \(\mathbf{v} \) respectively, then the angle, \(\theta \) between the two lines is given by

\[
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|| \mathbf{u} || \, || \mathbf{v} ||}
\]
Example:

Find an acute angle between line

\[l_1 = i + 2j + t (2i - j + 2k) \]

and line

\[l_2 = 2i - j + k + s (3i - 6j + 2k). \]
6.1.2 Intersection of Two lines

In three dimensional coordinates (space), two line can be in one of the three cases as shown below,
Let l_1 and l_2 are given by:

\[l_1 : \frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c} \quad \text{and} \quad (1) \]

\[l_2 : \frac{x-x_2}{d} = \frac{y-y_2}{e} = \frac{z-z_2}{f} \quad \text{(2)} \]

From (1), we have $\mathbf{v}_1 = <a, b, c>$

From (2), we have $\mathbf{v}_2 = <d, e, f>$

Two lines are parallel if we can write

\[\mathbf{v}_1 = \lambda \mathbf{v}_2 \]

The parametric equations of l_1 and l_2 are:

\[l_1 : \begin{align*}
x &= x_1 + at \\
y &= y_1 + bt \\
z &= z_1 + ct
\end{align*} \]

\[l_2 : \begin{align*}
x &= x_2 + ds \\
y &= y_2 + es \\
z &= z_2 + fs
\end{align*} \quad (3) \]
Two lines are intersect if there exist unique values of t and s such that:

\[x_1 + a t = x_2 + ds \]
\[y_1 + b t = y_2 + es \]
\[z_1 + c t = z_2 + fs \]

Substitute the value of t and s in (3) to get x, y and z. The point of intersection $= (x, y, z)$

Two lines are skewed if they are neither parallel nor intersect.

Example:

Determine whether l_1 and l_2 are parallel, intersect or skewed.

a) $l_1 : x = 3 + 3t, \ y = 1 - 4t, \ z = -4 - 7t$

$l_2 : x = 2 + 3s, \ y = 5 - 4s, \ z = 3 - 7s$
b) \[l_1 : \frac{x-1}{1} = \frac{2-y}{4} = z \]
\[l_2 : \frac{x-4}{-1} = y-3 = \frac{z+2}{3} \]

Solutions:

a) for \(l_1 \):

point on the line, \(P = (3, 1, -4) \)

vector that parallel to line, \(\mathbf{v}_1 = \langle 3, -4, -7 \rangle \)

for \(l_2 \):

point on the line, \(Q = (2, 5, 3) \)

vector that parallel to line, \(\mathbf{v}_2 = \langle 3, -4, -7 \rangle \)

\[\mathbf{v}_1 = \lambda \mathbf{v}_2 \]

where \(\lambda = 1 \)

Therefore, lines \(l_1 \) and \(l_2 \) are parallel.

b) Symmetrical equations of \(l_1 \) and \(l_2 \) can be rewrite as:
\[
\begin{align*}
\ell_1 : & \quad \frac{x-1}{1} = \frac{y-2}{-4} = \frac{z-0}{1} \\
\ell_2 : & \quad \frac{x-4}{-1} = \frac{y-3}{1} = \frac{z-(-2)}{3}
\end{align*}
\]

Therefore:

for \(\ell_1 \): \(P = (1, 2, 0) \) , \(\mathbf{v}_1 = <1, -4, 1> \)

for \(\ell_2 \): \(Q = (4, 3, -2) \) , \(\mathbf{v}_2 = <-1, 1, 3> \)

\(\mathbf{v}_1 = \lambda \mathbf{v}_2 \) ?

\(\mathbf{v}_1 \neq \lambda \mathbf{v}_2 \) \(\rightarrow \) not parallel.

