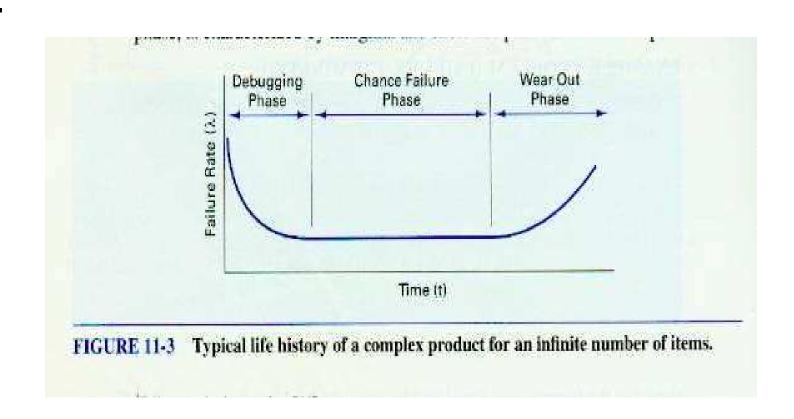
Reliability

SMN 4842 20102011 Project Mgmt and Maintenance Eng.

Definition of Reliability

"Probability that a system or product will perform in a satisfactory manner for a given period of time when used under specified operating condition"

Reliability – 4 main elements


- probability numerical representation number of times that an event occurs (success) divided by total number trials
- Satisfactory performance criteria established which describe what is considered to be satisfactory system operation

- Specifed time measure against which degree of system performance can be related - used to predict probability of an item surviving without failure for a designated period of time
- 4. Specified operating conditions expect a system to function environmental factors, humidity, vibration, shock, temperature cycle, operational profile, etc.

LIFE CYCLE CURVE

- typical life history curve for infinite no of items – 'bathtub curve
- comparison of failure rate with time
- 3 distinct phase debugging, chance failure and wear-out phase

Life Cycle Curve

Debugging (Infant mortality) Phase

- rapid decrease in failure rate
- Weibull distribution with shape parameter $\beta < 1$ is used to describe the occurrences of failure
- Usually covered by warranty period

Chance failure phase

- Constant failure rate failure occur in random manner
- Exponential and also Weibull with $\beta=1$ can be used to describe this phase

Wear-out phase

- Sharp rise in failure rate fatigue, corrosion (old age)
- Normal distribution is one that best describes this phase
- Also can use Weibull with shape parameter $\beta > 1$

Maintainability

- Pertains to the ease, accuracy, safety and economy in the performance of maintenance actions
- Ability of an item to be maintained
- Maintainability is a design parameter, maintenance is a result of design

Measures of Maintainability

- MTBM mean time between maintenance, include preventive and corrective maintenance
- MTBR mean time between replacement, generate spare part requirement
- M mean active maintenance time
- $M_{\rm ct}$ mean corrective maintenance time or mean time to repair
- $\overline{M}_{\rm pt}$ mean preventive maintenance time

Frequency of maintenance for a given time is highly dependent on the reliability of that item

Reliability frequency of maintenance

 Unreliable system require extensive maintenance

Reliability function [R(t)]

- R(t) = 1 F(t)
- F(t) = probability of a system will fail by time (t) = failure distribution function Eg. If probability of failure F(t) is 20%, then reliability at time t is

$$R(t) = 1 - 0.20 = 0.80 \text{ or } 80\%$$

Reliability at time (t)

$$ightharpoonup R(t) = e^{-t/\theta}$$

$$e = 2.7183$$

$$\theta = MTBF$$

$$\lambda = \frac{1}{\theta}$$
 $\lambda = \text{failure rate}$

So,

$$R(t) = e^{-\lambda t}$$

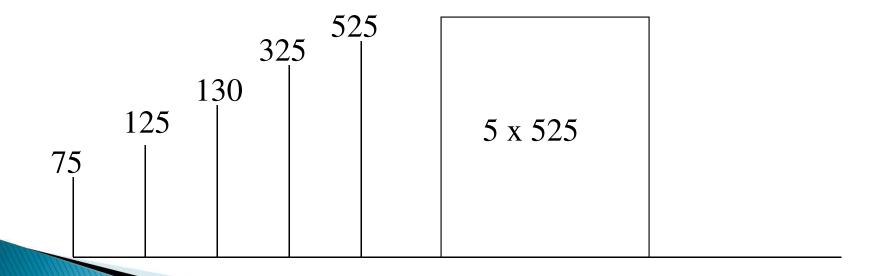
Failure Rate (λ)

Rate at which failure occur in a specified time interval

 λ = number of failures

total operating hours

Can be expected in terms of failures per hour, % of failure per 1,000 hours or failures per million hours


Example 1

- 10 components were tested. The components (not repairable) failed as follows:
- √ Component 1 failed after 75 ours
- Component 2 failed after 125 hours
- Component 3 failed after 130 hours
- Component 4 failed after 325 hours
- Component 5 failed after 525 hours

Determine the MTBF

Solution:

Five failures, operating time = 3805 hours

Solution

$$\lambda = 5 / 3805 = 0.001314$$

Example 2

The chart below shows operating time and breakdown time of a machine.

a) Determine the MTBF.

