Project Management

THE MANAGERIAL PROCESS

Clifford F. Gray Eric W. Larson Third Edition

Chapter 6

Developing a Project Plan

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

PowerPoint Presentation by Charlie Cook

Developing the Project Plan

• The Project Network

- -A flow chart that graphically depicts the sequence, interdependencies, and start and finish times of the project job plan of activities that is the *critical path* through the network.
 - Provides the basis for scheduling labor and equipment.
 - Enhances communication among project participants.
 - Provides an estimate of the project's duration.
 - Provides a basis for budgeting cash flow.
 - Identifies activities that are critical.
 - Highlights activities that are "critical" and can not be delayed.
 - Help managers get and stay on plan.

From Work Package to Network

WBS/Work Packages to Network

FIGURE 6.1

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

From Work Package to Network (cont'd)

WBS/Work Packages to Network (cont'd)

Activity network for circuit board work packages

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Constructing a Project Network

Terminology

- -Activity: an element of the project that requires time.
- -Merge Activity: an activity that has two or more preceding activities on which it depends.

-Parallel (Concurrent) Activities: Activities that can occur independently and, if desired, not at the same time.

Constructing a Project Network (cont'd)

Terminology

- -Path: a sequence of connected, dependent activities.
- -**Critical path:** the longest path through the activity network that allows for the completion of all projectrelated activities; the shortest expected time in which the entire project can be completed. Delays on the critical path will delay completion of the entire project.

(Assumes that minimum of A + B > minimum of C in length of times to complete activities.) Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Constructing a Project Network (cont'd)

Terminology

- -**Event:** a point in time when an activity is started or completed. It does not consume time.
- -Burst Activity: an activity that has more than one activity immediately following it (more than one dependency arrow flowing from it).
- Two Approaches
 - -Activity-on-Node (AON)
 - Uses a node to depict an activity.
 - -Activity-on-Arrow (AOA)
 - Uses an arrow to depict an activity.

Basic Rules to Follow in Developing Project Networks

- Networks typically flow from left to right.
- An activity cannot begin until all of its activities are complete.
- Arrows indicate precedence and flow and can cross over each other.
- Identify each activity with a unique number; this number must be greater than its predecessors.
- Looping is not allowed.
- Conditional statements are not allowed.
- Use common start and stop nodes.

Activity-on-Node Fundamentals

A is preceded by nothing B is preceded by A C is preceded by B

(A)

Y and Z are preceded by X

Y and Z can begin at the same time, if you wish

FIGURE 6.2

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Activity-on-Node Fundamentals (cont'd)

J, K, & L can all begin at the same time, if you wish (they need not occur simultaneously)

but

All (J, K, L) must be completed before M can begin

(C)

Z is preceded by X and Y

AA is preceded by X and Y

FIGURE 6.2 (cont'd)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Network Information

KOLL BUSINESS CENTER County Engineers Design Department

		Preceding	
Activity	Description	Activity	
А	Application approval	None	
В	Construction plans	Α	
С	Traffic study	A	
D	Service availability check	A	
E	Staff report	B, C	
F	Commission approval	B, C, D	
G	Wait for construction	F	
Н	Occupancy	E, G	

Koll Business Center—Partial Network

Koll Business Center—Complete Network

FIGURE 6.4

Network Computation Process

- Forward Pass—Earliest Times
 - -How soon can the activity start? (early start—ES)
 - -How soon can the activity finish? (early finish—EF)
 - -How soon can the project finish? (expected time—ET)
- Backward Pass—Latest Times
 - -How late can the activity start? (late start—LS)
 - -How late can the activity finish? (late finish—LF)
 - -Which activities represent the critical path?
 - -How long can it be delayed? (slack or float—SL)

Network Information

KOLL BUSINESS CENTER County Engineers Design Department

A		Preceding	Activity
Activity	Description	Activity	IIme
Α	Application approval	None	5
В	Construction plans	А	15
С	Traffic study	Α	10
D	Service availability check	Α	5
E	Staff report	B, C	15
F	Commission approval	B, C, D	10
G	Wait for construction	F	170
Н	Occupancy	E, G	35

Activity-on-Node Network

FIGURE 6.5

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Activity-on-Node Network Forward Pass

FIGURE 6.6

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Forward Pass Computation

- Add activity times along each path in the network (ES + Duration = EF).
- Carry the early finish (EF) to the next activity where it becomes its early start (ES) unless...
- The next succeeding activity is a merge activity, in which case the largest EF of all preceding activities is selected.

Activity-on-Node Network Backward Pass

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Backward Pass Computation

- Subtract activity times along each path in the network (LF Duration = LS).
- Carry the late start (LS) to the next activity where it becomes its late finish (LF) *unless*
- The next succeeding activity is a burst activity, in which case the smallest LF of all preceding activities is selected.

Determining Slack (or Float)

- Slack (or Float)
 - -The amount of time an activity can be delayed after the start of a longer parallel activity or activities.
- Total slack
 - -The amount of time an activity can be delayed without delaying the entire project.
- The critical path is the network path(s) that has (have) the least slack in common.