In parametric eq’s:

\(\ell_1 : x = 1 + t \) , \(y = 2 - 4t \) , \(z = t \)

\(\ell_2 : x = 4 - s \) , \(y = 3 + s \) , \(z = -2 + 3s \)

\[
\begin{align*}
1 + t &= 4 - s \quad \text{(1)} \\
2 - 4t &= 3 + s \quad \text{(2)} \\
t &= -2 + 3s \quad \text{(3)}
\end{align*}
\]
Solve the simultaneous equations (1), (2), and (3) to get t and s.

$$s = \frac{5}{4} \quad \text{and} \quad t = \frac{7}{4}$$

The value of t and s must satisfy (1), (2) and (3). Clearly they are not satisfying (2) i.e

$$2 - \frac{7}{4} = 3 + \frac{5}{4} \quad ? \quad \Rightarrow \quad \frac{1}{4} \neq \frac{17}{4}$$

Therefore, lines l_1 and l_2 are not intersect.

This implies the lines are skewed!

Example:

Let L_1 and L_2 be the lines

$L_1 : x = 1 + 4t, y = 5 - 4t, z = -1 + 5t$

$L_2 : x = 2 + 8t, y = 4 - 3t, z = 5 + t$

(a) Are the lines parallel?

(b) Do the lines intersect?
Distance from a point Q to a line that passes through point P parallel to vector v is equal to the length of the component of PQ perpendicular to the line.

\[d = |P\vec{Q}| \sin \theta \]

where \(\theta \) is the angle between v and vector \(P\vec{Q} \).
Since

$$|v \times \vec{PQ}| = |v| |\vec{PQ}| \sin \theta,$$

so we have the shortest distance of Q from L as

$$d = \frac{|v \times \vec{PQ}|}{|v|}.$$

Example:
Find the distance from the point $(0, 0, 0)$ to the line,

$$\frac{x - 5}{3} = \frac{y - 5}{4} = \frac{z + 3}{-5}.$$

Example:
Find the distance from the point $(2, 1, 3)$ to the line,

$$x = 2 + 2t, \ y = 1 + 6t, \ z = 3.$$
Example:

Find the shortest path from the point $Q(2, 0, -2)$ to the line

$$l : \frac{x-2}{3} = \frac{y+1}{1} = \frac{z-1}{2}$$

6.2 Planes in Space

Suppose that α is a plane. Point $P(x_0, y_0, z_0)$ and $Q(x, y, z)$ lie on it. If $N = ai + bj + ck$ is a non-null vector perpendicular (orthogonal) to α, then N is perpendicular to PQ.

![Diagram of a plane with vectors and points](image-url)
Thus,

\[PQ \cdot N = 0 \]

\[\langle x - x_0, y - y_0, z - z_0 \rangle \cdot \langle a, b, c \rangle = 0 \]

\[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]

Conclusion

The equation of a plane can be determined if a point on the plane and a vector orthogonal to the plane are known.

Theorem

(Equation of a Plane)

The plane through the point \(P(x_0, y_0, z_0) \) and with the nonzero normal vector \(\mathbf{N} = \langle a, b, c \rangle \) has the equation
Point-normal form:
\[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]

Standard form:
\[ax + by + cz = d \quad \text{with} \quad d = ax_0 + by_0 + cz_0 \]

Example:

1. Give an equation for the plane through the point \((2, 3, 4)\) and perpendicular to the vector \((-6, 5, -4)\).

2. Give an equation for the plane through the point \((4, 5, 1)\) and parallel to the vectors \(A = (-2, 0, 1)\) and \(B = (0, 1, -4)\).
3. Give parametric equations for the line through the point (5, -3, 2) and perpendicular to the plane $6x + 2y - 7z = 5$.

6.2.1 Intersection of Two Planes

Intersection of two planes is a line. (L)

To obtain the equation of the intersecting line, we need

- a point on the line L which is given by solving the equations of the two planes.
- a vector parallel to the line L which is
\(N_1 \times N_2 \)

If \(N_1 \times N_2 = \langle a, b, c \rangle \), then the equation of the line \(L \) in symmetrical form is

\[
\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}
\]

Example:

Find the equation of the line passing through \(P(2, 3, 1) \) and parallel to the line of intersection of the planes \(x + 2y - 3z = 4 \) and \(x - 2y + z = 0 \).