Solution:

Total operating time =
$$20.2 + 6.1 + 24.4 + 4.2 + 35.3 + 46.7$$

= 136.9 hours

Solution

$$\lambda = 4 \ / \ 136.9 = 0.02922$$
 Therefore; $\theta = MTBF = 1 \ / \ \lambda = 34.22 \ hours$

b) What is the system reliability for a mission time of 20 hours?

$$R = e^{-\lambda t} \quad t = 20 \text{ hours}$$

$$R = e^{-(0.02922)(20)}$$

$$R = 55.74\%$$

Reliability Component Relationship

 Application in series network, parallel and combination of both

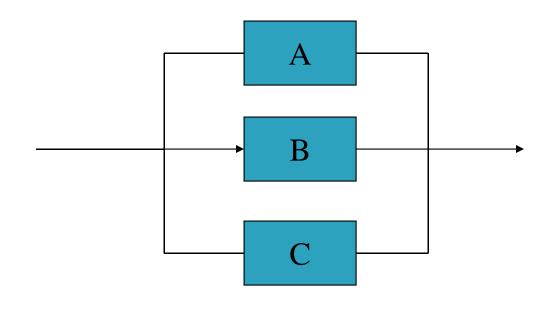
Series Network

Most commonly used and the simplest to analyze

All components must operate if the system is to function properly.

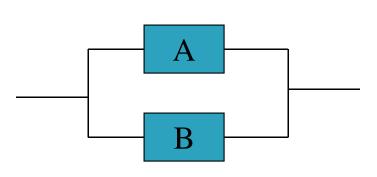
$$R = R_A \times R_B \times R_C$$

If the series is expected to operate for a specified time period, then


$$\mathbf{R}_{s}(t) = e^{-(\lambda_{1} + \lambda_{2} + \lambda_{3} + \dots + \lambda_{n})t}$$

Example

Systems expected to operate for 1000 hours. It consists of 4 subsystems in series, $MTBF_A = 6000$ hours, $MTBF_R = 4500$ hours, $MTBF_C = 10,500 \text{ hours}, MTBF_D = 3200$ hours. Determine overall reliability. $\lambda_A = 1 / MTBF_A = 1/6000 = 0.000167$ $\lambda_{R} = 1/MTBF_{R} = 1/4500 = 0.000222$ $\lambda_{\rm C} = 1/{\rm MTBF_{\rm C}} = 1/10500 = 0.000095$ $\lambda_D = 1/MTBF_D = 1/3200 = 0.000313$ Therefore: $R = e^{-(0.000797)(1000)} = 0.4507$


Parallel Network

A number of the same components must fail order to cause total system failure

Example

Consider two units A and B in parallel. The systems fails only when A and B failed.

$$F_{s}(t) = F_{a}(t) F_{b}(t)$$

$$= [1-R_{a}(t)][1-R_{b}(t)]$$

$$= 1-R_{a}(t) R_{b}(t) + R_{a}(t) R_{b}(t)$$

$$R_{s}(t) = 1-F_{s}(t)$$

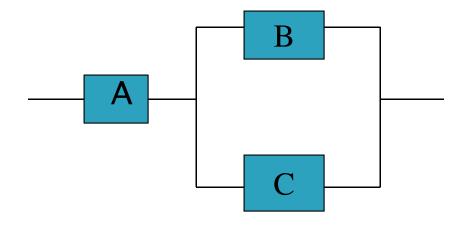
$$= R_{a}(t) + R_{b}(t) - R_{a}(t) R_{b}(t)$$

If A and B are constant failure rate units, then:

$$R_a(t) = e^{\lambda_a t}$$
 $R_b(t) = e^{-\lambda_b t}$

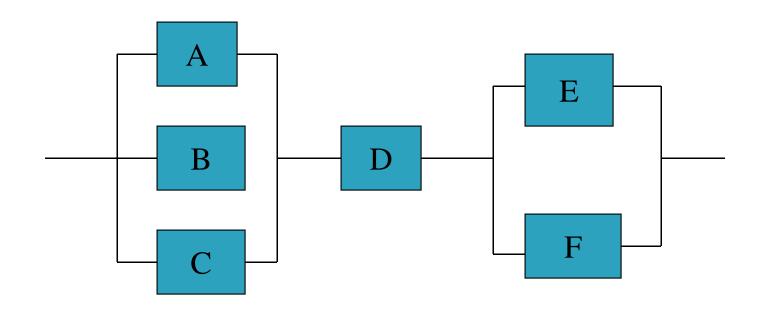
And
$$R_s(t) = \int_0^\infty R_s(t)dt = \frac{1}{\lambda_a} + \frac{1}{\lambda_b} - \frac{1}{\lambda_a + \lambda_b}$$

$$\theta_{s} = MTBF$$


Consider 3 components in parallel

- $R_s = 1 F_s$
- $F_a = 1 R_a$ $F_b = 1 R_b$ $F_c = 1 R_c$
- $R_s = 1 (1-R_a)(1-R_b)(1-R_c)$
- If components A, B and C are identical, then the reliability,

$$R_s = 1 - (1 - R)^3$$


For a system with n identical components,

$$R_s = 1 - (1 - R)^n$$

$$R_s = R_A [R_B + R_C - R_B R_C]$$

$$Rs = [1-(1-R_A)(1-R_B)][1-(1-R_C)(1-R_D)]$$

 $Rs=[1-(1-R_A)(1-R_B)(1-R_C)][R_D] \times [R_E+R_F-(R_E)(R_F)]$

- For combined series-parallel network, first evaluate the parallel elements to obtain unit reliability
- Overall system reliability is determined by finding the product of all series reliability