

Polymers & Products

Polymer processing

- Injection molding
- Extrusion
- Blow molding
- Thermoforming
- Compression molding
- Transfer molding

Injection Molding

Injection Molding

Operation Procedures

- Fill hooper with plastic material (pallet/granular)
- Plastic then heated in the barrel gradually to the state that its' able to flow sufficiently
- Melt plastic is forced thru orifice to the mold cavity
- Open the mold when solidification completed
- Eject part and inspection

Injection Molding Machine

The injection molding process depends on the injection pressure, injection velocity, melt temperature, mold temperature, and holding time.

Molding Cycle

- (1) Mold closing
- (3) Screw retraction

- (2) Melt injection into cavity
- (4) Mold opening and part ejection

Injection Mold

stationary platen and the *moving platen* of the molding machine.

• The mold halves each contains the *core* and *cavity* to form the part geometry.

Injection Mold

- The mold has *water channels* to control the temperature of the mold.
- The *cavity* may have *multi-cavities* to improve the efficiency of the production.
- The core may consist of *sliding cores* to cater for intricate geometry.
- The *sprue*, *runner* and *gate* form the feeding system.
- *Hot runners* are sometimes used to eliminate melt solidification at the sprue and runner.
- The *ejector pins* are used for part ejection.
- The gate and ejector location should be chosen not to affect the aesthetic design of the part.
- Air venting should be provided for via the ejector pin clearance or *air vents*.

Injection Mold

Three-plate mold provides better automation and more room for gate adjustment.

Injection Molding Machine

Injection units: The two types being shown are the screw preplasticizer and plunger type. The most common injection system is to use the plasticizing screw to work also as an plunger.

Injection Molding Machine

Clamping units: The clamping unit could be mechanical or hydraulic operated. The mechanical clamping system uses toggle clamps while the hydraulic system uses a hydraulic cylinder to provide the actuation.

Molding Defects

- Shrinkage
- warpage
- short shots
- Flashing
- Sink marks and voids
- Weld lines

Other Injection Molding Processes

- Thermoplastics foam injection molding
 - introducing gas into melt or mixing a gasproducing ingredient with starting pellet.
 - Producing part with high stiffness-to-weight ratio.
- Multi-injection molding process
 - sandwich molding
 - bi-injection molding
- Injection molding of thermosets
 - mostly with high filler content

Other Injection Molding Processes

- Reaction Injection Molding
 - Mixing of two highly reactive liquid and injected it immediately into the cavity to create thermosets typically of large size.
 - Low energy requirement.
 - Equipment and mold cost are less than injection molding.
 - Good process reliability.
 - Wide choice of chemical systems.

Other Injection Molding Processes

• Reaction Injection Molding

Design Considerations

- Production Cost:
 - material cost
 - mold cost
 - operating cost
 - cycle time
 - labor cost
 - QC cost
 - finishing cost

The unit cost per part is the most important item.

Design Considerations

- Part complexity
 - The part complexity will increase the cost of the mold, not only in terms of mold finishing, but may incur sliding cores and other mechanisms.
 - The trade off is between mold cost and the additional cost of having more parts.

Material selection

- Viscosity (at processing temperature and pressure)
- Coefficient of thermal expansion (shrinkage factor)
- Strength and stiffness
- Impact resistance
- Service temperature
- Degradation

Design Considerations

- Wall and rib thickness even thickness is molded part is important.
- Corner radii and fillets avoid sharp corners which leads to poor melt flow and stress concentration.
- Holes Careful treatment in design to avoid obstruction of mold opening.
- Drafts thermosets 1/2 ° to 1° thermoplastics 1/8° to 1/2°

Design Considerations

Plastic	Tolerances for: ^a	
	2.0-in. (50-mm) Dimension	3/8-in. (10-mm) Hole
Thermoplastic:		
ABS	± 0.007 in. (± 0.2 mm)	± 0.003 in. (± 0.08 mm)
Polyethylene	± 0.010 in. (± 0.3 mm)	± 0.005 in. (± 0.13 mm)
Polystyrene	± 0.006 in. (± 0.15 mm)	± 0.004 in. (± 0.1 mm)
Thermosetting:		
Epoxies	± 0.006 in. (± 0.15 mm)	± 0.002 in. (± 0.05 mm)
Phenolics	± 0.008 in. (± 0.2 mm)	± 0.003 in. (± 0.08 mm)

Values represent typical commercial molding practice.

Compiled from [2], [6], [14], and [17].

^a For smaller sizes, tolerances can be reduced. For larger sizes, more generous tolerances are required.

Extrusion

A compression process in which the material is forced to flow through a die orifice to provide long, continuous product with regular shape controlled by the orifice shape.

Operation Procedures

- Fill hooper with plastic material (pallet/granular)
- Plastic then heated in the barrel gradually to the state that its' able to flow sufficiently
- Melt plastic is forced by screw press or plunger thru die opening and convey on conveyor or cooling bath/channel
- Letting the product cool and cut to length

Extrusion Machine

Extrusion in Progress

Extrusion in Progress

Extrusion

Extrusion

Extrusion Defects

Sheet & Film Extrusion

Extrusion

Stages in Blow Moulding

Operation procedures

- Extruded parison is positioned in between mold
- Mold closure and tight
- Hot air blowing expands parison and shapes it to take the mold contour
- Letting the product to cool down
- Open mold and eject the product

Bottle Manufacturing

Rotating Horizontal Table

Female mold on platen-frames open-heaters idle.

Stock in place-frames closed-heaters active.

Heaters idle-frames lowered, drawing stock into contact with mold.

Vacuum applied—stock cooling.

Fig. 13-2. Pressure forming into female cavity. Heated sheet is clamped over cavity, and compressed air pressure forces the sheet into the mold. (Courtesy Dow)

Calendering

Calendering

Plastisol

Compression Moulding

Rajah 11 : Proses pengacuanan mampatan a) Jenis positif, b) Jenis separa positif dan c) Jenis sirip atau lelebih

Transfer Moulding

(a) Preform in position

(b) Material forced into cavities

Fig 4.44 Transfer moulding of thermosetting materials

Filamen Winding