Answer:

\[
\frac{x-2}{-4} = \frac{y-3}{-4} = \frac{z-1}{-4}
\]
6.2.2 Angle between Two Planes

-Properties of Two Planes-

✓ An angle between the crossing planes is an angle between their normal vectors.

\[
\cos \theta = \frac{\vec{N}_1 \cdot \vec{N}_2}{|\vec{N}_1||\vec{N}_2|}
\]

✓ Two planes are parallel if and only if their normal vectors are parallel,

\[
\vec{N}_1 = \lambda \vec{N}_2.
\]

✓ Two planes are orthogonal if and only if

\[
\vec{N}_1 \cdot \vec{N}_2 = 0.
\]

Example:

Find the angle between plane \(3x + 4y = 0\) and plane \(2x + y - 2z = 5\).
6.2.3 *Angle between a Line and a Plane*

Let α be the angle between the normal vector \mathbf{N} to a plane π and the line L. Then we have

$$\cos \alpha = \frac{\mathbf{v} \cdot \mathbf{N}}{||\mathbf{v}|| \cdot ||\mathbf{N}||}$$

where \mathbf{v} is vector parallel to L. Furthermore, if the angle between the line L and the plane π, then

$$\alpha + \theta = \frac{\pi}{2} \quad \Rightarrow \quad \theta = \frac{\pi}{2} - \alpha$$
\[
\sin \theta = \sin \left(\frac{\pi}{2} - \alpha \right) = \cos \alpha
\]

\[
\sin \theta = \frac{\mathbf{v} \cdot \mathbf{N}}{|\mathbf{v}||\mathbf{N}|}
\]

Example:

Find the angle between the plane
\[3x - 2y + z = 5\] and the line
\[
\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z - 3}{3} \cdot
\]
6.2.4 **Shortest Distance from a Point to a Plane**

(a) From a Point to a Plane

-**Theorem**-

The distance D between a point $Q(x_1, y_1, z_1)$ and the plane $ax + by + cz = d$ is

$$D = \left| \frac{N \cdot PQ}{|N|} \right| = \left| \frac{ax_1 + by_1 + cz_1 - d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

Where $P(x_0, y_0, z_0)$ is any point on the plane.
Example:

Find the distance D between the point $(1, -4, -3)$ and the plane $2x - 3y + 6z = -1$.

Example:

1) Show that the line

$$
\frac{x - 1}{3} = \frac{y}{-2} = \frac{z + 1}{1}
$$

is parallel to the plane $3x - 2y + z = 1$.

2) Find the distance from the line to the plane in part (a).

(b) Between two parallel planes

The distance between two parallel planes $ax + by + cz = d_1$ and $ax + by + cz = d_2$ is given by

$$
D = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}
$$
Example:

Find the distance between two parallel planes

\[x + 2y - 2z = 3 \quad \text{and} \quad 2x + 4y - 4z = 7. \]

-Note-

Both formulas can also be used to compute the distance between 2 skewed lines.

(c) Between two skewed lines
Assume \(L1 \) and \(L2 \) are skew lines in space containing the points \(P \) and \(Q \) and are parallel to vectors \(u \) and \(v \) respectively.

Then the shortest distance between \(L1 \) and \(L2 \) is the perpendicular distance between the two lines and its direction is given by a vector normal to both lines.

So, the distance between the two lines is absolute value of the scalar projection of \(PQ \) on the normal vector.

\[
d = |PQ \cos \theta|
= \left| \frac{N \cdot PQ}{|N|} \right| = \left| \frac{(u \times v) \cdot PQ}{|u \times v|} \right|
\]
Example:
Find the shortest distance from P(1, -1, 2) to the plane \(3x - 7y + z = 5 \).

Example:
Find the shortest distance between the skewed lines.

\[
l_1 : x = 1 + 2t, \ y = -1 + t, \ z = 2 + 4t \\
l_2 : x = -2 + 4s, \ y = -3s, \ z = -1 + s
\]

Example:
Find the distance between the lines

\[
L_1 : i + 2j + 3k + t(i - k) \\
L_2 : x = 0, \ y = 1 + 2t, \ z = 3 + t
\]
Example:

Find the distance between the lines L_1 through the points $A(1, 0, -1)$ and $B(-1, 1, 0)$ and the line L_2 through the points $C(3, 1, -1)$ and $D(4, 5, -2)$.