CAD/CAM/CAE

Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing

Part-9
CNC Fundamentals

CNC Fundamentals

All CNC machine tools follow the same standard for motion nomenclature and the same coordinate system. This is defined as the EIA 267-C standard. The standard defines a machine coordinate system and machine movements so that a programmer can describe machining operations without worrying about whether a tool approaches a workpiece or a workpiece approaches a tool.

Machine coordinate system

- The direction of each finger represents the positive direction of motion.
and the positive direction is into the spindle.
and is always perpendicular to the Z axis. -If you rotate your hand looking into your middle finger, the forefinger represents the Y axis.

Axis and motion nomenclature - Rotary motion designation

The right-hand rule for determining the correct axis on a CNC machine may also be used to determine the clockwise rotary motion about X, Y, and Z.
-To determine the positive, or clockwise, direction about an axis, close your hand with the thumb pointing out.
-The thumb may represent the X, Y, or Z direction and the curl of the fingers may represent the clockwise, or positive, rotation about each axis.
-These are known as A, B, and C and represent the rotary motions about X, Y, and Z, respectively.

Axis and motion nomenclature - CNC mill

Axis and motion nomenclature - CNC lathe

On most CNC lathes the \mathbb{Z} Axis is parallel to the spindle and longer than the \mathbf{X} Axis.

Axis and motion nomenclature - 5-axis CNC contour mill

On this five-axis horizontal contour milling machine, note the orientation of the X and Y axes in relation to the Z Axis. The rotary axes for both the \mathbf{X} and \mathbf{Y} axes are designated by the \mathbf{A} and B rotary tables.

Axis and motion nomenclature - vertical CNC knee mill

On a common vertical knee CNC mill the spindle is stationary while the rest of the components move according to their axis designations (X, Y, and Z).

Axis and motion nomenclature - CNC punch

 machine

On a CNC punch press the part is moved in the and Y directions while the punch is stationary.

CNC milling fundamentals - The three Cartesian planes

The three planes in the Cartesian coordinate system are XY, XZ, and YZ. These are referred to as G17, G18, and G19, respectively, on the mill.

CNC milling fundamentals - The part reference

 zero

The video illustrates the two reference points on a CNC Machine: Machine Reference Zero (MRZ) and the Part Reference Zero (PRZ). All coordinates are based on these two points.

- All CNC machine tools require a reference point from which to base coordinates.
-It is generally easier to use a point on the workpiece itself for reference, because the coordinates apply to the part anyway - thus the PRZ designation.
-The PRZ is defined as the lower left-hand corner and the top of the stock of each part.

The advantages of having the PRZ at the lower left top corner are:
1.Geometry creation is in the positive XY plane for CAD/CAM systems.
2.The corner of the workpiece is easy to find.
3.All negative Z depths are below the surface of the workpiece.

The Cartesian graph

CNC milling fundamentals - Absolute coordinates

CNC milling fundamentals - Incremental coordinates

Incremental coordinates use the present position as the reference point for the next movement. This means that any point in the Cartesian graph can be plotted accurately by measuring the distance between points, generally starting at the origin.	$\begin{aligned} & 5 \\ & 5- \\ & 3-1 \\ & 2- \\ & 1- \end{aligned}$	A		

EXERCISE 1: Absolute Coordinates

Fill in the X and Y blanks with the appropriate absolute coordinates for points A through H .
 , Y
E: X \qquad $\mathrm{F}: \mathrm{X} \quad, \mathrm{Y}$ \qquad
G: X
 Y \qquad $H: X \longrightarrow, Y$ \mathbf{Y}^{-}

EXERCISE 2: Incremental Coordinates

Fill in the X and Y blanks with the appropriate incremental coordinates for points A through H.

B: X , Y \qquad
C: X , Y $\mathrm{D}: \mathbf{X} \longrightarrow, Y$
E: X , Y $\mathrm{F}: \mathrm{X}$, \mathbf{Y} H: X \qquad

Abstract

CNC turning fundamentals

CNC lathes share the same two-axis coordinate system. This allows for the transfer of CNC programs among different machines, as all measurements are derived from the same reference points.
In CNC turning there is a primary, or horizontal, axis and a secondary, or vertical, axis. Because the major axis always runs through the spindle(horizontally), the Z axis is usually the longer one. The X axis is perpendicular to the Z axis (or vertical).
It is important to remember that on most CNC lathes the tool post is on the top, or backside, of the machine, unlike on a conventional lathe. This is why the tool is shown above the part in the simulation examples.

CNC turning fundamentals - Cartesian graph for turning

When measuring X and Z coordinates, use a central reference point. Start all measurements at this reference point, the origin point (X0, Z0). For all our examples the origin is located at the center right-hand endpoint of the workpiece. Keep in mind that at times the center left-hand endpoint of the workpiece may be used

CNC turning fundamentals - Diameter programming

| Diameter (or diametrical) |
| :--- | :--- |
| programming relates the |
| X axis to the diameter of |
| the workpiece. For |
| example, if the workpiece |
| has a 5-in. outside |
| diameter and you want to |
| command an absolute |
| move to the outside, you |
| would program X5.0. |

CNC turning fundamentals - Radial programming

| Radius (or radial) |
| :--- | :--- | :--- |
| programming relates the |
| X axis to the radius of the |
| workpiece. For example, |
| for the same 5-in. outside |
| diameter workpiece, you |
| would program X2.5 to |
| move the tool to the |
| outside. |

CNC turning fundamentals - Absolute coordinates

When plotting points using
absolute coordinates, always
start at the origin
(X0, Z0). Then travel along
the Z axis until you reach a
point directly below the
point that you are trying to
plot. Write down the Z value
and then go up until you
reach your point. Write
down the X value. You now
have the XZ (or ZX)
coordinate for that point.

EXERCISE 2: Using Absolute Coordinates
Find the X and Z coordinates for points A through E.

$$
\text { End of part - } 9
$$