Activity-on-Node Network with Slack

FIGURE 6.8

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Practical Considerations

- Network Logic Errors
- Activity Numbering
- Use of Computers to Develop Networks
- Calendar Dates
- Multiple Starts and Multiple Projects

Illogical Loop

FIGURE 6.9

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Air Control Project

FIGURE 6.10

Air Control Project (cont'd)

										1st Half						
D	Duration	Task Name	Start	Finish	Late Start	Late Finish	Free Slack	Total Slack	12/23	12/30	1/6	1/13 1/2	1/27	2/3	2/10	2/17
1	2 days	Order review	Tue 1/1/05	Wed 1/2/05	Tue 1/1/05	Wed 1/2/05	0 days	0 days		h						
2	15 days	Order vendor parts	Thu 1/3/05	Thu 1/17/05	Wed 1/16/05	Wed 1/30/05	13 days	13 days		I			_			
3	10 days	Produce other standard parts	Thu 1/3/05	Sat 1/12/05	Mon 1/21/05	Wed 1/30/05	18 days	18 days		I			-			
4	13 days	Design custom parts	Thu 1/3/05	Tue 1/15/05	Thu 1/3/05	Tue 1/15/05	0 days	0 days				h				
5	18 days	Software development	Thu 1/3/05	Sun 1/20/05	Wed 1/23/05	Sat 2/9/05	20 days	20 days								
6	15 days	Manufacture custom hardware	Wed 1/16/05	Wed 1/30.05	Wed 1/16/05	Wed 1/30/05	0 days	0 days		1						
7	10 days	Assemble	Thu 1/31/05	Sat 2/9/05	Thu 1/31/05	Sat 2/9/05	0 days	0 days		1					4	
8	5 days	Test	Sun 2/10/05	Thu 2/14/05	Sun 2/10/05	Thu2/14/05	0 days	0 days		1						

FIGURE 6.11

Extended Network Techniques to Come Close to Reality

• Laddering

- -Activities are broken into segments so the following activity can begin sooner and not delay the work.
- Lags
 - -The minimum amount of time a dependent activity must be delayed to begin or end.
 - Lengthy activities are broken down to reduce the delay in the start of successor activities.
 - Lags can be used to constrain finish-to-start, start-to-start, finish-to-finish, start-to-finish, or combination relationships.

Example of Laddering Using Finish-to-Start Relationship

FIGURE 6.12

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Use of Lags

Finish-to-Start Relationship

Start-to-Start Relationship

FIGURE 6.14

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Use of Lags Cont'd

FIGURE 6.15

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Use of Lags (cont'd)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Network Using Lags

Hammock Activities

- Hammock Activity
 - -An activity that spans over a segment of a project.
 - -Duration of hammock activities is determined after the network plan is drawn.
 - -Hammock activities are used to aggregate sections of the project to facilitate getting the right amount of detail for specific sections of a project.

Hammock Activity Example

FIGURE 6.21

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Key Terms

Activity Activity-on-arrow (AOA) Activity-on-node (AON) Burst activity Concurrent engineering Critical path Early and late times Gantt chart Hammock activity Lag relationship Merge activity Network sensitivity Parallel activity Slack/float—total and free

Activity-on-Arrow Network Building Blocks

FIGURE A6.1

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Activity-on-Arrow Network Fundamentals

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Activity-on-Arrow Network Fundamentals

FIGURE A6.2 (cont'd)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Koll Center Project: Network Information

KOLL BUSINESS CENTER County Engineers Design Department

Activity	Description	Preceding Activity	Activity Time
А	Application approval	None	5
В	Construction plans	Α	15
С	Traffic study	Α	10
D	Service availability check	Α	5
E	Staff report	В, С	15
F	Commission approval	B, C, D	10
G	Wait for construction	F	170
Н	Occupancy	E, G	35

TABLE A6.3

Partial Koll Business Center AOA Network

FIGURE A6.3

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Partial AOA Koll Network

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Partial AOA Koll Network (cont'd)

FIGURE A6.4 (cont'd)

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Activity-on-Arrow Network

FIGURE A6.5

Activity-on-Arrow Network Forward Pass

FIGURE A6.6

Activity-on-Arrow Network Backward Pass

FIGURE A6.7

Activity-on-Arrow Network Backward Pass, Forward Pass, and Slack

FIGURE A6.8

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

Air Control Inc. Custom Order Project— AOA Network Diagram

FIGURE A6.9

Copyright © 2006 The McGraw-Hill Companies. All rights reserved.

AON Method

Advantages

- 1. No dummy activities are used.
- 2. Events are not used.
- 3. AON is easy to draw if dependencies are not intense.
- 4. Activity emphasis is easily understood by first-level managers.
- 5. The CPM approach uses deterministic times to construct networks.

Disadvantages

- 1. Path tracing by activity number is difficult. If the network is not available, computer outputs must list the predecessor and successor activities for each activity.
- 2. Network drawing and understanding are more difficult when dependencies are numerous.

AOA Method

Advantages

- 1. Path tracing is simplified by activity/event numbering scheme.
- 2. AOA is easier to draw if dependencies are intense.
- 3. Key events or milestones can easily be flagged.

Disadvantages

- 1. Use of dummy activities increases data requirements.
- Emphasis on events can detract from activities. Activity delays cause events and projects to be late.

TABLE A6.2

Methods

Comparison of AON and AOA